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The model of a fracture process zone near the tip of a mode I crack in a nonlinear elastic body is

proposed. Using the numerical solution of an appropriate boundary-value problem, the effect of the

fracture process zone on a crack opening displacement is examined
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1. Introduction. As experiments [1, 3, 8, 12] show, fracture occurs in a local area near a crack tip (fracture process

zone) where extremely high stresses give rise to submicrocracks that grow and coalesce. The shape and structure of this zone

depend on the material properties and loading conditions.

The strains in the fracture process zone are very high (more than 50% in an elastoplastic body [4]).

This is why many attempts to describe the deformation process in this zone using the small-strain deformation theory of

plasticity led to physically incorrect results that disagree with experimental data [1].

A great many theoretical studies of the stress–strain behavior near a crack tip in nonlinear bodies disregarding the

fracture process zone were published in the 1960–70s [1, 7, 8]. Researchers presumed that by solving nonlinear boundary-value

problems, it was possible to eliminate the singularity of the stresses and strains at the crack tip, which would be consistent with

reality.

However, the singularity was still there, but of different type. Thus, stresses and strains at the crack tip remained

infinitely high.

The lack of information on fracture mechanisms is compensated for by modeling the fracture process zone [1, 3, 10-13]

based on experimental data [1, 8] on the localization of nonlinear deformation in narrow zones (slipbands) at the crack tip. This

phenomenon is especially typical for the early stage of loading. Since the fracture process zone is usually located on the

continuation of the crack and is much shorter than the crack, it is modeled, expanding upon the Leonov–Panasyuk model [6], by a

slit with faces subject to certain stresses.

The experiments [4] indicate that the fracture process zone occurs inside the zone of nonlinear deformation near the

crack tip. We will study the effect of the fracture process zone on the opening displacement of a mode I crack. Use will be made

of the model proposed in [3, 11, 12]. In this model, the length of the fracture process zone and, hence, the length of the slit remain

constant with increase in the external load. What do change are the stresses applied to the faces of the slit. They are determined by

solving a boundary-value problem and satisfying the continuity and limitation conditions for the stresses at the slit tip.

We will analyze the role of the fracture process zone near a crack tip in a nonlinear elastic body in the case of a

generalized plane stress state assuming small strains. The boundary-value problem will be formulated in terms of the

displacement components. By solving the problem, we will ascertain how the fracture process zone influences the crack opening

displacement.

1. Preliminaries. To formulate the boundary-value problem, we need the nonlinear constitutive equations relating the

components of the stress tensor S and strain tensor D.
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1.1. Constitutive Equations. Let us make use of the constitutive equations for an anisotropic body [5]:
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Since the tensors F and G are highly symmetric, we may interchange both the indices within a pair of indices and pairs

themselves.

Let us restrict the consideration of an isotropic body for which the components of the tensor F can be expressed in terms

of two constants (� and �):
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The components of the tensor G are as follows [16]:

G g g g g
���� �� �� �� ��

�

�

� �

� �� �

�

�




�
�

�

�

�
�

1

3

( , ). (1.4)

Note that the constants � and � are related to Lame’s constants (� and �) as
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Using formulas (4) and the second formula in (1.2), we obtain
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According to (1.2)–(1.4), we have
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and formulas (1.5) and (1.6), Eqs. (1.1) become
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Note that Eqs. (1.9) are identical with Kauderer’s equations [15]. However, they have isolated linear terms and,

therefore, are preferable for formulating the boundary-value problem.

If
~

( )� � � 0, then Eqs. (1.9) degenerate into Hooke’s equations [9]:
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1.2. Scalar Function. Following [14], we introduce a constant  ! 0 and assume that the function
~

( )� � is such that
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The constant  and the coefficients b and c will be particularized below.

2. Generalities. We choose Cartesian coordinates x x x
1 2 3

, , to describe the body. Then the components of the metric

tensor g are expressed as
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2.1. Governing Equations. Let us derive the governing equations for the components of the displacement vector u.

The components of the strain tensor D and the components of the displacement vector u are related as follows [9]:
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Using the second formula in (1.2) and formulas (2.1), (2.2), we get
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Formulas (1.7), (2.1), and (2.2) yield
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With (2.2), Eqs. (1.9) can be represented as
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In the special case of generalized plane stress state, the components of the stress tensor S are given by
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Using formulas (2.1), (2.3), and (2.5), we get
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Equalities (2.7) and the third equation in (2.8) give

)

)

�

�

� �

)

)

�

)

)

�




�
�

�

�

�
�
�

u

x

u

x

u

x

3

3

1

1

2

2

3

2 3

1

3

2

� �

� �

�

� �

�
~

( )�

)

)

�

)

)

�

)

)

�




�
�

�

�

�
�

�

�

�

�

�

�

u

x

u

x

u

x

3

3

1

1

2

2

. (2.9)

Substituting the first two equations in (2.8) into (2.9) yields
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Using formulas (2.1) and (2.5), we get
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With (2.12), formula (2.4) becomes:
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Let us rearrange Eqs. (2.10) and (2.11) into

S
u

x

u

x

T
11 1

1

2

2

11
1

2

�

�

�

)

)

�

)

)

�

�

�

�

�

�
�

� � �

� � �

( )

( ) ,

S
u

x

u

x

T
12 1

2

2

1

12
1

2

�

)

)

�

)

)

�




�
�

�

�

�
�
�

�

, S
u

x

u

x

T
21 2

1

1

2

21
1

2

�

)

)

�

)

)

�




�
�

�

�

�
�
�

�

,

S
u

x

u

x

T
22 2

2

1

1

22
1

2

�

�

�

)

)

�

)

)

�

�

�

�

�

�
�

� � �

� � �

( )

( ) , (2.14)

where

738



T
u

x

u

x

u
11 1

1

2

2

3
1

3 2

3 2 3�

�

�

)

)

� �

)

)

�

)

)� � �

� � � � � �

( )

~
( ) ( ) ( )�

x
3

�

�

�

�

�

�
,

T
u

x

u

x

12 1

2

2

1

1

2

�

)

)

�

)

)

�




�
�

�

�

�
�

�

�
~

( )� , T
u

x

u

x

21 2

1

1

2

1

2

�

)

)

�

)

)

�




�
�

�

�

�
�

�

�
~

( )� ,

T
u

x

u

x

u
22 2

2

1

1

3
1

3 2

3 2 3�

�

�

)

)

� �

)

)

�

)

)� � �

� � � � � �

( )

~
( ) ( ) ( )�

x
3

�

�

�

�

�

�
. (2.15)

The equilibrium equations can be written for the components of the stress tensor S [9]:

)

)

�

S

x

��

�

0. (2.16)

With (2.6) and (2.7), Eqs. (2.16) become

)

)

�

)

)

�

S

x

S

x

11

1

12

2

0,

)

)

�

)

)

�

S

x

S

x

21

1

22

2

0. (2.17)

Let the constants � and � be independent of the coordinates x
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The boundary conditions for the components of the stress vector P are the following [9]:

S n P
��

�

�
� , (2.21)

where n
�

are the components of the outward unit normal n.

With (2.7), conditions (2.21) become

S n S n P
11

1

12

2

1
� � ,

S n S n P
21

1

22

2

2
� � . (2.22)

Let

2 2 1 2� � � �
� �

( ) ( , )� � �P P . (2.23)

739



From (2.14), (2.18), (2.22), (2.23), we derive the following first-order partial differential equations for u
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respect to x
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Equations (2.19) and (2.24) can be integrated with Ilyushin’s method [2]. In the first approximation, the values of
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, are equated to zero. In each subsequent approximation, they are found from the previous one.
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Eqs. (2.19) and (2.24) in the first approximation means solving the boundary-value problem for a linear elastic body.

2.2. Boundary-Value Problem Formulation. Consider a thin rectangular body with a central crack (Fig. 1) and

symmetry axes aligned with the x
1
- and x

2
-axes.

If the body is stretched along the x
1
-axis, fracture process zones occur near both crack tips. They are modeled by slits.

Uniformly distributed stresses are applied to their faces. These stresses should be determined by solving a boundary-value

problem.

Let P
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Using (2.25) and (2.26), we get
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On the lateral surface of the body, we have
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Using (2.25) and (2.29), we get

R T
1 12

� , R T
2 22

� . (2.31)

On the upper surfaces of the crack and slit, we have

� �n
1

1, n
2

0� . (2.32)

With (2.32), Eqs. (2.24) become:

� �

)

)

�

)

)

�

�

�

�

�

�
� �2

1

1

2

2

1 1

( )� � �

u

x

u

x

P R ,

� �

)

)

�

)

)

�




�
�

�

�

�
�
� �( )2

2

1

1

2

2 2

� �

u

x

u

x

P R . (2.33)

Using (2.25) and (2.32), we get

� �R T
1 11

, � �R T
2 21

. (2.34)

For reasons of symmetry about the x
1
- and x

2
-axes,

u x x u x x u x x u x x
1

1 2

1

1 2

2

1 2

2

1 2
0 0( , ) ( , ) , ( , ) ( , )� � � � � � � � ,

u x x u x x u x x u x x
1

1 2

1

1 2

2

1 2

2

1 2
0 0( , ) ( , ) , ( , ) ( , )� � � � � � � � . (2.35)

Due to symmetry about the x
2

-axis, we have

u
1

0� (2.36)

at the slit tip.

To derive the equation for the component u
2

, we choose an arbitrary point ( , )a a
1 2

near the slit tip and assume that all

the partial derivatives of the component u
2

with respect to x
1

and x
2

exist at this point. Then the coordinates of the slit tip are

a a
1 1 2 2
� �# #, .

Let us expand u
2

into a multiple Taylor series in powers of #
1

and #
2

:
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u u a a
u

x

u

x x
a a

2 2

1 2 2

1

2 2

2

1

2

1 2

1

2

� �

)

)

�

)

) )
� �

*( , )

( , )

�

�

�

� �

�

# **

��

� �
# #

1

2

1 2
( , )a a

. (2.37)

Rearranging this formula, we arrive at the equation

� � �

)

)

�

)

)

u u a a
u

x

u

xa a a a

2 2

1 2 2

1

1 2

2

2

1 2 1 2

( , )

( , ) ( , )

# #

�

)

) )

�

)

) )

�

)1

2

2

2

2

1 1

1 1

2

2

1 2

1 2

2

1 2 1 2

u

x x

u

x x
a a a a( , ) ( , )

# # # #

u

x x
a a

2

2 2

2 2

1 2

0

) )

�




�

�
�

�

�

�

�
�

�

( , )

# # . (2.38)

2.3. Discretization of Variables. Introducing a step h, we form sets of values of the coordinates:

x i h i d x j h j e
i j

1 2

2 1 2 2 1 2� � � � � �( ) ( , ,... , ), ( ) ( , ,... , ).

Let the crack and slit tips be at a point A with coordinates x
2

1

, x
f

2

and a point B with coordinates x
2

1

, x
g

2

, respectively.

Expressing the partial derivatives of u
1

and u
2

with respect to x
1

and x
2

in terms of finite differences, using Eqs. (2.19),

(2.27), (2.30), (2.33), (2.35), (2.36), (2.38), setting � � �# #
1 2

h, and taking into account formulas (2.20), (2.28), (2.31), (2.34),

notation (2.18), formulas (1.10)–(1.12), (2.15), notation (1.8), formulas (2.3), (2.9), (2.13), we obtain a system of linear algebraic

equations for u x x
i j

1

1 2

( , ) and u x x
i j

2

1 2

( , ). To solve the system, we will use the method [14].

3. Numerical Example. Let us analyze the influence of the fracture process zone on the crack opening displacement in

a nonlinear elastic body. To this end, it is necessary to analyze the deformation of a linear elastic body and a nonlinear elastic

body with a crack. Let the lengths of the crack and fracture process zone be equal in both bodies.

3.1. Solving the Boundary-Value Problem. Symmetrizing (1.3) and using (2.1), we get

F
����

� � � � � �

� � � � �

�

� � � �

� % �

&

'

(

, ,

, .

(3.1)

Equating the components F
����

� � � � � � � �( , )� � � � % � to the arithmetic means of the values given in [14], we

calculate the constants � and �with formulas (3.1): � � 1
�

� 0046 10
10

. Pà
–1

, � � 1
�

0222 10
10

. Pà
–1

.

As in [14], we set  � 1325 10
2

. Pà
1/2

, b � 1
�

01964347 10
2

. Pà
–1/2

, c � 1
�

05632820 10
4

. Pà
–1

. Also h � 1
�

002 10
2

. m,

d � 302, e �152, f � 62, g � 72). We examined the cases of absence and presence of a fracture process zone in both bodies.

The crack and slit lengths are 120 10
2

. 1
�

m and 020 10
2

. 1
�

m, respectively.

Only the component P
1

was nonzero (on the upper surface of the body and on the upper surface of the slit):

P x x P j e
d j

1 1 2

1

1
2 1( , ) ( ,... , )

( )
� � � ,

P x x P j f g
j

1

2

1 2

2

1
1( , ) ( ,... , )

( )
� � � .

In the presence of fracture process zone, the boundary-value problem is solved assuming that at the slit tip, the

component S
11

has the same value as at all other points of the upper surface of the slit.

The unknowns u x x
i j

1

1 2

( , ) and u x x
i j

2

1 2

( , ) were calculated to the 15th approximation.

3.2. Analysis of the Results. Consider the case of presence of a fracture process zone. For example, if P
( )

.
1

1 7
500 10� 1 Pà,

then P
( )

.
2

1 7
1590 10� � 1 Pà for the linear elastic body and P

( )
.

2

1 7
1414 10� � 1 Pà for the nonlinear elastic body. Note that P

( )2

1
is
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considerably greater for the nonlinear elastic body. The difference between the values of P
( )2

1
for both bodies decreases with P

( )1

1
.

For example, if P
( )

.
1

1 7
4 00 10� 1 Pà, then P

( )
.

2

1 7
1272 10� � 1 Pà for the linear elastic body and P

( )
.

2

1 7
1231 10� � 1 Pà for the

nonlinear elastic body. This is due to the reduction of the nonlinear zone.

Let us analyze the opening displacements of the crack and slit. For simplicity, by the opening of the crack and slit, we

will mean the displacement of particles of their upper surface along the x
1
-axis.

The values of u x x
i j

1

1 2

( , )found by solving the boundary-value problem are plotted versus the coordinate x
2

for x
1

0� in

Figs. 2a and 2b for linear elastic and nonlinear elastic bodies, respectively (curves 1 and 2 represent the cases of absence and

presence of fracture process zone, respectively).

It can be seen that the fracture process zone causes a minor opening at the middle of the crack in both linear and

nonlinear elastic bodies. For example, at x
2

0� , it has increased from 2445 10
5

. 1
�

to 2482 10
5

. 1
�

m in the linear elastic body and

from 2556 10
5

. 1
�

to 2557 10
5

. 1
�

m in the nonlinear elastic body. More substantial changes in the crack opening displacement are

observed near the crack tip. For example, at x
2 2

118 10� 1
�

. m, it has increased from 0417 10
5

. 1
�

to 0787 10
5

. 1
�

m in the linear

elastic body and from 0586 10
5

. 1
�

to 0896 10
5

. 1
�

m in the nonlinear elastic body. The opening of the crack at its tip in the nonlinear

elastic body is noticeably greater than in the linear elastic body. For example, at x
2 2

120 10� 1
�

. m, it is equal to 0597 10
5

. 1
�

m in

the linear elastic body and to 0690 10
5

. 1
�

m inr the nonlinear elastic body. Globally, the effect of the fracture process zone on the

crack opening displacement is stronger in the linear elastic body.

The opening of the slit decreases, at first abruptly and then gradually, with distance from the crack tip. For example, at

x
2 2

122 10� 1
�

. m, it is equal to 0477 10
5

. 1
�

m in the linear elastic body and to 0552 10
5

. 1
�

m inr the nonlinear elastic body. At

x
2 2

138 10� 1
�

. m, it is equal to 0016 10
5

. 1
�

m in the linear elastic body and to 0020 10
5

. 1
�

m in the nonlinear elastic body.

Denote the slope of the tangent to the boundaries of the crack and slit by M. Since the strains are small, M can be

calculated with the formula

M
u

x x

�

)

)

2

2

2

�

1

2

0
1

.

At x
2 2

120 10� 1
�

. m, the value of M is extreme for both bodies, i.e., the boundaries of the crack and slit have inflection

points.

At x
2 2

140 10� 1
�

. m, the value of M is close to zero, i.e., the slit smoothly closes at the tip.

4. Conclusions. We have analyzed a nonlinear elastic body with a mode I crack. The fracture process zone near the

crack tip has been modeled by a slit with some stresses being applied to its faces. By solving the problem, we have ascertained

how the fracture process zone influences the crack opening displacement. It has been established that the shape of crack faces is
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in qualitative agreement with the experimental data [3, 12] and that the fracture process zone considerably increases the opening

displacement of the crack at its tip. This supports the use of the critical crack opening displacement. It has been shown that the

nonlinearity of the body has a strong effect on the crack opening displacement at the crack tip.
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