
STRESS CONCENTRATION IN A TRANSVERSELY ISOTROPIC SPHERICAL SHELL

WITH TWO CIRCULAR RIGID INCLUSIONS
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The refined Timoshenko-type theory that takes into account the transverse shear strains is used to find

an analytic solution for the stress state of transversely isotropic shallow spherical shell with two circular

rigid inclusions. The case of a shell with closely spaced rigid inclusions of unequal radii under internal

pressure is analyzed numerically. The stresses in the shell increase considerably with decrease in the

distance between the inclusions and increase in the transverse shear parameter
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Introduction. Despite their long history [1–3], studies of stress concentration in plates and shells with holes and

inclusions (rings, washers, covers) are still relevant [5–8]. A similar situation exists with other problems in the mechanics for

multiply connected and structurally inhomogeneous bodies [4, 9]. Analytic solutions and numerical results of stress analysis of

shallow spherical shells with two or more holes reinforced with highly rigid rings are available only for the case of an isotropic

shell with identical circular holes [1–3]. The minimum width of the bridge between the reinforced holes in this case is 0.7 of the

hole radius. However, if the holes are closely spaced, the stress concentration is much higher, as is the case in a plate with two

holes under tension [8]. Therefore, we will consider a transversely isotropic shallow spherical shell with two closely spaced

circular perfectly rigid inclusions of different radii.

1. Problem Formulation. Consider a transversely isotropic shallow spherical shell with two circular rigid inclusions of

different radii (Fig. 1). The shell is subjected to uniform internal pressure p �const. The principal stress state of the shell is

described by the membrane solution for a continuous shell:
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where p h pR
0

2� / , R is the radius of the midsurface of the shell; h is its thickness.

The perturbation of the stress state caused by the inclusions can be found from the homogeneous system of governing

differential equations of thin transversely isotropic shells proposed in [3, 5] and based on the refined Timoshenko-type theory

that accounts for the transverse-shear strains. Let us represent them as
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where U, w, and 	 are the unknown stress, deflection, and transverse-shear functions; � �
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E is Young’s modulus; � is Poisson’s ratio; G
1

is the transverse shear modulus; 
 � 5/6 is the shear coefficient.

The following five boundary conditions for strains are specified on each boundary �

q
of the rigid inclusion:
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where q �1 2, is the number of hole boundary on which boundary conditions are prescribed.

The boundary strains (3) are expressed as
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2. Problem-Solving Method. The solutions of the homogeneous system of differential equations (2) decreasing in

absolute magnitude with distance from �

q
, according to [3, 5], have three different analytic forms, depending on the range of

variation in the parameter �. The functions U and w are defined to have cylindrical and polyharmonic (power) components:
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. If the boundaries are symmetric about the x-axis for �> 1, the solutions have the form
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where A
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are unknown real constants; I
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the position vector coming from the center O
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of the boundary �
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to the boundary �
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(Fig. 1); �
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is the angle between the

Ox-axis and the position vector r
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(k �1 2, ).

To separate variables in the unknown functions in the qth coordinate system, we will follow Guz who proposed in [3, 6]

to use Graf’s theorem for cylindrical functions in (5), (7), (9) and to expand each term of the power part of solution (6), (8) into

the Laurent series. Doing so give the expressions
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where l L r� /
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is the dimensionless relative distance between the centers of the inclusions (Fig. 1); if k q� , then � �
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transformed in a similar way.

The expressions for the forces and moments corresponding to the homogeneous solutions (5)–(12) are the following:
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Substituting the forces and moments (13) with (9)–(12) into the boundary conditions (3) and equating the coefficient of

like harmonics, we obtain an infinite system of linear algebraic equations for A
q n,

, B
q n,

,C
q n,

, D
q n,

, M
q n,

. According to [3], this

system should be supplemented with the following conditions for complex displacements: C
q,1

0� , D
q,1

0� . Moreover, in the
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0th and 1st harmonics, we omit the equations �
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q
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q
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identities in [1]. The resulting system is solved with the reduction method.
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found by solving the system into formulas (5)–(9), we find the functionsU, w,

and 	. Next, we use formulas (13) and the membrane solution (1) to determine the forces and moments at given points, which will

depend on the angles

�

�,

�

� (Fig. 1) upon passage to the directions �
q

using well-known transformation formulas [1].

3. Numerical Results. We numerically analyzed a transtropic spherical shell with two unequal circular rigid inclusions

for different widths of the bridge between them and different values of �. Poisson’s ratio of the shell material� �0.3. The shell is

subject to internal pressure. The concentration factors for the membrane and bending stresses were calculated using the formulas
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They were used to calculate the relative equivalent stresses using the energy theory of strength [3]:
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Note that the signs “+” and “–” in formulas (15) correspond to the relative equivalent stresses on the outside and inside

surfaces of the shell, k
e

O
and k

e

I
.

Figures 2–5 and Tables 1, 2 present the results for a shell with two rigid inclusions soldered in holes of radii�
01

4� and

�

02
2� . Here �

0 0q q
r cR� / are the radii of the inclusions; s S r� /

01
is the width of the bridge between the inclusions.

The ordinate axis indicates k
e

I
in Fig. 2, k

e

O
in Fig. 4, and k

r

T
, k

�

T
and k

r

B
, k

�

B
in Figs. 3 and 5. The parameter3 laid off

along the abscissa axis (Figs. 2–5) takes the following values:

(i)3 � 4� � �2 1( ) /
*

q
q

for 2 1 2 1( )q q� 5 5 �3 describes half the boundary �
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of the inclusion, i.e., if there is symmetry

about the Ox-axis, we have 0 5�
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5 4, where � 4 �

q
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� � (Fig. 1);
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(ii)3 � �
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1
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for 1 25 53 describes the bridge s, i.å., when r

01
5 x

1
5 �r S

01
.

Figure 2 shows the distribution of the stress k
e

I
for s �0.1 depending on the parameter �(its values are indicated near the

curves). When �= 0, use is made of the classical theory of shallow isotropic shells based on the Kirchhoff–Love hypothesis [3]. It

can be seen that the relative equivalent stresses k
e

I
near the bridge increases with the parameter �. For example, as the parameter �

increases from 1 to 5, the maximum stress k
e

I
at the point �D increases by a factor of 2.4. Figure 3 shows that the bending stress k

r

B

contributes the most.

The dependence of the stress state of the shell on the width of the bridge s is demonstrated by Figs. 4 and 5 for �= 5 and

by Tables 1 and 2 for �= 5, 1, 0. The value of s is indicated near each curve in Fig. 4. It can be seen that the less the bridge width s,

the higher the maximum stresses k
e

near and on the bridge. Comparing cases (a) of Tables 1 and 2, we see that as the bridge width

s decreases from 0.5 to 0.06, the maximum relative equivalent stresses k
e

I
and k

e

O
at the point �D increase by factors 2 and 3.4,

respectively (underlined values in the tables).

The narrower the bridge, the stronger the effect of the compliance parameter. For example, for s = 0.5, �= 5 in Table 1,

the maximum stress k
e

at the dangerous point �D in case (a) is greater by 66% than in case (b) and by 88% than in case (c). For s=

0.06 in Table 2, this stress at the points D and �D in case (a) is higher by 107% than in case (b) and by 153% than in case (c). As

follows from Tables 1, 2 and Figs. 3, 5, this is mainly due to the increase in the bending stress k
r

B
.

4. Reliability of the Results. We tested the accuracy of satisfying the boundary conditions through the direct

calculation of the forces and moments on the boundaries using series (5)–(9), i.e., not using Graf’s theorem and Laurent series.

To this end, we used Maple 10 software. The accuracy of computation can be varied by assigning a value to the system variable

Digits and setting the number n of harmonics in (5)–(9). For example, if n = 50 and Digits = 77, the error of satisfying the

boundary conditions does not exceed 0.004% of the maximum stress (i.e., 1.0) in the solid shell in case (a) of Table 1 and 0.1% in

case (a) of Table 2.

For comparison to a spherical shell with one rigid inclusion [10], we calculated the case where the rigid inclusions do

not interact, i.e., s � 20. The obtained results are in good agreement with those in [10].

We also tested the accuracy of satisfying the differential equations (2) by the functions U, w, 	 with coefficients

determined after the solution of the system. The absolute error does not exceed 10
–72

for Digits = 77.

Conclusions. We have found the analytic solution for the stress state of a transversely isotropic shallow spherical shell

with two circular perfectly rigid inclusions using the refined Timoshenko-type theory that accounts for the transverse-shear

strains. The cases of closely spaced rigid inclusions of different radii in a shell under internal pressure have been numerically

445

Fig. 4 Fig. 5

k
e

O

� = 5

�

01
� 4, �

02
� 2

s = 0.1

1

0 0.5 1.0 1.5 2.0 2.5 3 0 0.5 1.0 1.5 2.0 2.5 3

2

3

4

5

–8

–4

0

4

8

k
r

T
, k

r

B

�

01
� 4, �

02
� 2

s = 0.03

� = 5

k
r

B

k
�

B

k
�

T

s = 0.05

s = 0.03

k
r

T



446

TABLE 1
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analyzed. The stresses in the shell increase considerably with decrease in the width of the bridge between the rigid inclusions and

with increase in the transverse-shear parameter.
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