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BY THE ADVANCED KANTOROVICH–VLASOV METHOD
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An approach to calculate the natural frequencies of an elastic parallelepiped with different boundary

conditions is proposed. The approach rationally combines the inverse-iteration method of successive

approximations and the advanced Kantorovich–Vlasov method. The efficiency of the approach (the

accuracy of the results and the number of approximating functions) is demonstrated against the Ritz

method with different basis systems, including B-splines. The dependence of the lower frequencies of a

three-dimensional cantilever beam on its cross-sectional dimensions is examined
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Introduction. The present study was inspired by the paper [15] where the Ritz method with B-splines as basis functions

was tested by calculating the natural frequencies of a rectangular parallelepiped. The vibrations of elastic bodies of such shape

are addressed in a great number of Ukrainian and foreign publications reviewed in [15] and [3] with reference to isotropic and

anisotropic materials, respectively.

The spectrum of natural frequencies of a parallelepiped with four sides hinged was analyzed in detail in [1, 11, 16] using

trigonometric Fourier series expansion. Other types of boundary conditions can be examined by using analytical and numerical

methods. Many relevant publications employ the Ritz method with emphasis on the selection of systems of basis functions. As

such, power functions, simple and orthogonal polynomials, Chebyshev polynomials, etc. are used [10, 12–14, 17].

The methods that use finitely supported functions as basis systems occupy a special place in the class of Ritz methods.

This approach gave rise to numerous modifications of the finite-element method having many applications. Among such

methods are B-splines which have become popular recently. The results obtained with the Ritz method for various basis systems,

including B-splines, were compared in [15] by solving three-dimensional eigenvalue problems for an isotropic parallelepiped.

B-splines in combination with the Kantorovich–Vlasov method were employed in [6–9] to reduce two-dimensional

boundary-value and eigenvalue problems to ordinary differential equations. Unlike the Ritz method where approximating

functions with respect to all variables of the domain are chosen beforehand, this approach makes it possible to find the functional

coefficients of B-splines from the solution of the original problem. The efficiency of this method was tested against a wide class

of two-dimensional problems for shells and plates.

To determine the natural frequencies of an isotropic parallelepiped, we will use the advanced Kantorovich–Vlasov

method (AKM) for three-dimensional problems of elasticity. Such an approach to two-dimensional stationary problems for

shallow shells was outlined in [4]. The AKM was used in [5] to solve the problem of twisting of a rectangular anisotropic prism.

1. Problem Formulation and Problem-Solving Method. Consider an elastic body in the form of a rectangular

parallelepiped that occupies the domain S S�� �{ , , : [ , ]x y z x a� 0 , y b�[ , ]0 , z c�[ , ]}0 in a Cartesian coordinate system x, y, z.

The faces z � 0, z c� are free of stresses, while the sides x � 0, x a� , and y � 0, y b� are subject to arbitrary physically consistent

combinations of stresses and displacements.
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To determine the natural frequencies and modes of the parallelepiped, we have to solve the following generalized

three-dimensional eigenvalue problem:

LU BU� �� 0 ( , , )x y z S� ,

RU � 0 ( , , )x y z S�� , (1.1)

where L D CD�
T

is a matrix differential operator derived from the constitutive equations of anisotropic elasticity; � ��
2

is an

unknown numerical coefficient that has the sense of the squared natural frequency;U u x y z
p p

�
�

{ ( , , )}
, ,1 2 3

is the displacement

vector characterizing a vibration mode; B b x y z
ii

� �{ ( , , )}	 ( , , )i �1 2 3 is the diagonal density matrix; R is the differential or

algebraic matrix operator of boundary conditions;
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C c
ij

�{ } ( , , )i j �1 6 is the stiffness matrix of the generalized Hooke’s law � ��C , � ��{
11

, �
22

, �
33

, �
23

, �
13

, �
12

} and

� � � � � � ��{ , , , , , }
11 22 33 23 13 12

are the stress and strain vectors formally composed of the components of the associated tensors

with allowance for their symmetry; for an isotropic material with shear modulusG and Poisson’s ratio�, the nonzero coefficients

of the matrix C c
ij

�{ }are c G
ii
�

�

�

2
1

1 2

�

�

, c c
ij ii
�

�

�

�1
(i j, , ,�1 2 3), c G

ii
� ( , , )i � 4 5 6 ; the indices “1,” “2,” “3” correspond to

the coordinates x y z, , , respectively; all the vectors are column vectors.

To solve problem (1.1), we will follow an approach that rationally combines the inverse-iteration method of successive

approximations [2] and the advanced Kantorovich–Vlasov method [4, 5]. The approach involves the following steps:

(i) reduction of the original homogeneous problem (1.1) with unknown numerical parameter � to a sequence of

inhomogeneous boundary-value problems of the same dimension using the method of successive approximations;

(ii) solution of each three-dimensional boundary-value problem of the sequence with the advanced

Kantorovich–Vlasov method;

(iii) generation of a new iteration process for solving problem (1.1) and determination of the eigenvalues and associated

vector functions.

At the first stage, according to the inverse-iteration method, we introduce a sequence of vector functionsV
n

as follows:

U V
n

� , �U V
n

�
�1

. As a result, with the spectrum of eigenvalues shifted by � (� � �� � ), the original problem (1.1) is reduced

to a sequence of three-dimensional inhomogeneous boundary-value problems:

( )L B V BV
n n

� � �
�

�
1

0 ( , , )x y z S� ,

RV
n
� 0 ( , , )x y z S�� (n �1 2, ,...). (1.2)

Using the known Rayleigh quotient [2] and the solutionsV
n

(n �1 2, , …) of problems (1.2), we construct a numerical

sequence:

�

�

n

n n

S

n n

S

V L B V dxdydz

V BV dxdydz

n�

�
�

�

( ) ( )

( )

T

T
( =1, , 3)2 , (1.3)

that converges to the sought eigenvalue � ( , )� �
n

n� �� . Any vector function of general form can be used as the initial

approximationV
0

.

At the second stage, the nth problem of sequence (1.2) (n is fixed) is solved with the advanced Kantorovich–Vlasov

method. To this end, the sought vectorV v v v
n n n n
�{ , , }

1 2 3
is approximated by a vector F f f f

M

n

M

n

M

n

M

n
�{ , , }

1 2 3
as follows:
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i

M
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1

( , , ) ( , , ) ( ) ( ) ( )� �

�

� , (1.4)

where all the functions X x
i

n

1
( ), X x

i

n

2
( ), X x

i

n

3
( ), Y y

i

n

1
( ), Y y

i

n

2
( ), Y

i

n

3
, Z z

i

n

1
( ), Z z

i

n

2
( ), Z z

i

n

3
( ) (i M�1, ) dependent on different

variables of the domain S are assumed to be unknown; M is the number of terms in the approximating expression.

For convenience, we will represent these functions as components of the following vectors:

X X x X x X x X x
n n

p

i M

n

M

n n
� �

�

�

{ ( )} { ( )... ( ) ( )
, , ;

,

� 1 2 3

1

11 1 21
... ( ) ( )... ( )}X x X x X x

M

n n

M

n

2 31 3
, (1.5)

Y Y y Y y Y y Y y
n n

p

i M

n

M

n n
� �

�

�

{ ( )} { ( )... ( ) ( )
, , ;

,

� 1 2 3

1

11 1 21
... ( ) ( )... ( )}Y y Y y Y y

M

n n

M

n

2 31 3
, (1.6)

Z Z z Z z Z z Z z
n n

p

i M

n

M

n n
� �

�

�

{ ( )} { ( )... ( ) ( )
, , ;

,

� 1 2 3

1

11 1 21
... ( ) ( )... ( )}Z z Z z Z z

M

n n

M

n

2 31 3
. (1.7)

Each of the vectors X
n

, Y
n

, Z
n

consists of functions of only one of the arguments x, y or z. Therefore, they are called

argument vector functions, as in [4, 5]. Thus, according to (1.4), three unknown argument vector functions X
n

, Y
n

, Z
n

are

introduced instead of the sought vector functionV
n

.

To determine the vector functions X
n

, Y
n

, Z
n

(1.5)–(1.7), we set up a system of three one-dimensional problems. To

this end, we will use a reduction procedure P P P P
x y z

�{ , , }. Each of its components is the ordinary operation of reduction to

ordinary differential equations, including weighted integration over all the variables of the domain except one (projection onto

different coordinate directions):

P Y Z dydz
x pk pk

cb

( ) ( )� � �
��

00

,

P X Z dxdz
y pk pk

ca

( ) ( )� � �
��

00

,

P X Y dxdy
z pk pk

ba

( ) ( )� � �
��

00

, (1.8)

where approximating functions are used as weights, as in the Galerkin method.

Applying operations (1.8) to the equations and boundary conditions of the boundary-value problem (1.2) and

considering (1.4), we get a system of one-dimensional problems for the vector functions X
n

, Y
n

, Z
n

:

(( ) ) ( )L B F BF Y Z dydz L B X B X
n n

pk

n

pk

n

x

n

x

n n

x

n n
� � � � � �

� �
� �

1
0

1

00

0�
��

cb

, x a� ( , )0 ,

( )RF Y Z dydz R X
M

n

pk

n

pk

n

cb

x

n n
� � �

��

00

0 0
�

, x � 0, x a� , (1.9)
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(( ) ) ( )L B F BF X Z dxdz L B Y B Y
n n

pk

n

pk

n

y

n

y

n n

y

n n
� � � � � �

� �
� �

1
0

1

00

0�
��

ca

, y b� ( , )0 ,

( )RF X Z dxdz R Y
M

n

pk

n

pk

n

ca

y

n n
� � �

��

00

0 0
�

, y � 0, y b� , (1.10)

(( ) ) ( )L B F BF X Y dxdy L B Z B Z
n n

pk

n

pk

n

z

n

z

n n

z

n n
� � � � � �

� �
� �

1
0

1

00

0�
��

ba

, z c� ( , )0 ,

( )RF X Y dxdy R Z
M

n

pk

n

pk

n

ba

z

n n
� � �

��

00

0 0
�

, z � 0, z c� , (1.11)

where L l
x

n

sp s p
�

�
{ }

, , ,1 2 3
is a block matrix whose blocks l l

sp ik

sp

i k M
�

�

{ }
, ,1

are matrix differential operators of the second order

with respect to the variable x:

l A
d

dx

A
d

dx
A

ik

sp

ik

sp

ik

sp

ik

sp
� � �

2

2

2 1 0
, (1.12)

� �B b
x

n

ik

ss
s

i k M

�
�

�

1 2 3

1

, ,

, ,

is a block-diagonal matrix.

The matrix operator of boundary conditions (the sign “–” refers to x � 0, and the sign “+” to x a� ) is expressed in a

similar way:

R r r
d

dx
r

x

n

ik

sp

ik

sp

ik

sp

� � � �
� � �
�

�

�

 

!

"
1 0

. (1.13)

By virtue of (1.8), the coefficients in (1.12) and (1.13) depend on the functions Y
pk

n
and Z

pk

n
. Let us present, for

illustration, the expressions of the nonzero coefficients in (1.12) for a homogeneous isotropic body (the superscript “n” is

omitted):

A G Y Y Z Z dydz
ik i k i k

cb

2

11

1 1 1 1

00

2
1

1 2
�

�

�
��

�

�

,

A G Y Y Z Z dydz Y Y Z Z dy
ik i k i k

cb

i k i k0

11

1 1 1 1

00

1 1 1 1
� � # # � # #

��
dz

cb

00

��




�

�

�



�

�

�
) ,

A G Y Y Z Z dydz Y Y Z Z
ik i k i k

cb

i k i1

12

2 1 2 1

00

2 1 2 1

2

1 2
�

�

# � #
��

�

�
k

cb

dydz

00

��




�

�

�



�

�

�
,

A G Y Y Z Z dydz Y Y Z Z
ik i k i k

cb

i k i1

13

3 1 3 1

00

3 1 2 1

2

1 2
�

�

# � #
��

�

�
k

cb

dydz

00

��




�

�

�



�

�

�
,

A G Y Y Z Z dydz Y Y Z Z
ik i k i k

cb

i k i1

21

1 2 1 2

00

1 2 1

2

1 2
� �

�

# � #
��

�

�
2

00

k

cb

dydz
��




�

�

�



�

�

�
,
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A G Y Y Z Z dydz
ik i k i k

cb

2

22

2 2 2 2

00

�
��

,

A G Y Y Z Z dydz Y Y
ik i k i k

cb

i k0

22

2 2 2 2

00

2 2

2 1

1 2
� �

�

�

# # �
��

( )�

�

# #




�

�

�



�

�

���
Z Z dydz

i k

cb

2 2

00

,

A G Y Y Z Z dydz Y Y Z
ik i k i k

cb

i k i0

23

3 2 3 2

00

3 2 3

2

1
� �

�

# # � # #
��

�

�

Z dydz
k

cb

2

00

��




�

�

�



�

�

�
,

A G Y Y Z Z dydz Y Y Z Z
ik i k i k

cb

i k i1

31

1 3 1 3

00

1 3 1

2

1 2
� �

�

# � #
��

�

�
3

00

k

cb

dydz
��




�

�

�



�

�

�
,

A G Y Y Z Z dydz Y Y Z
ik i k i k

cb

i k0

32

2 3 2 3

00

2 3 2

2

1 2
� �

�

# # � # #
��

�

�
i k

cb

Z dydz
3

00

��




�

�

�



�

�

�
,

A G Y Y Z Z dydz
ik i k i k

cb

2

33

3 3 3 3

00

�
��

,

A G Y Y Z Z dydz Y Y
ik i k i k

cb

i0

33

3 3 3 3

00

3

2 1

1 2
� �

�

�

# # � # #
��

( )�

�
3 3 3

00

k i k

cb

Z Z dydz
��




�

�

�



�

�

�
. (1.14)

The block-diagonal matrix � �B b
x

n

ik

ss
s

i k M

�
�

�

1 2 3

1

, ,

, ,

has the following elements:

b Y Y Z Z dydz
ik

c

i k i k

b

11

0

1 1 1 1

0

�
��
	 , b Y Y Z Z dydz

ik i k i k

cb

22

2 2 2 2

00

�
��
	 , b Y Y Z Z dydz

ik i k i k

cb

33

3 3 3 3

00

�
��
	 .

The operators with subscripts y and z in (1.10) and (1.11) have the same structure, with the only difference that the

differentiation in L
y

n
and R

y�
is with respect to the variable yand the differentiation in L

z

n
and R

z�
is with respect to the variable

z, while the coefficients in the differential operators depend on the components of the vector functions X and Z in the first

problem and on the components of X and Y in the second problem.

For example, we have

A G X X Z Z dxdz
ik i k i k

ca

2

11

1 1 1 1

00

�
��

,

……………………………………

A G X X Z Z dxdz X X
ik i k i k

ca

i0

33

3 3 3 3

00

3

2 1

1 2
� �

�

�

# # � # #
��

( )�

�
3 3 3

00

k i k

ca

Z Z dxdz
��




�

�

�



�

�

�
(1.15)

in problem (1.10) and

A G X X Y Y dxdy
ik i k i k

ba

2

11

1 1 1 1

00

�
��

,
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…………………………………………

A G X X Y Y dxdy X X Y Y dx
ik i k i k

ba

i k i k0

33

3 3 3 3

00

3 3 3 3
� � # # � # #

��
dy

ba

00

��




�

�

�



�

�

�
(1.16)

in problem (1.11).

Thus, each one-dimensional problem in (1.9)–(1.11) is a system of 3$ M ordinary differential equations of the second

order for 3$ M functions of one variable with appropriate boundary conditions. One-dimensional problems with respect to

different variables of the domain are related by coefficients (1.14)–(1.16).

To solve the system of one-dimensional problems (1.9)–(1.11) at each step of the method of successive approximations

(parameter n), the following iterative scheme (parameter m �1 2, , …) can be used:

( )
, , , , ,

L B X B X
x

n m

x

n m n m

x

n m n m� � � � �
� � �

1 1 1 1 1
0� , x a� ( , )0 ,

R X
x

n m n m

�

, ,�
�

1
0, x � 0, a, (1.17)

( )
, , , , ,

L B Y B Y
y

n m

y

n m n m

y

n m n m� � � � �
� � �

1 1 1 1 1
0� , y b� ( , )0 ,

R Y
y

n m n m

�

, ,�
�

1
0, y � 0, b, (1.18)

( )
, , , , ,

L B Z B Z
z

n m

z

n m n m

z

n m n m
� � �

� �
�

1 1
0, z c� ( , )0 ,

R Z
z

n m n m

�

, ,
� 0, z � 0, c. (1.19)

The index (m�1) in the operators L
x

n m, �1
, B

x

n m, �1
, R

x

n m

�

, �1
in (1.17) at the current mth step means that the functions Y

�

and Z
�

( , ,p �1 2 3, i M�1, ) for the calculation of the coefficients by formulas (1.14) are taken from the previous (m�1)th step.

These indices have the same meaning in the other operators of (1.17)–(1.19).

Thus, the frequency parameter � and associated vector function U can be determined as the limit of the functional

sequence V
n

(V U
n
� , n ��) by running two nested iteration processes: an outer loop to generate the sequence V

n
by the

inverse-iteration method (the sequence of the boundary-value problems (1.2), parameter n) and an inner loop to solve a single

problem from this sequence to determine the vector functionV
n

(system (1.17)–(1.19); fixed parameters m and n). Thus, we may

generate the following iteration process to solve the original problem (1.1) (parameter j �1 2, , …):

( )L B X B X
x

j

x

j j

x

j j� � � �
� � �

1 1 1 1
0� , x a� ( , )0 ,

R X
x

j j

�

�
�

1
0, x � 0, a, (1.20)

( )L B Y B Y
y

j

y

j j

y

j j� � � �
� � �

1 1 1 1
0� , y b� ( , )0 ,

R Y
y

j j

�

�
�

1
0, y � 0, b, (1.21)

( )L B Z B Z
z

j

z

j j

z

j j
� � �

�
�

1
0, z c� ( , )0 ,

R Z
z

j j

�
� 0, z � 0, c. (1.22)

As the initial approximation for the functions X
�

0
, Y

�

0
, Z

�

0
( , ,p �1 2 3, i M�1, ), we choose any functions linearly

independent in i (for example, power or trigonometric). A one-dimensional boundary-value problem is solved by the

orthogonal-sweep method. In some special cases, the solution can be found analytically (for example, a two-dimensional

problem of plate bending for M �1).
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The iteration process of solving system (1.20)–(1.22) with a fixed number of terms M is terminated once

| / |1
1

� %
�

� � �
n n

, where � is the error of calculation.

The accuracy of the calculated natural frequency � is improved by increasing the number of terms M in (1.4). The

minimum eigenvalue �
min

is found setting � � 0, while the subsequent values of � are found by scanning the parameter � & 0.

2. Discussion of the Numerical Results. The developed method was validated inductively by comparing solutions for

specific examples found by other methods. We will compare the values of the frequency parameter '
*

/� � 	b c D
2

( / ( )D Ec� �
3 2

12 1 � [15] for a parallelepiped with square base (b a/ �1) and height c a/ �0.5. The examples chosen cover the

following boundary conditions on the lateral faces x � 0, a y, � 0, b:

(i) Navier boundary conditions on all lateral faces:

u u
2 3

0� � , �
11

0� at x a� 0, ,

u u
1 3

0� � , �
22

0� at y b� 0, ,

(ii) all lateral faces are clamped:

u u u
1 2 3

0� � � at x a� 0, , y b� 0, ,

(iii) two opposite faces are clamped, and the other two are free:

u u u
1 2 3

0� � � at x a� 0, ,

� � �
22 21 23

0� � � at y b� 0, ,

(iv) the face x � 0 is clamped, the others are free:

416

TABLE 1

Boundary conditions Frequency No

Methods

AKM [15] [12, 16]

(i)

1 12.426 12.426 12.426

2 18.210 18.210 18.210

3 23.007 23.008 —

4 25.753 25.753 —

(ii)

1 15.286 15.286 15.294

2 24.069 24.071 24.078

3 24.792 24.816 24.823

4 29.377 29.376 29.377

5 31.500 31.502 31.510

6 35.308 35.304 35.308

7 35.764 35.756 35.763



u u u
1 2 3

0� � � at x � 0,

� � �
11 12 13

0� � � at x a� ,

� � �
22 21 23

0� � � at y b� 0, .

The face planes z � 0, c are free of stresses:

� � �
33 13 23

0� � � at z c� 0, .

The values of the parameter'
*

for several lowest frequencies obtained using the AKM, the exact solution [16], the Ritz

method with approximation by B-splines [15] and orthogonal polynomials [12] are collected in Table 1 for the boundary

conditions (i) and (ii) and in Table 2 for the boundary conditions (iii) and (iv). Note that comparison is made with the exact

solution [16] in case (i) and with the results [12] in case (ii).
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TABLE 2

Boundary conditions Frequency No

Methods

AKM [15] [12]

(iii)

1 10.577 10.582 10.583

2 11.440 11.448 11.450

3 11.768 11.769 11.770

4 18.469 18.466 18.466

5 20.684 20.682 20.684

6 21.130 21.137 21.140

7 21.643 21.641 21.642

8 22.503 22.502 22.504

(iv)

1 2.9331 2.9331 2.9372

2 4.3889 4.3865 4.3910

3 5.1934 5.1925 5.1944

4 10.516 10.516 10.548

5 10.937 10.937 10.942

6 11.708 11.708 11.708

7 14.602 14.599 14.602

8 15.026 15.024 15.024

9 18.479 18.478 18.478

10 20.099 20.096 20.103



The last two columns of Table 1 (boundary conditions (ii)) and Table 2 show that the frequencies found by the Ritz

method with continuous approximation by orthogonal polynomials [12] and approximation by B-splines [15] differ by less than

0.1%.

The difference between the frequencies found by the AKM and Ritz method [12, 15] is within the same limits, which

indicates that the AKM can be used to analyze the vibrations of a parallelepiped with various boundary conditions.

The comparative efficiency of the proposed method and Ritz method with B-spline approximation can be judged from

the number of terms M retained to achieve the prescribed accuracy. These data are summarized in Table 3 for hinged (c a/ �0.5)

and clamped (c a/ � 0.4) faces (the number of terms for the other boundary conditions are not given in [15]).

As follows from Table 3, for hinged lateral faces and even highest frequencies, the AKM requires one to three terms,

whereas the B-spline approximation uses two orders of magnitude more terms. The situation is the same when the faces are

clamped. Thus, the AKM uses much less (by more than two orders of magnitude) basis functions because the components of the

approximating expression are found by solving the problem posed.

3. Analysis of the Natural Frequencies of a Cantilever Beam. The above problem for a parallelepiped with fixed

dimensions and boundary conditions was used for the purpose of comparison of different methods. A more general and

complicated problem is to analyze the frequency dependence of some characteristics of an elastic body. In what follows, we will

analyze the dependence of the natural frequencies of a three-dimensional cantilever beam on its cross-sectional dimensions.

Consider an isotropic beam with a rectangular cross-section occupying a Cartesian domain' '�� �{ , , :x y z x l�[ , ]0 ,

y b�[ , ]0 , z c�[ , ]}0 . The beam axis is aligned with the x-axis, the face x � 0is clamped, all the other faces are free. Let us analyze
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TABLE 3

Boundary

conditions
c/a Frequency No Methods '

* M

(i) 0.5

1

AKM 12.426 1

[15] 12.426 7$7$9 = 441

5

AKM 23.007 1

[15] 23.008 7$7$9 = 441

10

AKM 28.792 1

[15] 28.793 7$7$9 = 441

100

AKM 64.546 3

[15] 64.546 11$11$9 = 1089

(ii) 0.4

1

AKM 18.081 5

[15] 18.081 15$15$9 = 2025

5

AKM 31.014 5

[15] 31.014 13$13$9 = 1521

10

AKM 44.944 5

[15] 44.943 11$11$9 = 1089



the dependence of the lowest natural frequencies of the beam with fixed length l on the relative dimensions of its cross-section

with constant area S b c� $ � const. The relative dimensions of the cross-section are characterized by the dimensionless

parameter( � c b/ varying within(�[1.0, 0.1] (( �1corresponds to a beam of square cross-section, while( �0.1 to a plate with

thickness c and plan dimensions l b$ ).

The result is spectral curves � � (� ( ), which show how the beam frequency varies with the parameter ( for a certain

vibration mode (� � ( �� ( ) / ( , )
min

1 0 are frequencies divided by the minimum frequency of the beam with square cross-section).

The classification of vibration modes of a spatial body should be commented. The eigenfunctions of a two-dimensional

problem, as characteristics of natural modes, are usually classified according to the number of nodal lines, which is natural for

scalar functions (for example, bending vibrations of a plate). In the case of the vector problem under consideration, the

classification can be made according to the components of the vector eigenfunction, which are scalar functions u x y z
1

( , , ),

u x y z
2

( , , ), and u x y z
3

( , , ).

Each of them has its own system of nodal lines in the cross-sections of the beam. The information on the signs of shifts

in these functions is used to rank the spectral properties of the beam according to the natural modes.

Depending on the number of sign reversals along the beam length in the functions u x y z
1

( , , ), u x y z
2

( , , ), and

u x y z
3

( , , ), there are the following sets of spectral curves: I (no sign reversal), II (one sign reversal), III (two sign reversals), etc.

In each of these sets, we consider four spectral curves classified according to the pattern of nodal lines of the functions u x y z
1

( , , ),

u x y z
2

( , , ), and u x y z
3

( , , ) in the cross-sectional plane yz (Fig. 1):

1 — mainly bending vibrations about the y-axis; each beam section x x� �
*

const shifts as a single whole along the

z-axis;

2 — similar vibrations about the z-axis; each beam section x x� �
*

const shifts as a single whole along the y-axis;

3 — shear vibrations in the plane x x� �
*

const;

4 — piston-like vibrations along the beam.

The spectral curves of the first two sets in coordinates �, ( are given in Fig. 2 for the following initial data: b l�10
0

,

c b� ( , (�[1.0, 0.1], l b�
�

2 5
1

. |
(

, E E�
0

,� �0.3. Here the sets of curves are denoted by Roman numerals; the curves within a

set are denoted by Arabic numerals; the fourth curve of set II is omitted; l
0

is the typical linear scale.

All the curves monotonically decrease with decreasing parameter (, following the variation in the section modulus.

For example, the spectral curves for bending vibrations about the y-axis (I.1) and shear vibrations (I.3) decrease, which

is consistent with the behavior of the sectional modulus of bending about the same axis ) �
y

bc
2

6/ and the sectional modulus

of twisting )
yz

pc~
3

. The frequencies of bending vibrations about the z-axis (spectral curve I.2) increase with ) �
z

b c
2

6/ .

The piston-like frequency (curve I.4) is independent of the cross-sectional dimensions.
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Fig. 1
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Noteworthy is the presence of multiple frequencies of the beam within the examined range of variation in its

cross-sectional dimensions.

They are frequencies of bending vibrations of the square beam about the y- and z-axes of each set, which is due to its

geometry (I.1; I.2 and II.1; II.2 for ( �1).

For ( �0.9, the frequencies of the piston-like mode of the first set (I.4) and of the second mode of the second set (II.2)

are multiple. For ( �0.3, the frequencies of bending vibrations of both sets (I.2; II.2) about the z-axis are equal to those of shear

vibrations (I.3; II.3), respectively. For ( � 0.25, the frequencies of shear vibrations of the second set (II.3) are equal to the

frequencies of the piston-like mode of the first set (I.4).

In conclusion, let us demonstrate the accuracy of computation for this specific problem. Table 4 collects the

dimensionless frequencies � �

	*
� �

E
l
0

2
10 for different relative dimensions of the domain (( = 1.0, 0.7, 0.5, 0.1) and for

various frequencies of both sets (I.1; I.4; II.3; II.2) depending on the number M of terms retained in (I.4). The solution of the

static problem was used as the initial approximation for the inverse-iteration method.

As is seen from Table 4, with four to five terms of approximation, the frequencies stabilize in four decimal places in all

cases. The error of the one-term approximation relative to the stable value is approximately 5%.
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Fig. 2
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TABLE 4

( Frequency

�
*

M = 1 M = 2 M = 3 M = 4 M = 5

1.0 I.1 1.561 1.485 1.480 1.478 1.478

0.7 I.4 6.365 6.347 6.343 6.342 6.342

0.5 II.3 9.333 9.134 9.110 9.096 9.096

0.1 II.2 7.127 7.012 7.007 7.006 7.006



Conclusions. We have proposed an approach to calculate the natural frequencies and modes of a rectangular

parallelepiped with various boundary conditions. The approach rationally combines the inverse iteration and advanced

Kantorovich–Vlasov methods. In contrast to the conventional Ritz method, the approach does not require a priory selection of

basis functions and features the following:

(i) the natural modes are described as a superposition of functions with separated variables where all the components of

the approximating expression are considered unknown;

(ii) the natural frequencies of the three-dimensional parallelepiped are determined as the limit of a numerical sequence

constructed using the Rayleigh quotient and the iterative solution of the system of three interrelated one-dimensional problems.

The efficiency of the method (accuracy and the number of approximating terms) has been tested by comparing with the

solutions obtained by the Ritz method with different basis functions, including B-splines.

The obtained dependences of low frequencies of a cantilever beam on its cross-sectional dimensions agree with the

variation of its stiffness during deformation of different types.
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