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The failure criterion for a microvolume is characterized by its stress-rupture strength. It is determined

by the dependence of the time to brittle fracture on the difference between the equivalent stress and its

limit, which is the ultimate strength, according to the Schleicher–Nadai failure criterion, and assumed to

be a random function of coordinates. An equation of damage (porosity) balance in the layers at an

arbitrary time is formulated taking into account the thermal component. Algorithms of calculating the

time dependence of microdamage and macrostresses are developed. Corresponding curves are plotted.

The effect of temperature on the deformation and microdamage of the layers is studied

Keywords: layered material, thermal effect, long-term damage, porosity, effective characteristics, porosity

balance equation

Introduction. High loads cause dispersed microdamages in materials and structural members, which commonly lead to

the formation of main cracks. Microdamages are chaotically dispersed damaged microvolumes that have completely or partially

lost their load-carrying capacity. They reduce the effective or bearing portion of the material that resists loads. Microdamages

may occur during deformation because microstresses may reach local strength limits, which, in turn, may also be reduced due to

climatic and radiation factors.

Experimental data on and observation of using structural members and structures suggest that damage can be either

short-term (occurring instantaneously after the application of stresses or strains) or long-term (building up with time after the

application of load). A structural theory of short-term microdamage of homogeneous and composite materials was proposed in

[7, 9]. It employs the mechanics of microinhomogeneous bodies of stochastic structure and models dispersed microdamages by

quasispherical micropores [5]. Long-term damage is usually considered as accumulation of dispersed microdamages such as

micropores and microcracks. At the microscopic level, the strength of a material is nonuniform, i.e., the ultimate strength and

stress-rupture curves for a microvolume are random functions of coordinates with certain distribution density or cumulative

distribution. When a macrospecimen is subject to constant tensile stress, some microvolumes whose ultimate strength is less than

the applied stress are damaged, i.e., microcracks or micropores form in their place. Microvolumes where the stress is less than,

yet close to the ultimate strength are damaged after a lapse of time, which depends on the difference between the applied stress

and the ultimate microstrength. The theory of long-term damage of homogeneous, laminated, and fibrous composites was

developed based on models and methods of the mechanics of stochastically inhomogeneous materials.

In the present paper, we will study the effect of thermal loads on the deformation and long-term damage of a laminated

composite material. The structural theory of long-term damage of composites is based on the mechanics of microinhomogeneous

materials of stochastic structure. The damage of the components of a layered material is modeled by dispersed microvolumes

destroyed to become randomly arranged micropores. The failure criterion for a single microvolume is determined by its

stress-rupture strength described by a fractional or exponential power function, which is, in turn, determined by the dependence

of the time to brittle failure on the difference between the equivalent stress and its limit, which characterizes the ultimate strength
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according to the Schleicher–Nadai criterion. The ultimate strength is assumed to be a random function of coordinates whose

one-point distribution is described by a power function on some interval or by the Weibull function. The effective elastic

properties and the stress–strain state of a laminated composite with randomly arranged microdamages are determined from the

stochastic equations of thermoelasticity of porous materials.

We will derive a damage (porosity) balance equation with thermal effect from the properties of the distribution

functions and ergodicity of the random field of ultimate microstrength, and the dependence of the time to brittle failure for a

microvolume on its stress state and ultimate microstrength for given macrostrains and an arbitrary time. The

macrostress–macrostrain relationship and the porosity balance equations for a layered material with porous components describe

the coupled and interacting processes of deformation and long-term damage, which cause the macrostresses to decrease at given

time-dependent macrostrains. An iteration method will be used to develop algorithms for calculating the microdamage and

macrostresses as functions of time and to plot the respective curves in the case of fractional-power and exponential-power

microdurability functions. We will analyze the effect of temperature on the macrodeformation and damage curves.

1. Consider a composite with N isotropic layers. Denote the bulk and shear moduli, thermal stress and strain factors of

the skeleton of the ith layer by K
i i i i
, , ,� � � , its porosity by p

i
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i

( ,... , )i N�1 . The macrostresses � ��
jk

are related to the macrostrains � ��
jk

and temperature 	 by

� � � 
 � � � � � � � �� � � � � � � � � 	 

jk jk rr

( ) ( – )
* * * * *

11 12 12 13 33 1 jk
,

� � � � � � � �� � � � � � 	
33 13 33 33 3

* * *
–

rr
,

� � � � �� � �
j j3 44 3

2
*

( , , , )j k r �1 2 , (1.1)

where the effective moduli � � � � �
11 12 13 33 44

* * * * *
, , , , and the thermal stress and strain factors � �

1 3

* *
, , � �

1 3

* *
, of the composite are

expressed [2] in terms of those of the porous components � � �
i i i

i N
p p p

, , ( , , )�1� as

�
� �

�

� �

� � �

� �
11

1 2

1

2 2
4

2

*
( )

�
� �

�

�

�




p p

p

p p

p p p

p p

,

�
� �

�

� �

� �

� �
12

1 2

1

2 2
2

2

*
�

� �
�

�




p p

p

p p

p p

p p

,

�
� �

�

� �
13

1

1

2 2

*
�

� �




p p

p

p p

, �
� �

33

1

1

2

*
�

�




p p

, �
�

44

1

1*
�




p

,

�
� �

�

� �

�

� �

� �

� �
1

1

1

2 2 2
2

2

*
�

� � �
�

�




p p

p

p p

p

p p

p p

p p

,

�
� �

�

� �
3

1

1

2 2

*
�

� �




p p

p

p p

,

�
� � � �

� � � �
1

33 1 13 3

11 12 33 13

2
2

*

* * * *

* * * *
( ) ( )

�



� 


, �
� � � � �

� � � �
3

11 12 3 13 1

11 12 33 13

2

2

*

* * * * *

* * * *

( )

( ) ( )

�
� 


� 

2

, (1.2)

where
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according to [2].

We will use the Schleicher–Nadai criterion [3] to describe the short-term damage in a microvolume of the undamaged

portion of the ith component:
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where � ���
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are the average deviatoric and spherical stresses in the undamaged portion of the ith component; a
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is a
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where �
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k k( , ) � 0and �
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k( , )0 � � according to (1.5).

The one-point distribution function F k
i i
( ) for some microvolume in the undamaged portion of the ith component can

be approximated by a power function on some interval
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or by the Weibull function
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where k
i0

is the minimum value of k
i

from which failure begins in some volumes of the ith component; k m
i i i1
, ,� are constants

found from strength scatter fitting in the ith component.

Assume that the random field of the ultimate microstrength k
i

is statistically homogeneous, which is typical of real

materials, and individual microdamages and the distances between them are negligible compared with the inclusions and the

distances between them. Then the distribution function F k
i i
( )is ergodic because it defines the content of the undamaged portion

of the ith component in which the ultimate microstrength is less than k
i
.

171



Therefore, if the stresses � ��
pq

i1
are nonzero, the function F I a
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defines, according to (1.5), (1.8), and

(1.9), the content of instantaneously destroyed microvolumes of the ith component. Since the destroyed microvolumes are

modeled by pores, we can write a balance equation for destroyed microvolumes or porosities of the ith component subject to

short-term damage:
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where p
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is the initial porosity of the ith component and, according to (1.6),
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and the effective moduli � � �
i i ip p p

, , are defined by (1.4).
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where some typical time �
i0

, exponent n
i1
, and coefficient *

i
are determined from the fit of experimental durability curves for

the ith component.

Substituting (1.14) into (1.13), we arrive at the inequality
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Considering the definition of the distribution function F k
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defines the relative content of the destroyed microvolumes in the undamaged portion of the ith component at the time t
i
. Then, in

view of (1.6), the porosity balance equation for the ith component subject to long-term damage can be represented as
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which has enough constants �
0i

, m n n
i i i1 1 2
, , to fit experimental curves. Substituting (1.18) into (1.13), we arrive at the

inequality
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defines the relative content of the destroyed microvolumes in the undamaged portion of the ith component at the time t
i
. Then, in

view of (1.1), the porosity balance equation for the ith component subject to long-term damage (1.6) can be represented in the

form (1.17).

At t
i

� 0, the porosity balance equation (1.17) with (1.11), (1.12), (1.16) defines the short-term (instantaneous) damage

of the ith component. As time elapses, Eqs. (1.17) with (1.12)–(1.15), (1.16) define its long-term damage, which consists of

short-term damage and additional time-dependent damage.

2. Let us generalize the above damage model by assuming that the microdamages caused by loading be pores filled with

particles of destroyed material that resist deformation. Let these particles yield to shear and uniform tension, but resist uniform

compression as the undamaged material does. Then the shear modulus of the destroyed material filling the pores is equal to zero,

and the bulk modulus is equal to zero when � � "�
rr

i2
0( , , )i N�1� and equal to the bulk modulus K

i
of the undamaged material
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when � � ��
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0, where � ��
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according to [7], we have
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Using the Schleicher–Nadai failure criterion (1.5), we arrive at the porosity balance equation (1.10), where I
i

� ��

1
is

defined by (1.11), (1.12), the function +( )t by (1.16) or (1.20), and

� � � 

� � � � "

� � � � �

�

�
�

�
�

�

� �

� �

rr

i

i

rr

i

rr

i

rr

i

rr

i

p
1

1

1
0

0

, ,

, ,

(2.2)

where � ��
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are the average stresses in the ith component defined by (1.12).
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for the determination of the stress-strain state of a laminated composite and the volume fraction of microdamages in its

components. To this end, we will use the secant method [1].
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The subsequent approximations of the secant method are found in the iterative process
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"
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which proceeds until

| ( )| ,
( )

� � �
i i

m
p � , (3.5)

where � is the error of the root.

We conducted calculations to plot macrodeformation curves for two-layer composites with microdamaged matrix for

Weibull distribution (1.9) and for fractional power durability function +( )t defined by (1.16). Let the composite include a stiff

layer made of aluminoborosilicate glass with the following characteristics [2] E
1

�70 GPa, 1
1

� 0.2, �
1

� 4.92



10
6

°C
–1

and

volume fraction c
1

0� , 0.25, 0.5, 0.75, 1.0 and epoxy matrix with the following characteristics of the undamaged portion [4]:

E
2

�3 GPa, 1
2

�0.35, �
2

�452



10
6

°C
–1

. Here E
1

and E
2

are Young’s moduli, 1
1

and 1
2

are Poisson’s ratios, �
1

and �
2

are

the thermal strain factors of the undamaged portions of the stiff layer and matrix, respectively. Also

p
02

0� , k
02 2

/ � � 0.01, m
2 2

2 1000�
�

� , �
2

2� ,

�
2p

� 0.011 GPa ( . )�
2 20

15
p

� k , a
2

� 0.02, *
2

� 0.001, n
12

1� , 	 �3 20 °C.

If

� � ��
33

0.02, � � � � � �� �
11 22

0 (3.6)

then, according to (1.1), the macrostresses � ��
33

are related to the macrostrains � ��
33

and temperature 	 by

� � �

�

� 
 � ��

� �

� � � � �
33

11 12

11 12 33 13

2

33

1
2

* *

* * * *
{[( ) ( ) ] – [( ) – ] }

* * * * *
� � � � � 	

11 12 3 13 1
2� .

In the porosity balance equations (1.17), (1.2)–(1.4), (1.6), (1.8), (1.9), (1.11), (1.12), (1.16) (or (1.20)) for � � "�
rr

2
0and

(1.17), (1.2), (1.3), (2.1), (2.2), (1.8), (1.9), (1.11), (1.12), (1.16) (or (1.20)) for � � ��
rr

2
0, we have
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* *
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–

which is equivalent to (3.6).

Figure 1 shows the porosity p
2

as a function of time t
2

for different values of 	 and for c
1

0� (solid line), c
1

� 0.25

(dashed line), c
1

� 0.5 (dotted line), c
1

� 0.75 (dash-and-dot line). The same notation is used in Fig. 2. As the temperature 	

decreases and the volume fraction c
1

increases, the porosity p
2

increases.

Figure 2 shows the macrostress � �� �
33 2

/ as a function of time t
2

for different values of 	 and c
1
. These curves are

descending for all values of temperature and volume fraction. The decrease in macrostresses with time is not a monotonic

function of temperature and volume fraction.

Conclusions. We have outlined the theory of long-term damage and deformation of laminated composites under

thermal loads. The damage of layers is modeled by randomly arranged micropores. The failure criterion for a single

microvolume is determined by its stress-rupture strength determined by the dependence of the time to brittle fracture on the

difference between the equivalent stress and its limit, which characterizes the ultimate strength according to the

Schleicher–Nadai criterion. An equation of damage (porosity) balance in the layers at an arbitrary time has been formulated

taking into account the thermal component. Algorithms of calculating the time dependence of microdamage and macrostresses

are developed. Corresponding curves are plotted. The effect of temperature on the macrodeformation and damage curves has

been analyzed.
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