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EXACT BENDING SOLUTIONS OF ORTHOTROPIC RECTANGULAR CANTILEVER
THIN PLATES SUBJECTED TO ARBITRARY LOADS

Rui Lil, Yang Zhongl, Bin Tian', and Jian Du?

Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads are
derived by using a novel double finite integral transform method. Since only the basic elasticity
equations for orthotropic thin plates are used, the method presented in this paper eliminates the need to
predetermine the deformation function and is hence completely rational thus more accurate than
conventional semi-inverse methods, which presents a breakthrough in solving plate bending problems as
they have long been bottlenecks in the history of elasticity. Numerical results are presented to
demonstrate the validity and accuracy of the approach as compared with those previously reported in
the literature
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1. Introduction. Orthotropic rectangular thin plates are widely used in various engineering applications such as decks
of contemporary steel bridges, corrugated plates and reinforced concrete slabs stiffened by orthogonal ribs. The bending of
orthotropic, especially isotropic rectangular thin plates with various combinations of boundary conditions has been investigated
for many years by different authors. It is well known that explicit analytic solutions of orthotropic or isotropic rectangular thin
plates are available only for the cases with two opposite sides simply supported (i.e., Navier’s solution, Levy’s solution, etc.)
while it is, so far, difficult to get the solutions which exactly satisfy both the partial differential equation and other boundary
conditions of a plate. Accordingly, various methods have been studied. One of the most commonly used methods for exact
bending solutions of isotropic plates is the superposition method, which could be extended to orthotropic plates [1-5].
Meanwhile, the technique of Fourier series expansion is another procedure for solving complex structures [6] as well as accurate
bending solutions of plates [7]. Besides, a number of numerical methods have been utilized by many researchers to analyze
problems of plates and shells [8, 9] such as the finite-difference method [10—13], finite-element method [14, 15], finite-strip
method [16], integral equation method [17], method of discrete singular convolution [18], method of differential quadrature
[19], differential quadrature element method [20], meshless method [21], and spline element method [22].

A cantilever thin plate is an important structural element while its bending has been one of the most difficult problems in
the theory of elastic thin plate. Some approximate methods have been utilized for the problem of isotropy. The method of finite
difference was firstly used to solve a cantilever plate with concentrated edge load by Holl [10]. The problem is also solved by
Barton [11], Macneal [12], Livesly and Birchall [23] separately with the same method. Besides, some other approximate analysis
of the bending of a rectangular cantilever plate by uniform normal pressure was presented by Nash [13]. The generalized
variational principle was applied to rectangular thin plates by Shu and Shih [24], and the principle was then used by Plass et al.
[25] for deflection and vibration problems of cantilever plates. Leissa and Niedenfuhr [26] obtained the solution for uniformly
loaded cantilevered square plates using the technique of point matching and the Rayleigh—Ritz method. In addition, Chang [3-5]
derived exact solutions for the bending of both uniformly loaded and concentrated loaded isotropic rectangular cantilever plates
by using the method of superposition, which involved a skilful superposition of several problems, yet used smart trial functions.
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Fig. 1. An orthotropic rectangular cantilever thin plate

Integral transform is one of the best approaches to obtain exact solutions of some partial differential equations in the
theory of elasticity [27]. The method has been often adopted to analyze some structural engineering problems [28]. However, to
the authors’ knowledge, there have been no reports on the analysis for an orthotropic or isotropic cantilever thin plate using finite
integral transform.

In the present paper, a novel double finite integral transform method is adopted to acquire exact bending solutions of
orthotropic rectangular cantilever thin plates under arbitrary loading. Unlike the traditional semi-inverse approaches in classical
plate analysis employed by Timoshenko [1] and others such as Chang [3-5], where a trial deflection function has to be
predetermined, the analysis in here is completely rational without any trial functions. The procedure of solution presented here
enables one to attempt exact solutions for more problems of plates which have to hitherto be analyzed using semi-inverse method
or approximate approaches. It can be not only applied to other combinations of boundary conditions but also further extended to
the problems of moderately thick plates as well as buckling, vibration, etc., some of which will be reported in future. To verify
the accuracy of the approach in this paper, several cases of a rectangular cantilever thin plate are examined and the results are
presented for an easy comparison with those found in the previous literatures. Excellent agreement is observed thus confirming
the accuracy and applicability of the present method.

2. Integral Transform and Exact Bending Solutions for an Orthotropic Rectangular Cantilever Thin Plate. The
coordinate system of a thin, orthotropic rectangular cantilever plate under consideration is illustrated in Fig. 1, where 0<x <a
and 0 < y < b. The governing partial differential equation for bending of the plate for which the principal directions of orthotropy
coincide with the x- and y-axes [1, 29] is

oWy ot atw

D + =9, (1
oxt 6x28y2 7 6y4

X

where I is the transverse deflection of the plate midplane, g is the distributed transverse load, D, and D ) are the flexural
rigidities about the y- and x-axes, H =D, + 2D o is called the effective torsional rigidity in which D, =v,D, =v,D y is defined
in terms of the reduced Poisson’s ratios v, and v, , respectively.

The internal forces of the plate are
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where M oM I M 0 Qx, (0] e Ves and Vy are the bending moments, torsional moment, shear forces, and total shear forces,
respectively.
The boundary conditions of the plate can be expressed as

W =0 )
LU (10)
ox x=0 ’
x‘x:a =Y J"yzo =0, y‘y:b =0, (1la—c)
=0, y‘y=o =0, Vy‘y:b =0, (12a—c)
2 2
AL o, 2, ¥ -0 (134, b)
oxoy r=a,y=0 Ooxoy v=a,y=b

In the particular case of isotropy, we havev, =v, =v, D, =D y = H=D,D, =vD,and ny =(1-v)D/ 2 where Dis the
flexural rigidity and v is Poisson’s ratio. Hence the above equations can reduce to those of an isotropic plate.

To solve the partial differential equation Eq. , a double finite integral transform approach is utilized. Since W (x, y),
defined within a rectangular domain 0 < x <gand 0 < y < b, is a function of the independent variables xand y, we define a double
finite integral transform by the equation

ab
o
W, =IIW(x,y)sin7mxcoanydxdy (m=13,5,...,n=0,1,2,...). (14)
00

The inversion formula can be represented as

4 o . a
W(x,y):% z Z W0, sin mecos B, (15)
m=1,3,5,...n=0,1,2,...
mn nm 1/2, if n=0,
whereaa, =—,p =—,andd =
" a Bn b n {1, ifn=123,....

The double integral transforms of higher-order partial derivatives of W appeared in Eq. are derived respectively as
follows:
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in which three boundary conditions, i.e., Eqgs. and (13, a, b), have been imposed to simplify the expressions.
By performing over Eq. the double finite integral transform and the substitution of Egs. (16)—(18), we have
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where g, = j J q(x, y)sin T’”xcos B,, ydxdy represents the transform of the load function g(x, y).

00

After single finite cosine and sine transforms over Egs. (12a) and (125, ¢) respectively, we obtain

5
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Substituting Egs. (21a—c) into Eq. (19) yields
(H 2D )OL a a
~-1)"| D B; + [ sin—mxdx
0

(H 2D, )oc 4
+DyBi .([[

m—1 2 b
D
~(-1) 2 { "Z”’ +(H—2ny)Bﬁ}f(aW

0 ox

xX=a

16

Let

"—-S:

0[ ay

=Ib aw
! 0\ ox x=a

o
sin—*xdx, J,
y=b 2

Accordingly Eq. (22) is expressed in terms of the unknown constants 7, ,J, , K,
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Substituting Eq. (24) into Eq. (15), one can get the expression of W (x, y)with/, ,J, K ,andL, form=1,3,5, ... and

n=0,1,2, ... . Equation (24) can meet the boundary conditions described by Eqgs. (9), (12a—c) and (134, b), as indicated above.
By substituting Eq. (15) into the remaining boundary conditions represented by Egs. and (11a—c) observing the

(25a)

200
S, W, cosB,y=0,

differentiation procedure of trigonometric series [7, 30], we obtain
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Multiplying Eqgs. (254, b) by cos B, vdy followed by integration from 0 to b yields Egs. (26a, b). Multiplying Egs. (25¢,

d) by sin —~ xdx followed by integration from 0 to a yields Egs. (26¢, d). They are given as follows:
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Substituting Eq. (24) into Eqs. (26a—d), we finally arrive at
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Equations (27)—(30) are four infinite systems of linear simultaneous equations with respect to unknown constants 7, ,
J,.K,,andL (m=1,3,5,...,n=0,1,2,...). In practice, a finite number of terms in each set of equations are considered and

the resulting sets of finite number of simultaneous equations are solved to determine the constants.
The bending moments along the clamped edge x = 0 could be obtained conveniently using the expression

o*w o*w o*w 2 <
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TABLE 1. Deflections and bending moments for a uniformly loaded isotropic rectangular
cantilever thin plate with v=0.3

Parameter alb X,y Ref. [3] FEM* Present
y=0 0.12933 0.12708 0.12722

y=0.125a | 0.12998 0.12788 0.12797

x=a y=0.25a 0.13056 0.12851 0.12857

y=0375a | 0.13091 0.12892 0.12895

y=0.5a 0.13102 0.12905 0.12908

1 x=0 0 0 0

x=0.25a 0.011949 0.1182 0.011771

W{qa4 ] y=0 x=0.5a 0.044327 | 0.043221 0.043283
D x=0.75a 0.085046 | 0.083888 0.084085
xX=a 0.12933 0.12708 0.12722

X,y Ref. [13] Ref. [3] Present

y=0 0.135 0.12540 0.124303

y=0.125b 0.12691 0.126015

1/2

x=a y=0.25b 0.139 0.12784 0.127106
y=0.375b 0.12825 0.127626
y=0.5b 0.141 0.12837 0.127770

X,y Ref. [3] FEM Present
y=0.125b6 | -0.51270 | —0.50399 | —0.51240
1 y=025p | —0.53353 | —0.52760 | —0.52959

0 y=0.375b | -0.53550 | —0.53058 | —0.53135

) y=0.5b —0.53560 | —0.53092 | -0.53136

M, (ga”)

X,y Ref. [13] Ref. [3] Present

y=0.125b -0.51074 | —-0.51542

1/2 y=0.25b —0.5047 —0.51386 | —0.51606

0 y=0.375b -0.51451 —0.51424

y=0.5b —0.5082 -0.51049 | —0.51362

* The finite elements solutions in this paper are adopted from Chang [3, 5], which were offered by Mr. Wu
Liang-tze of Peking University.
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W(Pa2/D,)

Fig. 2. The deflection surface of an orthotropic rectangular cantilever thin plate subjected
to a concentrated load at the free cornerx=a, y=0(a/b=1)

TABLE 2. Deflections and bending moments for an isotropic square cantilever thin plate subjected
to a concentrated load at the plate centerx=a/2, y=5/2 withv=0.3

Parameter X,y Ref. [4] Present
y=0 0.10353 0.105632
y=0.125a 0.10577 0.107802
x=a y=0.25a 0.10773 0.109713
y=0.375a 0.10904 0.111051
W{Paz ] y=0.5a 0.10957 0.111537
p x=0 0 0
x=0.25a 0.010044 0.010181
y=0 x=0.5a 0.037122 0.037648
x=0.75a 0.069947 0.071316
x=a 0.10353 0.10563
y=0.125a —0.46448 —0.47254
y=0.25a —-0.52839 —-0.53571
M (P) x=0
y=0.375a -0.56979 —0.57703
y=0.5a —0.58645 —0.59030
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TABLE 3. Deflections and bending moments for an isotropic rectangular cantilever thin plate

subjected to a concentrated load at the middle of the free edge x =a, y=5b/2 withv=0.3

Parameter alb X,y Ref. [10] Ref. [5] Present
y=0 0.03015 0.035158 0.034363
y=0.125a | 0.04993 0.04823 0.041889
1/4 xX=a y=0.25a 0.08364 0.078971 0.073564
y=0.375a | 0.13594 0.12678 0.12423
y=0.5a 0.18773 0.16991 0.16882
X,y Ref. [5] FEM Present
y=0 0.34120 0.32912 0.32908
W(Pazj y=0.125b | 0.35006 0.33863 0.33833
b x=a y=0.25b 0.35929 0.34812 0.34774
y=0.375b | 0.36769 0.35663 0.35628
1 y=0.5b 0.37239 0.36101 0.36104
x=0 0 0
x=0.25a 0.02386 0.023158
y=0 x=0.5a 0.09940 0.096624
x=0.75a 0.2120 0.20483
xX=a 0.3412 0.32908
X,y Ref. [10] Ref. [5] Present
y=0.125b | -0.12600 | —-0.13892 | -0.11411
1/4 y=0.25b | -0.22672 | -0.23034 | -0.22175
= y=0.375b | -0.37352 | -0.40233 | —0.39884
y=0.5b —0.49672 | -0.51798 | -0.51287
M (P)
X,y Ref. [5] FEM Present
y=0.125b | -1.0042 —0.99064 | —0.99090
1 y=0.25b —1.1423 —-1.0819 —-1.0918
x=0
y=0.375b | -1.1514 -1.1186 —1.1244
y=0.5b -1.1571 -1.1282 -1.1271




TABLE 4. Deflections and bending moments for an orthotropic rectangular cantilever thin plate subjected to a

concentrated load at the free corner x=a, y=0(D, =Dy,ny =05D,v, =v, =0.3)

Parameter alb y=0 y=0.25b y=0.5b y=0.75b y=b
1/4 03523 | 0.1231 0.03580 0.01104 | 0.004960
o 12 03611 | 0.2282 0.1371 0.08764 | 0.06242
W( D, } 1 04477 | 0.3843 0.3293 0.2857 | 0.2507
v 2 07512 | 0.7214 0.6927 0.6657 | 0.6403
4 1.447 1.432 1417 1.403 1.388
x=0 x=0.25a x=0.5a x=0.75a xX=a
1/4 0 0.03354 0.1170 02289 | 0.3523
2 12 0 0.03407 0.1194 02343 | 03611
W( D, } 1 0 0.03970 0.1439 02875 | 04477
y=0 2 0 0.06316 0.2354 04781 | 0.7512
4 0 0.1205 0.4504 09186 | 1.447
x=0 x=0.25a x=0.5a x=0.75a xX=a
1/4 0 |0.0002005 0.001156 0.002854 | 0.004960
P2 12 0.002577 0.01479 0.03615 | 0.06242
W{ D, } 1 0 0.01343 0.06605 0.1507 | 0.2507
y=b 2 0 0.04396 0.1862 03978 | 0.6403
4 0 0.1084 0.4227 0.8754 | 1388
y=0.1250 | y=025b |y=0375b| y=0.5b |y=0.625b| y=0.75b |y =0.875b
1/4 07070 | —0.3357 | —0.1613 | —0.08163 | —0.04562 | —0.02734 | ~0.01616
12 “1.062 | 07267 | —0.5086 | —0.3720 | —0.2872 | —0.2276 | —0.1662
M;ipo)’ 1 1542 | 1327 | L1152 | —1.026 | —0.9227 | —0.7983 | —0.5912
2 2567 | 2480 | 2342 | 2255 | 2158 | -1.949 | —1.503
4 4357 | 4702 | 4733 | 4653 | 4485 | 4171 | -3.450
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After the constants 7, ,J, , K,
of an orthotropic rectangular cantilever plate. The results are theoretically exact solutions when mand n — oo while in practice we

and L, obtained are substituted into Eq. (24), formula (15) gives the bending solutions

only take the larger ones to obtain desired accuracy.

3. Numerical Results. In order to verify the validity of the results derived in the paper, three cases of loading of an
isotropic rectangular cantilever thin plate with different aspect ratios are examined:

(1) a uniform load of intensity ¢;

(2) a concentrated load at the center of the plate;

(3) a concentrated load at the middle of the free edge x =a.

Comparison with known results of Holl [10], Nash [13] and Chang [3-5] including the transverse deflections and
bending moments at specific locations for cases above is presented in Tables 1-3, respectively, which displays excellent
agreement.

For future comparison, exact bending solutions of an orthotropic cantilever thin plate subjected to a concentrated load at
the free corner (a,0)are obtained and some numerical results are tabulated in Table 4. In addition, the deflection surface of the
case is illustrated in Fig. 2 for direct viewing.

For sufficient accuracy of the solutions, we take the first 50 terms of /,, and J, and the first 100 terms of K, and L, in
the calculation. It should be noted that the convergence of the results is not so fast because of the double trigonometric series
adopted. However, the simultaneous equations can be solved without any difficulty using mathematical packages such as
MATLAB; and above all, the value of the present approach lies in its excellent ability to obtain exact bending solutions of a plate.

4. Conclusions. The present paper shows that the bending problem of an orthotropic rectangular cantilever thin plate
can be solved accurately by a novel double finite integral transform method. The main advantage of the approach is it does not
require the preselection of a deformation function, which, however, can scarcely be avoided in the traditional semi-inverse
approaches. Also, the present approach provides an efficient procedure for more accurate results which should be of both
academic and practical importance. Accordingly, it serves as a completely rational theoretical model for the bending problems of
rectangular thin plates. The present method can be capable of dealing with any other combinations of boundary conditions while
be further extended to the problems of moderately thick plates as well as buckling, vibration, etc., some of which will be explored
in due course.
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