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INFLUENCE OF INITIAL DEFLECTIONS ON THE STABILITY OF COMPOSITE
CYLINDRICAL SHELLS INTERACTING WITH A FLUID FLOW

P. S. Koval’chuk and N. P. Podchasov

Composite cylindrical shells interacting with an internal fluid flow are analyzed for stability. It is
assumed that the shells have small initial geometrical imperfections. The effect of axisymmetric and
nonaxisymmetric initial deflections on the critical speeds of the fluid, which cause static (divergent) or
dynamic (flutter) loss of stability, is studied

Keywords: composite cylindrical shell, ideal incompressible liquid, critical speed, initial imperfection,
divergence, flutter, loss of stability

Introduction. The quasistatic (divergent) and dynamic (flutter) loss of stability of elastic cylindrical shells interacting
with the internal fluid flow was studied in [2-5, 9, 11-13, etc.]. The relevant results obtained both long ago and in the last two
decades are analyzed in [8, 9]. It was mainly assumed that the shells are perfect circular cylinders, and their material is described
by an isotropic model. Initial geometrical imperfections present in almost every shell structure were neglected. Such
imperfections, even if very small, may significantly affect the frequencies of vibrations of shells [6, 10] and the critical speeds of
the fluid that cause one type of instability or another [2, 4]. This effect is expected to be stronger in composite shells whose
dynamic properties are more sensitive to geometrical imperfections compared with metal shells.

The present paper studies the instability of composite cylindrical shells (orthotropic model) having small geometrical
imperfections and interacting with a fluid flow. We will consider axisymmetric and nonaxisymmetric initial deflections. We will
analyze the influence of these initial deflections on the critical speeds of the fluid that cause the shell to lose stability through
either monotonic bulging (divergent buckling) or bulging with time-dependent amplitude (flutter buckling).

1. To analyze shells with fluid for stability, we will use linearized dynamic equations in mixed form [1-3]:
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where w; = w, (x, y,1) and wy = w, (x, y) are dynamic and initial deflections, respectively, that have the order of the shell
thickness (xand yare the axial and circumferential coordinates of points on the mid-surface); ® = ®@(x, y, ¢ )is the stress function
in the mid-surface; V;‘) and Vg are operators such that
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where D, and D, are the axial and circumferential flexural stifnesses; D5 is the effective stiffness; D, is the torsional stiffness;
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E| and E, are the elastic moduli along the x-and y-axes, respectively; G is the shear modulus; u; and p, are Poisson’s ratios
(Eyny =Eppy);
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h and R are the radius and thickness of the shell; p is the density of the shell’s material; ¢, is the damping factor; P, is the
hydrodynamic pressure on the shell, defined by the following formula [2, 3, 9]:
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where p ; is the density of the fluid; ¢ = @(x,r,0,7)is the perturbed velocity potential of the fluid, which is assumed perfect and
incompressible (x, 7,0 are cylindrical coordinates); U is the speed of the fluid, which is assumed constant.

Let the shell be simply supported at the ends x = Oand x = /(/ is the length of the shell). To clarify the fundamental aspect
of the effect of the initial deflection w, on the stability of the shell, we will use a simplified four-mode approximation of the
function wy [11]:

wy = f] cossysin A, x+ f, sinsysin A x+ f3 cos sysin A, x+ f, sin sysin A, x, (1.6)

which includes the conjugate and nonconjugate flexural modes [7]. Here f; (k =1,...,4)are unknown functions of time; s =n/ R,
A =mn/l, L, =m,yn/lare wave numbers (n is the number of circumferential waves; m; and m, are the number of longitudinal
half-waves). By analogy with [2], we will set m; =1, m, =2 i.e., we will consider the lowest axial modes that are the earliest (at
the minimum speed of the fluid) to cause the shell to lose stability. The initial deflection w, is given by

Wo = f1o COS Sy ysin Ayx+ fo, sin s, ysin A x, (1.7)

where f|, f5 = const are constants; s, =n, / R, h, =myn/ [, the parameters n, and m, being integers. The stress function ®
can be found from the second equation in (1.1) with (1.6), (1.7):

2
D= Z[CD{”" cos sysin A, x+ @5 cos sysin A, x +®5" cos(s—s; )ycos(h, —i, x

m=1
+ @™ sin(s—s; )ycos(h,, —Ao +DL" cos(s+s, )ycos(h,, —Ay W
+ @™ sin(s+s, )ycos(h,, —hy x+ D7 cos(s—s;, )ycos(h, +Aq
+ @™ sin(s—s; )ycos(h,, +1y o+ Dy cos(s+s, )ycos(h,, +A,

+ DM sin(s+s, )ycos(h, + X, )x] (1.8)

where CD;’.’” (j=1...,10) are functions expressed in some manner in terms of the displacements f,,..., f;, wave numbers,

physical and geometrical parameters of the shell:
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Hereafter A5 denotes the operator Ay (4,B)=3,4 44 2654 B+ 8134.

Considering w; ,w, << R[1, 3], we determine the potential ¢ by solving the following boundary-value problem 2, 9]:
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The hydrodynamic pressure P, is given by

K, . . K, . . K, . . K, . . )
P, =py Tfl sin 7»1x+>\—f3 sin A, x |cos sy + QT'}(Z sin k1x+k—f4 sin A, x |sin sy
1 2 1 2

+2(K1f1- cos X1x+K2f3 cos A, x)U cos sy + Z(Klf2 cos k1x+K2f4 cos A, x)Usin sy

—(K A fysinhx+ K, &, f5sin kzx)U2 cos sy —(K A fo sin Mx+ K, A, f, sin kzx)U2 sin sy], (1.11)

where
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I, are modified Bessel functions of the nth order (the overbar denotes differentiation).

Substituting (1.6), (1.7), (1.9), (1.11) into the first equation in (1.1) and using the Bubnov—Galerkin method
(z =sin A xcos sy, z, =sin A,xsin sy, z3 =sin A,xco0s sy, z, =sin A, xsin sy are chosen to be weight functions), we obtain the
following system of equations for the generalized displacements f} :

4 4
fi +(@F —0, U) f, +, fr + ey S U B ;=0 (k=1..4) (1.13)
j=1 j=1

where o, are the natural frequencies of the shell with the added mass of the fluid,
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K.
mO":Hp?Oxlh’ Ap(h;,)=D;34 +2D,02s? +Dyst (i=1,2), (1.14)
i
‘ £ £ ,
g, are damping parameters: &, =g, =——, &3 =g, =——, 0}, jk are constant coefficients [11, 12],
My, Moy
K.\ KA
o = _Pof1 L _ 4=Po 2%2
phmyy, phm,
16p oK, 16p K,
Biz =By =— » By =By = , (1.15)
3phimey, ., 3phimg, )\,
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(the remaining 3 W= 0); c jj are coefficients of integration dependent on the amplitude of initial deflection f,, /5, (all ¢ W= Ofor
Sfi0 = fo9 =0). The values of ¢, ; are determined by the ratio between the wave numbers of the initial (s, A, ) and dynamic (s, 2,
A,) deflections. Let us consider Egs. (1.13) for the most typical relations among the parameters.

2. Lets= 5o # 0, A = 7‘0’ i.e., the initial deflection “resonates” with one of the terms of the dynamic deflection w,. In
this case, the coefficients Chi in (1.13) become

1 4
‘N =78pm01 {611 (flo f20)+ flo} ‘12 27&);2%] SioS20 =€210
1
Coo :8pm01|:51 (f]() fz())"’ f20:|a C33 :pmoz|:P(f10 +f20)+ flO

_ st gt N sH (O =0y )
16A5 (hy =%y .,25)  16A5 (A, +4y.25)

1
Caq :pm|:P(flO +f20)+ fzo}

02

Cl3 =€y =Cp3 =Cpy =C3y =C3p =C3y =Cy) =Cyy =C43 =0, 2.1

To determine the critical speeds of the fluid, we set up a characteristic equation for system (1.13) taking (2.1) into
account and assuming that

[ =Cpe¥, €, =const (k=1...4) (2.2)
Doing so gives an octic equation for Q:
[B,B,U%Q% +(Q? + o, —a,U? +£,Q)(Q? + 0y, —0,U? +£5Q)]
<[B,B,UQ% +(Q? + o, —a,U? +£,Q) Q% + 0y, —a3U% +£,Q)]
202 _ 2 2 _ 2 =
€l Q7 + 0y —03U” +63Q)(Q7 + 0y, —03U7 +£50Q)=0, (2.3)
where
— 2 _ 2 _ 2 _ 2
O =0 +¢1p, - Oy O +Cpp, W) TO3 +C33, Wy =03 +Cyy,

By =—Bi3> By =By (2.4

The shell is stable as long as the real parts of all characteristic numbers Q are negative. If at least one of these numbers
does not satisfy this condition, the unperturbed configuration of the shell will become unstable.

Let us simplify the expression for the initial deflection w, by setting one of its amplitude parameters, say f,, at zero.
Then Eq. (2.3) can be decomposed into two quartic equations:

o4 +k1jQ3 +k2j§22 +hy Q+ky ;=0 (j=12) (2.5)

The coefficients k& Sy ; are expressed as

1o

- — . 2 _ _ 2 _ 2
klj—81+83, k2j =q; agU, ki =ey(o; —a U )+eg(0,; —a3U"),

j
kyj = (o —a,U? Y,; —a;,U%)  (i,j=L12i#)) (2.6)
where

gy =0 T Oy +E183, gy =W Ty +&E3,
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TABLE 1

_ n
/o
2 3 4 5
0 23.67 17.07 18.87 19.98
1 23.68 17.08 18.87 19.99
2 23.69 17.10 18.90 20.01
g =0, +oy—BB5. 2.7

Thus, the shell sustains divergent buckling when U =U 4, which is the minimum root of the following equations [2]:
2 _ 2 _ 2 _ 2 _
o, -~ U =0 o,-0,U"=0 o, —o3U7 =0, @, —o3U =0 (2.8)
Flutter instability occurs when U =U ., which can be found from the equations
ky kg —k2 =k k2 =0, kiokopken —kZ —k ok =0. (2.9)
117821731 =h31 THRq 1 T Ripfoafizn T3 TR4 R

For example, the first equation in (2.9) yields

U% = (2.10)
where
dy=gg53(0 —0y )2 —BiB, () +e5 ) a5 850 ),
dy =—(g; +e3)[(gj03 +E30)qy +(8[0yy +E30, )]
+2(g; 0,y +E30p, )(&10 3 +E30 )+ (g +85 )2 (0 @y +O 3005 )
dy =(g) +€3)q, (8,0y) +E505 )—(8,0y) €50, )2 —(g; +&5 )2 ®)5 Oy (2.11)

A similar solution follows from the second equation in (2.9). The coefficient d| is the same as (2.11), and it is necessary
to replace ®;, by ®;; and ®,, by ®, in the expressions for d, and d 5, respectively.
Numerical Example. Let the shell be filled with a fluid of density p, = 10% kg/m? and have the parameters

E; =215-10° Pa, E, =123-10° Pa, G=021-10° Pa, ¢, =0.1sec’,
p=165-10° kg/m®, R=0.16m, h=R/100, [=5h p, =0.19. (2.12)

An analysis of Egs. (2.8) shows that when U =U =17.07 m/sec and w,, =0, the divergent buckling mode n =3 is
observed the earliest.

An initial deflection similar in form to the dynamic deflection has a weak effect on the critical speeds U and U,
Table 1 summarizes the values of the minimum speed U, corresponding to different dimensionless amplitudes of initial
deflection (]70 = f1o / i and different values of the wave number 7 for f,, =0.

It can be seen that the difference between the critical speeds U ; of the imperfect shell and perfect shell ( f, = 0) for
n=2,...,5does not exceed 0.22%. The same is true of the flutter speeds.
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Figure 1 shows curves of U, versus ]0 plotted from Egs. (2.9) for different values of n (indicated in Fig. 1). The solid
lines represent the first equation in (2.9), and the dashed lines the second equation. As is seen, dynamic buckling of the shell
occurs the earliest when the circumferential mode n =4 is excited. This happens when w, =0andU =U; =19.06 m/sec. If the
shell has an initial deflection w(, with f}, =2h, thenU; =19.09 m/sec, i.e., the critical speed U, increases a little.

When n =3, we have U; =21.60 m/sec if ]0 =0and Uy =21.62 m/sec if f}, =h. Thus, the shell with the initial
deflection “resonating” with the dynamic deflection in circumferential mode appears weakly “sensitive” to * the effect of
geometrical imperfections on both divergent and flutter buckling.

3. Let us consider the second case of relations between the wave numbers of dynamic and initial deflections: s # s, # 0,
M # Ao Ay # Ay Then

11 = :Pl(fl% +f220)’ €33 =Cy4 :Pz(ﬂ% +f220)’ (3.1)

where

P, =71 (so2; +}.0s)4 ! + !
L6pm,); As(h; —hg,s+55) As(h; +2g,5—55)

1 1
o ) e 32
(oA =2os) {As(xijtko,s—so) As(h; =g ,5=5 )}} ‘ ) -

should be set in (1.13).
The other coefficients ¢ K= 0. The characteristic equation of system (1.13) is

Q% + £ Q% + 5, Q% +h,Q+ky =0, (3.3)
where the coefficients are expressed as
k=g +e5, ky=0; +0,y —ocOU2 +¢g&5,
ky =g5 (0 —0L1U2 )+&;(®y, —0L2U2),
ky =(o; —0,U% )@y, —a,U? ), (3.4)

_ 2 _ .2
and ©;; =07 +¢, ©y, =5 +033.

907



Uy, m/sec Uy, m/sec

njy n==6 /
40 40

2

30 30

5 2

3

4

f 5 1

20 20
4
10 10 |
0 0.5 1.0 1.5 f0 0 0. .0 1.5 f()
a b
Fig.3

The critical speeds U ; and U, should be determined from the equations
(@, —0,UJ Ny —a,U3)=0, (3.5)
(&) +83 Mg =0oUf ey (@) —a,Uf )+, (0 —a3UF )]
Lo (@ —0 U ey (0yy —a, U1 =(ey +e3)7 (0 —0,UF )wy, —0,U7)=0
(g=0p + oy +&83) (3.6)

Figures 2 and 3 show plots of U =U 4(f, )andU; =U,(f; ) for different values of the wave number 7.
Figure 2 illustrates curves of minimum critical speed Uy =U 4 (}6 ) found by (3.5) forn=2,3,4,5and 0< }0 <2(as
before, the shell has parameters (2.12) and f,, = 0). The wave numbers of the initial deflection are m, =3and n, =7.

Table 2 gives the width of the divergent instability zone A, =U§™* U é“i“ calculated for each parameter n (n=2,...,5)

used in Fig. 2a.

Thus, as in the problem of Sec. 2, the divergent buckling of the shell occurs the earliest when the circumferential mode
n = 3 is excited. The initial deflection significantly increases the speed U ; compared with the perfect shell for a relatively great
wave number n (n > 5).

When 7 is small (n = 2, 3), the relative increase in the speed U does not exceed 5.9% of its value at w, =0. As the
parameter n increases, the width of the divergent instability zone A, first decreases a little, reaching the minimum at n = 4, and
then abruptly increases.

Figure 3a shows the flutter speed U as a function of -1?0 for my =3and n, =7, as before. It can be seen that oscillatory
buckling occurs when the circumferential mode n =4 is excited. As the initial deflection increases, the flutter speeds
corresponding to n =3 and n =4 approach each other. Figure 3b illustrates a similar pattern for m; =8 and n, =7. While
fo <1.33, the shell buckles in the circumferential mode n =4, and 19.06 <U <22.24 m/sec. When f, > 1.33, the buckling
mode changes qualitatively: the circumferential mode n = 3 is excited, along with axial modes (m;, =1, m, =2).

4. Let us analyze the effect of an axisymmetric initial deflection on the buckling of the shell. To this end, we set s, =0in
(1.7). The coefficients Cy in (1.13) are now expressed as

_ _ 2 _ _
¢y =Co =Y So Y12 S0 €13 =Cu =V13 /0
_ _ 2
C31 =Cap =Vo3 o> €33 =Caq =V S0 FY 20 S0 4.1

where
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TABLE 2

_ n
7,
2 3 4 5
0 6.83 5.34 0.86 10.14
1 6.83 4.93 2.24 13.83
2 6.82 4.52 3.63 17.51
TABLE 3
) n
So
2 3 4 5
0 23.67 17.07 18.87 19.98
+h 23.14 16.33 18.75 19.91
—h 24.23 17.84 18.97 20.08
+2h 22.60 15.60 18.62 19.85
—2h 24.78 18.61 19.07 20.18
2 3 2 2
. _ ohys 43 N (h; —2g) N (O +2) P
Rplmy, (47&21 _x% WAg (hy,s)  (2hy =hg)As (A =Rg.s) (20 +hg A5 (A +2g,5)
Wt 1 1
Yi2 = + s
dpmy; | As (g +2g,5)  Ag (A =g ,s)
2 3 2 2
- _ Rglys 433 . Oy —2g) N (hy +2g) P
Rplm, (4732 430 Mg (hy,s)  (Ahy=hg)As(hy =Rg.s)  (4hy +h)A5 (g +0g,5)

= k‘(‘)s“ 1 . 1
2 dpmyy | Ag(hy +2g,8) Ag(hy —Ny,s)

2 2 2
" _ My BIVES
Rplmg, | (1 =17 )W =255 (1y,9)
. (hy =) N (hy +24)? 5
(g =2 )3hy =Ag A5 (hy =Ngss) (kg +A )3, + 4o A5 (hy +Ag,5)
2 2 2
, Wy 84, 23
23
Rplmg, | (03 =23 )92 =22)A5 (Ay,s)
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N (20 =g )(hy —2g)? - 20y (A +2g)? 5 “2)
(Ag +2)BA =2 A5 (A =2g,8) (A =R )3BA + 2 )A5 (M) +2Ay,5)
The parameters 4 and B are given by
A=1-(=D)"0,  B=1-(=1)""0*" (4.3)

Letm be odd. Theny,; =v,; =0, and the problem becomes similar to that considered in Sec. 3. The divergence speeds
can be found from Eq. (3.5) with (4.1) and (4.2). The values of these speeds are summarized in Table 3. As usual, the wave
number 7 is varied and the initial deflection amplitude f,, (f;, =0,£/4,22h)is kept constant for m;, = 1.

It can be seen from Table 3 that the critical speedU 4 depends on how the axisymmetric initial deflection w, is arranged
relative to the initial mid-surface of the perfect shell. If, for example, flo <0(i.e., the initial deflection makes the shell convex,
like a barrel), the critical speed U ; increases with | f,|. Hence, the shell is more stable against divergent buckling. If, vice versa,
f1o >0 (the shell is concave, its Gaussian curvature is negative), then the initial deflection decreases U ; compared with the
perfect shell.
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The initial deflection w(, (x) has a similar effect on the flutter speed U : it increases a little (compared with the case of
wo =0) when f,, <0and decreases when f,, >0(Fig. 4). As follows from Fig. 4, the shell loses stability the earliest when the
circumferential mode n = 4 is excited (the dashed curves correspond to f,, < 0 and the solid lines to £}, > 0).

The more complicated the configuration (say, the greater the wave number mj) of the axisymmetric deflection
wo =w, (x), the stronger its effect on the stability of the shell. In this case, the critical speedsU j and U for f;, <Oand f;, >0
always exceed those for f|, = 0. Figures Sa and 5b show these speeds for m, =7 and 0 <|f|,| < h. As before, the dashed curves
correspond to f, <0, and the solid curves to f;, > 0.

If the number of waves is even (f;, <0), the deflection w, has a qualitatively same effect on the stability of the shell as
when m, is even.

Conclusions. We have solved the buckling problem for imperfect (with initial geometrical imperfections) orthotropic
cylindrical shells interacting with an internal fluid flow. We have analyzed the effect of axisymmetric and nonaxisymmetric
initial deflections on the critical speeds of the flow that cause quasistatic (divergent) or dynamic (flutter) buckling.
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