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The elastoplastic deformation of an isotropic material is described using constitutive equations and

allowing for the stress mode. The equations include two nonlinear functions that relate the first and

second invariants of the stress and linear-strain tensors to the stress mode angle. It is proposed to use a

linear rather than nonlinear relationship between the first invariants of the tensors. This simplification is

validated by comparing calculated and experimental strains under loading with constant and variable

stress mode angle
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Introduction. Constitutive equations describing the elastoplastic deformation of isotropic materials along

small-curvature paths and allowing for the stress mode were proposed in [10, 11]. These equations relate the stress components

and the linear strain components and can be used both at small and large strains. It was assumed that stress deviators and

differentials of plastic strains are coaxial. The equations contain two nonlinear functions that depend on a stress mode parameter.

For this parameter, the stress mode angle was used in [3]. One function relates the mean stress and strain and the stress mode

angle, while the other function relates the intensities of tangential stresses and shear strains and the stress mode angle. These

functions are determined from tests on tubular specimens under tension and internal pressure increased proportionally, i.e., at

several constant stress mode angles. When these functions are assumed independent of the stress mode angle and determined

from uniaxial-tension tests, the above equations transform into the standard equations of the theory of deformation along

small-curvature paths [2, 4, 5, 13], which are widely used to solve boundary-value problems [6–9, etc.].

The assumptions underlying the constitutive equations were validated in [10–12] against the data of tests on tubular

specimens subject to tension and internal pressure. The specimens were made of Kh18N10T steel and preliminarily annealed.

An approximate method to calculate the above functions from test data for stress mode angles � � �
�

� 0 6 3, / , / (base

functions) was proposed in [1]. For intermediate values of �
�

, linear interpolation was used. The base functions and the

algorithm developed in [1] were used to analyze several deformation processes for tubular specimens for different stress mode

angles. The calculated strains were in satisfactory agreement with experimental data.

In support of [10–12] and in contrast to [1], the present paper uses a more simple approximate approach to describe the

inelastic deformation of isotropic materials with allowance for the stress mode. This approach assumes that the relationship

between the mean stress and the mean strain is independent of the stress mode, while the relationship between the intensities of

tangential stresses and shear strains is dependent on the stress mode. The approach will be tested against specific examples.

1. Constitutive Equations. To formulate the constitutive equations, we will divide the loading process into small steps.

At the Nth step, the components of the stress �
ij

and strain �
ij

tensors are related by
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where G and � are the shear modulus and Poisson’s ratio,

� � 	
0

3�
ij ij

/ , (1.2)

	
ij

is the Kronecker delta, 	
ij

� 1if i j� and 	
ij

� 0 if i j� .

Assume that the components of the strain tensor include elastic �
ij

(e)
and plastic �

ij

(p)
components:

� � �
ij ij ij

� �
(e) (p)

. (1.3)

The elastic components obey Hooke’s law.

The plastic components are determined as the sum of their increments �
ij

(p)
at the end of the Nth step:

� �
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N
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�

�
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1

. (1.4)

Assume that the mean stress

� � 	
0

3�
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/ (1.5)

and the mean strain (1.2) are related linearly:
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Due to (1.6), the plastic components of the strain tensor are equal to the components of the plastic-strain deviator

(�
ij ij

e
(p) (p)

� ), and the increments 
k ij

�
(p)

at the kth step of loading are given by

  �
k ij

ij

k

k

s

S
�

(p) (p)
� , (1.7)
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s
ij ij ij

� 
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0

, (1.8)

S is the intensity of tangential stresses,

S s s
ij ij

�
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 �
k

(p)
is the increment of the intensity of plastic shear strains at the kth step,

�  �
(p) (p)

�

�

� k

k

N

1

. (1.10)

The angular brackets in (1.7) denote averaging.

To determine  �
k

(p)
, we assume that

S F�
2

( , )� �
�

, (1.11)
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is the intensity of shear strains,

e
ij ij ij

� 
� � 	
0

, (1.13)

�
�

�
� 


�

�

�

�

�

�

1

3

3 3

2

3

3
arc cos

( )I D

S

( / )0 3� �� �
�

(1.14)

is the stress mode angle [3, 10], I D
3

( )
�

is the third invariant of the stress deviator equal to its determinant:

I D s
ij3

( ) | |
�

� . (1.15)

The stress mode angle �
�

is determined in terms of the components of the stress deviator, unlike the Lode parameter,

which is determined in terms of the principal stresses. This angle is related to the Lode parameter �
�

in a simple manner [3]:

� � �
�

� 3, �
�

� 
1 in tension; �
�

� 0, �
�

� 1 if the principal stresses are equal (� �
1 2

� ); � � �
�

� 6, �
�

� 0 in shear or if

2
1 2

� �� .

To individualize the function F
2

(1.11), we will use, as in [1], data of base tests on tubular specimens proportionally

loaded by a tensile axial force and internal pressure at several constant values of �
�

as well as the assumption

� �� �

S

G2

(p)
. (1.16)

Thus, the constitutive equations describing the deformation of isotropic materials include (1.1), (1.6), (1.7), and (1.11).

These equations are distinguished from those in [10–12] by the assumption (1.6) because it was assumed in [10–12] that the

relationship between the mean stress �
0

and the mean strain �
0

is nonlinear and dependent on the stress mode:

� � �
�0 1 0

� F ( , ). (1.17)

To individualize function (1.17), we will use the results of the base tests conducted to find the function F
2

(1.11).

2. Calculation of Base Functions. As noted above, function (1.11) should be calculated from tests on tubular

specimens under tension and internal pressure at � � �
�

� 0 6 3, / , / . Next, these values are used to analyze the deformation of

tubular specimens at 0 3� �� �
�

/ and to solve boundary-value problems with allowance for the stress mode. It is difficult to

determine the base functions because in addition to the stresses �
zz

and �
��

and the strains �
zz

and �
��

, which can be found

experimentally, it is necessary to find the radial strain �
rr

that cannot be measured directly.

Unlike [1], we will approximately calculate the radial strain from an expression derived from (1.6):

�

� �
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In using formulas (1.6) and (2.1), it is assumed that the mean plastic strain is zero (�
0

0
(p)

� ). As shown in [1, 11],

�
0

2
10 2

(p)
 � after the tension of a tubular specimen is completed [11], i.e., �

0
0

(p)
� in this process. Let us evaluate the

disagreement between the values of strain � �
��rr

� predicted by formula (2.1) and measured in tests.

Figure 1 shows the strain � �
��rr

� versus the mean stress �
0

. Here the solid line corresponds to formula (2.1), the

dashed line to the approach [1], and the triangles to experiment. As is seen, values � �
��rr

� calculated by the approach [1] are in

agreement with the experimental data. The relative error of maximum strain � �
��rr

� calculated by (2.1) is 	 � 16%, where

	

� �

�

�


!

!

!

!

!

! 
calc exp

exp

100, �
calc

and �
exp

are the calculated and experimental strains, respectively.

Let us analyze the difference between the base functions F
1

(1.17), Fig. 2, and F
2

(1.11), Fig. 3, calculated for �
�

� 0,

� � 6, and � / 3, by our method and the method of [1]. In Figs. 2 and 3, as in Fig. 1, the solid lines correspond to formula (2.1), the

dashed lines to the approach [1], and curves 1, 2, and 3 correspond to � � �
�

� 0 6 3, / , / , respectively.

The solid line in Fig. 2 corresponding to (1.6) both quantitatively and qualitatively differs from dashed curves 1, 2, 3

corresponding to (1.17). Figure 2 also demonstrates that the base function F
1

(1.17) for �
0

2
10 " 0.2 is strongly dependent on

�
�

. For example, the values of �
0

corresponding to the same value of �
0

on dashed curves 1 and 3 differ twofold approximately.

Dashed curve 2 in Fig. 2 corresponding to � �
�

� / 6does not pass midway between curves 1 ( )�
�

� 0 and 3 ( / )� �
�

� 3 . This

means that with few base curves, the linear interpolation with respect to �
�

may produce a considerable error.

Figure 3 demonstrates that the base function F
2

(1.11) calculated by [1] and (2.1) differ only quantitatively, the

difference being 	 � 23% (curve 1) at the same intensity of tangential stresses.

Calculations shows that at the end of the processes being considered, the intensity of shear strains is approximately an

order of magnitude greater than the mean strain. This makes it possible to assume that dependence of the function F
1

(1.17) on

the stress mode have a weaker effect on the calculated strains than the same dependence of the function F
2

(1.11). Therefore, it

seems to be expedient to use relation (1.6) instead of (1.17), avoiding the interpolation of the function F
1

at intermediate stress

mode angles.

3. Approximate Analysis of the Deformation of a Tubular Specimen. We assume that the way a tubular specimen is

loaded by axial force and internal pressure is known. Let us set up an algorithm to calculate the strains in the specimen using the

constitutive equations (1.1), (1.6), (1.7), and (1.11), allowing for the dependence of the function F
2

(1.11) on the stress mode,

and replacing the function F
1

(1.17) by (1.6). Note that this algorithm is somewhat simpler than that in [1]. Let us divide the

loading process into steps and assume that the stress components and base function F
2

(1.11) for � � �
�

� 0 6 3, / , / are known at

each step. First, we use the values of the stresses and formulas (1.5), (1.8), (1.9), and (1.14) to calculate �
0

, S, and �
�

. Then, we

interpolate the values of F
2

at � � �
�

� 0 6 3, / , / to find F
2

for a given value of �
�

. Next, we use this function and the intensity of

tangential stresses S (1.9) at the end and beginning of the current step of loading to determine the intensity of shear strains �.

After that, we use formula (1.16) to calculate the intensity of plastic shear strains �
(p)

and the increment  �
k

(p)
:
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where k and k 
1are the numbers of the current and previous steps of loading. Now, we determine the increments of the plastic

strain components:

  �
k zz

zz

k

k
S

z�

� �

�
(p) (p)

�



0

( , ),

  �
k rr

k

k
S

�

�
(p) (p)

�



0

(3.2)

and the plastic components themselves (1.4) to find the elastic strain components by the formulas

�

� ��

�
��

zz

zz

E
z

(e)
�




( , ),
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TABLE 1

�
zz

,

ÌPa

�
zz

 10
2

� �
��rr

 �  10 10
2 2

exp. 1 2 3 exp. 1 2 3

192 0.1 0.1 0.1 0.1 0 0 0 0

251 0.6 0.6 0.6 0.5 –0.2 –0.2 –0.2 –0.2

337 2.5 2.5 2.5 2.4 –1.1 –1.1 –1.2 –1.2

359 3.5 3.5 3.5 3.4 –1.6 –1.6 –1.7 –1.7

382 4.5 4.5 4.5 4.4 –2.1 –2.1 –2.2 –2.2

397 5.5 5.5 5.5 5.4 –2.5 –2.6 –2.7 –2.6

417 6.5 6.5 6.5 6.4 –3.0 –3.0 –3.2 –3.1

435 7.5 7.5 7.5 7.3 –3.4 –3.4 –3.7 –3.6

447 8.5 8.5 8.5 8.4 –4.0 –3.9 –4.2 –4.1

474 10.5 10.5 10.5 10.3 –4.8 –4.8 –5.2 –5.1

523 16.5 16.5 16.5 15.9 –7.3 –7.3 –8.2 –7.9

537 18.5 18.5 18.5 17.7 –8.0 –8.0 –9.2 –8.8

543 20.0 20.0 20.0 19.1 –8.6 –8.6 –9.9 –9.5

554 25.0 25.0 25.0 23.6 –10.4 –10.3 –12.4 –11.7

566 31.0 31.0 31.0 28.9 –12.4 –12.4 –15.4 –14.4
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TABLE 2

�
zz

, ÌPà �
��

, ÌPà

�
zz

 10
2

�
��

 10
2

exp. 1 2 3 exp. 1 2 3

252 254 0.28 0.16 0.16 0.31 0 0.17 0.17 0.32

279 282 0.45 0.28 0.28 0.61 0.05 0.29 0.28 0.63

304 313 0.81 0.65 0.64 0.91 0.50 0.68 0.68 0.96

327 335 1.08 0.96 0.95 1.15 0.88 1.01 1.01 1.22

366 398 1.72 1.74 1.70 2.18 1.88 1.94 1.91 2.44

401 429 2.59 2.55 2.54 2.98 2.90 2.94 2.95 3.43

418 440 3.03 3.08 3.01 3.31 3.49 3.55 3.51 3.83

436 455 3.54 3.53 3.51 3.87 4.06 4.06 4.08 4.47

450 467 3.93 3.94 3.92 4.31 4.53 4.52 4.54 4.96

470 483 4.62 4.70 4.67 4.98 5.41 5.35 5.37 5.70

482 496 5.03 5.15 5.12 5.65 5.95 5.83 5.86 6.43

492 505 5.42 5.58 5.54 6.19 6.43 6.28 6.32 7.02

507 518 6.43 6.57 6.53 6.98 7.47 7.33 7.37 7.86

521 526 6.84 6.98 6.93 7.55 7.88 7.75 7.79 8.46

535 533 7.31 7.45 7.40 8.27 8.35 8.22 8.26 9.18

551 543 8.17 8.39 8.35 9.96 9.44 9.14 9.18 10.82

555 548 8.42 8.61 8.57 10.96 9.55 9.36 9.39 11.78

562 555 8.79 9.03 8.99 12.50 10.01 9.77 9.80 13.27

565 559 9.05 9.28 9.25 13.37 10.24 10.02 10.05 14.10



�

� � �
��

rr

zz

E

(e)
� 


�( )

, (3.3)

where E G� �2 1( )� is the elastic modulus. Finally, the strain components are determined as

� � � �
zz zz zz

z r� �
(e) (p)

( , , ). (3.4)

Thus, the above algorithm allows approximate calculation of the components of the strain tensor for a tubular specimen

under loading of given type assuming that only the function F
2

(1.11) is dependent on the stress mode. If the function F
2

(1.11) is

considered independent of the stress mode and equal to the base function at � � �
�

� 3 (i.e., when the specimen is subject to

uniaxial tension), then this algorithm may be used to determine the components of the strain tensor based on the theory of

deformation along small-curvature paths [4, 5].

4. Numerical Results. Let us compare data for tubular specimens under tension and internal pressure obtained in the

tests [11] and calculated:

(i) considering that the functions F
1

(1.17) and F
2

(1.11) depend on the stress mode, as in [1];
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TABLE 3

�
zz

, ÌPà �
��

, ÌPà

�
��

 10
2

exp. 1 2 3

167 334 0.36 0.35 0.35 1.21

194 387 1.11 1.09 1.11 2.09

216 431 2.64 2.58 2.61 3.55

232 464 4.68 4.57 4.64 4.07

233 466 5.31 5.19 5.27 4.98

238 475 5.86 5.73 5.82 5.31

241 481 6.68 6.54 6.63 5.54

247 494 7.62 7.42 7.55 6.05

250 499 8.04 7.83 7.98 6.28

253 506 8.69 8.44 8.60 6.61

257 514 9.54 9.32 9.46 7.10

260 519 10.03 9.81 9.95 7.42

263 526 10.61 10.34 10.52 7.76

264 529 10.85 10.57 10.74 7.93

268 536 11.88 11.56 11.78 8.29

272 544 12.67 12.30 12.55 8.75



(ii) considering that only the function F
2

(1.11) depends on the stress mode and using the linear relation (1.6);

(iii) disregarding the stress mode and using the theory of deformation along small-curvature paths.

The algorithm outlined in [1] was used in case (i) and the algorithm outlined in Sec. 3 was used in cases (ii) and (iii).

Table 1 summarizes the experimental data [11] and calculated results for a tubular specimen under tension ( / )� �
�

� 3 .

The first column contains the values of the axial stress and the other columns contain experimental (“exp.”) and

calculated (1, 2, 3 correspond to cases (i), (ii), (iii)) values of strains.

As is seen, the results obtained in case (i) differ from the experimental values by less than 	 � 0.1%. In case (ii), the

calculated maximum axial strains agree with the experimental values and the maximum hoop strains exceed the experimental

values by 24%. In case (iii), the calculated maximum axial strains are less than the experimental values by 6% and the hoop

strains exceed the experimental values by 16%. Note that all the calculated strains that are less than 10% differ from the

experimental values by no more than 	 � 10%.

Table 2 summarizes the experimental data [11] and calculated results for a tubular specimen under tension and internal

pressure (�
�

# 0).

The first two columns contain stresses and the other columns strains, the notation being the same as in Table 1.
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TABLE 4

�
zz

, ÌPà �
��

, ÌPà �
zz

 10
2

�
��

 10
2

�
�

, rad

149 296 0 0.28 0.52

177 354 0 0.62 0.52

200 399 0 0.96 0.52

230 458 0 3.00 0.52

235 467 0 5.07 0.52

244 485 0 5.78 0.52

249 498 0 6.06 0.52

354 490 0 7.01 0.27

381 480 0.2 7.23 0.20

470 478 0.43 7.86 0.02

495 478 0.74 8.40 0.03

522 478 1.24 9.01 0.08

547 478 1.87 9.71 0.12

582 478 2.73 10.43 0.17

607 478 4.01 11.21 0.20

619 479 5.15 11.88 0.22



As is seen, in cases (i) and (ii), the calculated values differ from each other in the third decimal place and agree well with

experimental data (the difference is less than 	 �2% at the end of the process). In case (iii), the calculated strains that are less than

7.5% differ from the experimental values by less than 	 � 10%, this difference reaching 	 � 40% at the end of the process.

Table 3 summarizes the experimental data [11] and calculated results for a tubular specimen under tension and internal

pressure (� �
�

� / 6), the notation being the same.

Since the experimental and calculated axial strains are less than 0.2%, they are omitted in Table 3. In cases (i) and (ii),

the calculated hoop strains differ from each other by less than 	 �1% and agree well with the experimental values (the difference

is less than 3%). In case (iii), the calculated hoop strains that are less than 7% differ from the experimental data by 10–12%, this

difference reaching 	 � 30% at the end of the process.

Note that the stress mode angle in the above processes was kept constant, making it unnecessary to interpolate the base

functions with respect to this parameter.

Let the stress mode angle change from step to step. In this case, interpolation is necessary. Table 4 summarizes

experimental values of the axial and hoop stresses and strains [11]. The corresponding stress mode angles are given in the last

column.

Figure 4 shows the calculated and experimental axial (Fig. 4a) and hoop (Fig. 4b) strains as functions of the intensity of

tangential stresses. Cases (i), (ii), and (iii) are represented by solid, dotted, and dashed lines, respectively, while the experimental

values are shown by triangles.

As is seen, when S �250 ÌPà and �  �10
2

7.5, the calculated values are in good agreement with the experimental data,

but the difference increases with the load. At the end of the process, the calculated hoop strains are in better agreement with the

experimental data than the axial strains, which are approximately 60% less than the hoop strains.

The results obtained in case (i) are in better agreement with the experimental data than the other results. The results

obtained in case (ii) are slightly worse agreement with the experimental data than in case (i) but in better agreement than in case

(iii). The difference of axial and hoop strains from the experimental data is 40 and 15%, respectively. In case (iii), the calculated

axial and hoop strains differ from the experimental data by 50 and 20%, respectively.

Thus, the maximum calculated strains differ from the experimental data by less than 15% in cases (i) and (ii) and by

40% in case (iii). The less the calculated strain, the greater the difference in all cases. The maximum calculated strains can differ

from the experimental data by 40% in cases (i) and (ii) and by more than 100% in case (iii). When the stress mode angle changes

substantially during loading, the difference between calculated and experimental strains in cases (i) and (ii) can be decreased by

increasing the number of given values of the base functions.

Conclusions. We have outlined an approximate approach to the numerical analysis of the elastic deformation of

isotropic materials with allowance for the stress mode. This approach, which appears to be more convenient than that in [1],

assumes that the mean stress and mean strain are in a linear relationship between and the relationship between the intensities of

tangential stresses and shear strains depends on the stress mode.
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The approach has been tested by analyzing specific processes of elastoplastic deformation of tubular specimens at

constant and varying stress mode angles. The calculated axial and hoop components strains in these processes are in approximate

agreement with experimental data.

The approach may be used to describe the elastoplastic deformation of a material when the strains do not exceed 7.5%

and there is an insufficient number (less than three) of given values of base functions (1.17) in the strain range of interest.

Unlike the approach [1], our approach disregards the experimental fact that the mean plastic strain is zero (�
0

0
(p)

� ).

When used to describe the inelastic deformation of Kh18N10T material, the proposed constitutive equations, which

allow for the stress mode, produce strains that, if greater than 7.5%, are in better agreement with experimental data than those

obtained by the theory of deformation along small-curvature paths.
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