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A nonlinear mathematical model of a gravitational vibratory system with a controlled electromagnetic

seismic damper is developed. The dependence of the force of attraction of ferromagnetic bodies by the

solenoid of the frictional device on the solenoid current is established for a specific solenoid design. The

analytic expression for this force is derived by the least-squares method using a system of continuous

piecewise-linear functions. It is used to describe the pressure of the solenoid on the friction surface. For

multifrequency inertial excitation, the acceleration amplification factor is evaluated depending on the

time constant and gain for two cases of control. The possibility of damping vibrations by controlling the

absolute velocity and acceleration is established
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Introduction. Seismic isolation mechanisms (SIMs) have been used for earthquake protection since the second half of

the 20th century [5, 6, 11, 14–17, 20–23]. Such mechanisms are designed to weaken the coupling between protected structures

and ground and to dissipate the energy of seismic disturbances. Controlled semiactive seismic dampers have come to be used in

recent decades [13–17, 22]. Semiactive control systems fall into the class of systems in which control is used to change the

physical and mechanical properties of shock-absorbing elements of damping devices. Such devices may include electro- and

magnetorheological liquid materials whose parameters are strongly dependent on the electric and magnetic fields applied to

them. Such controlled devices are quite difficult to manufacture and operate. However, controlled damping can easily be

produced by using assemblies with controlled pressure between frictional elements that contain solenoids with ferromagnetic

cores, and there is no need for any liquid rheological materials. The cores slide over ferromagnetic surfaces, overcoming the

Coulomb force proportional to the contact pressure and dependent on the ampere-turns of the solenoid [3]. To determine the

contact force of attraction between arbitrary electromagnets, use is made of a theoretical-and-experimental method for each

design of electromagnetic damping device.

Here we use a theoretic-and-experimental method to find the contact force of interaction between a solenoid core and a

ferromagnetic body. We will model the forced vibrations of a system with a controlled electromagnetic frictional damper of a

one-degree-of-freedom object for two different control laws for the solenoid current.

1. Mathematical Model of a Vibrating System with a Feedback-Controlled Electromagnetic Frictional Damper.

Figure 1 shows a vibratory system consisting of a rigid body of radius R having semispherical hollows and resting on spherical

supports of radius r R� that allow horizontal and vertical movements of the body over the horizontal ferromagnetic surface of the

platform. The body has a solenoid with a ferromagnetic core freely sliding along the vertical guide and contacting with the rough

horizontal surface.

If there is a current I in the winding of the solenoid, its shoe is pressed to the friction surface by a force N I( ). This

generates a sliding friction force F
fr

opposite to the horizontal velocity of the moving mass,
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sign� ( ) �, (1.1)

where f is the coefficient of sliding friction; N I N I( ) ( )� � is a continuous even function of I; �x
dx

dt
� is the velocity of the body. A

feedback control system [9, 18, 19] that includes an accelerometer, an integrator, and an amplifier can be used to set the solenoid

current proportional to the absolute acceleration or velocity of the body. To this end, it is necessary to measure the absolute

acceleration and integrate it once. The feedback circuit is generally inertial; therefore, to obtain transparent results, we assume it

to be a first-order lag [9] with a perfect integrator. Then the solenoid current and the measured parameter can be related by
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whereT K K, ( )
a v

are the time constants and gain of the current control system; 	( )t is the law of motion of the platform. The first

relation in (1.2) represents the velocity control, while the second relation the acceleration control. It is obvious that a signal

proportional to the absolute velocity of the body can only be found by integrating the absolute acceleration measured by the

accelerometer.

Let us supplement relations (1.2) with the differential equation of horizontal motion of the system of bodies:
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where m
1

is the mass of all moving elements referred to the horizontal axis, c
gm

R r
�

�4( )
is the gravitational stiffness of the body

(see Addendum); m is the mass of the body; g = 9.81 m/sec
2
. With T 
 0, the system of equations (1.2), (1.3) can be reduced to

Cauchy form. It will permit numerical integration if the function N I( ) satisfies the Lipschitz property. A piecewise-linear

approximation of N I( ) makes the system of equations multistructural, each structure being a system of linear differential

equations with constant coefficients, which allows analytic integration by joining the solutions at the points of discontinuity of

the function N I( ). The system of equations in Cauchy form has discontinuous right-hand sides and, if f is small, can be

analytically integrated by methods intended for such systems [1, 4, 8].

In the case of acceleration control, system (1.2), (1.3), ifT � 0, is reduced to a second-order equation not resolved for the

highest derivative:
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Since it is difficult to solve such equations, the system can be reduced, under certain conditions, to Cauchy form and integrated if

the function N I( ) is even and piecewise-linear and the parameter f ��1 is small. Indeed, we set N I n I( ) | |�
1

and take into

account the Coulomb force p f x
s

sign � generated by the weight p
s

of the dead solenoid. Then Eq. (1.4) becomes
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Where the obvious identity sign sign sign( )ab a b� � is used. This equation can be resolved for ��x only if �
a
�1. In this case,

sign sign(�� �� ) ( , � )x E x x� � �	 , where E x x x x( , � ) �� �� �
2

0
sign .

Finally, we obtain the following system of equations in Cauchy form with discontinuous right-hand side:
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Equations (1.6) and (1.5) are valid unless the coordinate x is in the stagnation zone | ��( )|� 	 �
2

0
x t� � , y � 0. If �

0
, �

a
is

small, Eq. (1.6) has small discontinuities and can approximately be integrated by the asymptotic or averaging method [1, 4, 9] or

numericaly. For 	( )t � 0, Eq. (1.5) can be analytically integrated by joining the solutions.

Here the question arises, which of the two control laws (1.2) more effectively damps the vibrations of the body. The

answer is relatively simple in the case of natural vibrations (� ( ) ��( )	 	t t� � 0). The force of friction vanishes only at �x � 0 in the

former case and at �x � 0and ��x � 0in the latter case. Hence, the latter law is less effective. However, this issue should specially be

examined in the case of forced multifrequency vibrations (��( )	 t 
 0).

Thus, to analyze the vibrations of the body, it is necessary, according to Eqs. (1.2) and (1.3), to set the force N I( ) of

contact interaction between the solenoid and the platform.

2. Contact Force of Attraction of the Solenoid by the Ferromagnetic Body and Its Experimental Determination.

Assume that the force N I( )is a continuous function of the variable I. An analytic expression for N I( )should be selected from the

condition for the magnetic-flux density in the solenoid core taking into account the nature of magnetic moments and forces [10,

pp. 331, 332, 346]. According to the theory of electromagnetic phenomena in a homogeneous magnetic field, only a couple acts

on the solenoid. The solenoid tends to align with the field. If, however, the magnetic field is inhomogeneous, the solenoid is

subjected not only to a couple but also to a force that causes it to translate. The theory of permanent magnets predicts that the

attractive force is proportional to the magnetic moment p, magnetic-field strength gradient � �H x/ , and the angle of the

magnetic core. It is the inhomogeneous magnetic field that is responsible for the attraction or repulsion of magnets, including

solenoids.

The elevating force of an electromagnet can be determined following the engineering approach [3, p. 263]:

F
W

h
� �

�

�

, (2.1)

whereW B sh� 0 5
2

0
. /� is the magnetic energy in the gap of the magnetic circuit consisting of a winding with a horseshoe core,

an armature, and a thin air gap between the poles and the armature; B is the magnetic-flux density; �
0

is the magnetic

permeability of air; h is the thickness of the gap; s is the surface area of the pole portion under which the magnetic field is
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homogeneous. The minus sign in (2.1) indicates that the force tends to reduce the distance between the poles. The elevating force

of an electromagnet with a mobile armature is the force needed to separate the armature from the poles.

Formula (2.1) structurally coincides with the definition of a generalized force with a potential, though magnetic fields

are of vortical rather than potential nature. Formula (2.1) yields

F KI�
2

, (2.2)

where K
n
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0
( )� is a design factor; n is the number of turns of the electromagnet; I is the current; R

m
is the

reluctance of the magnetic circuit.

Assume that the force N I( )(that presses the solenoid to the ferromagnetic material) is expressed by some even function

of I close to a parabola for currents that do not cause magnetic saturation of the core. Due to the contradiction between these two

approaches, the characteristic N I( ) for a specific solenoid is expedient to obtain from measurements of the force separating

ferromagnetic weights from the solenoid core.

To illustrate the situation described above, we will experimentally plot the force N I( ) attracting ferromagnetic bodies

depending on the solenoid current. To this end, the force of separation of the solenoid core and simple ferromagnetic bodies with

flat contact surfac is determined. The experimental setup is shown in Fig. 2.

An electromagnet (solenoid) consisting of coil 1 and magnetically soft steel core 2 was vertically fixed in a holder. The

coil was connected to a B5-47 dc power supply unit 3; the current strength in the coil was measured with ShCh 4313 digital

device 4. The coil had 10,000 turns of a 0.16 PÉL copper wire with a resistance of 4 k�. The core dimensions: outer diameter

22.5 mm, inner diameter 10 mm, length 66 mm. The weight of the solenoid was 1 N.

A fixed core with a diameter of 10 mm was set coaxially with the coil and had a thickening with a diameter of 13 mm

and a thickness of 2.5 mm at the lower end. Test weights 7 were fixed with threads 6 to a steel disk (initial weight) with a diameter

of 13 mm, which is in direct contact with the core of solenoid 5. The following weights were one by one held by the

electromagnet: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 N.

At the beginning of each test, a current that surely kept the weight in contact with the solenoid core was passed through

the coil. Then the current was gradually decreased to the level I at which the weight dropped. Seven tests were conducted for each

value of N . The results were processed by rejecting the minimum and maximum values and averaging the remaining data. The

error of measurement did not exceed 10%. Tables 1 and 2 measure the weight in newtons and the current in milliampers.

For technical reasons, experimental data were only obtained for I �63.5 mA (Fig. 3). The curve N I( )was extrapolated

to I > 60 mA, assuming that the bending point of curve N I( ) takes place for I < 65 mA. These data correspond to Table 2.

3. Approximation of the Contact Force of Attraction as a Function of the Current. The contact force exerted by a

solenoid with a magnetically soft core to attract ferromagnetic bodies will be approximated by a piecewise-linear even function

using the least-squares method. For coordinate functions, we will use even rhombic harmonics of multiple argument. Rhombic

functions are a special case of periodic functions defined on closed lines of L
4
4PC symmetry class. According to [7], rhombic

harmonics are expressed as
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TABLE 1

N, N 0 0.5 1.0 1.5 2.0 3.0 4.0

I, mA 0 18.2 31.1 36.8 43.8 57.1 63.5

TABLE 2

N, N 4.6 5.1 5.4 5.6 5.8

I, mA 70 80 90 100 110



� � � �

� � � �
cor �

� �

� �

�

� �

� � �

�

�

�

1 2

3 2 4

/ , ,

/ , ,

q q

q q q

� �

� �

� �

sir sign

sign

�

� � �

� � �

� � �� �

�

� �

� � �

� � �

q q

q q q

q q

, ,

/ , ,

0

2 3

4 3 4q,

�

�

�

�

�

(3.1)

q � 2, � � � �� �E q q( / )4 4 , E x( )is the integer part of x;� is a real number. Assuming that the function N I( )is even in the range

| |
max

I I� , we expand it into a series of even rhombic harmonics:
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where the minus sign makes the steepness of N I( ) positive for I � 0,

�( ) /
max

I qI I� 2 . (3.3)

According to formula (3.3), as the current I varies in the range � � �I I I
max max

, the dimensionless argument of the

function cor �( )I changes within its period: � � �2 2q q� .

The obvious physical condition N ( )0 0� must be satisfied. It yields
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Finding b
0

from (3.4) and substituting it into (3.2), we obtain the approximating formula

N I b l I
l

l

n

( ) ( ( ))� �

�

 1

1

cor � . (3.5)

It vanishes at I � 0.

For a curve of sign-definite curvature such as a parabola, this formula can be restricted to two terms containing b
1

and

b
2

. This approximation is called birhomboparaboloidal. Figure 4 shows the birhomboparaboloidal approximation of the contact

force for I
max

� 63.5 mA (b
1
� 1.9, b

2
� –0.5). The salient point indicates the beginning of intensive orientation of molecular

currents of the solenoid core along the vector of magnetic-field strength.

Let us determine the tangents of the angles of segments of the birhomboparaboloidally approximated curve N N I� ( ).

According to formulas (3.1) and (3.5), for the initial segments of N I( ) for 0 � �| ( )|� I q, we have N I b b I q( ) ( )| ( )|/� �
1 2

2 � ,

whence
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Figures 3 and 4 show experimental results by circles (curve 1) and approximating curve (dashed curve 2).

The data in Tables 1 and 2 for 0 110� �I mA are approximated by expression (3.5), where n � 6. The six-dimensional

vector of parameters b obtained by the least-squares method is as follows:

b � � � � � � � � �
� � � � �

( . . . . . . )3 6 11 10 67 10 64 10 13 10 84 10
1 1 2 2 2

. (3.6)

The approximating curve N I( ) is shown in Fig. 3. This curve has three almost linear segments corresponding to the

magnetization due to ampere-turns of the solenoid and the molecular currents in its core.

The numerical integration of the nonlinear equations (1.2), (1.3) gives the acceleration amplification factor

� 	 	� �max|��( ) ��( )|/ max|��( )|
t t

x t t t .

The reference-frame acceleration is represented by superposition of damped harmonics:
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The curve N I( ) was obtained for n � 6and b presented above for Tables 1 and 2. The other parameters are as follows:

f m/
1
�0.5, a a

k
� �1, !

#

k
M

k� �
2

1( ), � �
k
� �0.05, ��1, "

�

k
M

k� ( , )k M�1 , M � 4, K
v
$[0.5, 15], T �

2#

�

% (% $[0.1, 1]).

The initial conditions are zero: x( )0 0� , �( )x 0 0� , I ( )0 0� .

Figure 5 shows the surface � �
v v
� (K , % ). As is seen, the factor �

v
decreases as the gain K

v
increases and the time

constant T ( )% decreases.

In the case of acceleration control of the damper, we calculate the function� ��
a a

(K ,% ) for the same values of% and

K K K
a v
� � and set up the difference �

v v
(K , % �) (�

a a
K , % %) ( , )� � K .

Figure 6 shows the surface �( , )K % characterizing the quantitative difference of the effects of control laws (1.2) on the

damping of forced vibrations. From Fig. 6 it is seen that the difference� is alternating-sign. This means that if the time constant is

small, velocity control is more effective. As the constant T increases, acceleration control becomes more preferable.
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Figure 7 shows the following processes: x t( ) (curve 1), �( ) ( )x t v t� (curve 2), I t( ) (curve 3)for K
v
�15,% �1; they show

that current amplitude I
A
�15mA in the solenoid is such that I I

A
�

max
.

Addendum. Calculation of the Gravitational Stiffness of a Rigid Body on Spherical Supports. Following [21], we

will calculate the horizontal stiffness of the suspension of a rigid body undergoing small translational deviations from the

equilibrium position. Figure 8 shows the body in a nonequilibrium position.

Denote by y
A

and z
A

the coordinates of the highest point A of the semispherical hollow in Cartesian coordinate system

Oyz with the origin at the point of contact of the sphere and the flat rolling surface in equilibrium position. When the rigid body is

in equilibrium, the points A and B coincide. The body of mass mundergoes translational vibrations; therefore, its arbitrary point

moves in the same way as the point A of the hollow. The coordinates of the point A ( y z
A A

, ) are related by the integrable

kinematic constraint

� �y z v
A A A

2 2 2
� � , (A.1)

z R r r
A
� � � �( )( cos )1 2&! , v

A
� � ( )!% ! , (A.2)

where ! is the angle between the vertical and the radius rdrawn from the center of the sphere to the point B on its surface, which

coincides with the point A if the system of bodies is in equilibrium position ( )! � 0 ;% !( ) is the instantaneous radius of rotation

that connects the contact points of the sphere and the body and the horizontal plane in a nonequilibrium position:

% ! &!( ) ( cos )� �r 2 1 , & � �r R r/ ( ), (A.3)

where &! '� is the angle between the vertical and the radius R of the hollow drawn to the contact point of the sphere and the

body. Let ! be the Lagrangian generalized coordinate of the rigid body. Using formulas (A.1)–(A.3), we get

� � sinz r
A
� ! &!, � � ( cos )y r

A
� �! &!1 . (A.4)

According to these formulas, the Lagrangian function has the form L T� �(, where T m y z
A A

� �0 5
1

2 2
. ( � � ), ( �mgz

A
,

m m J r
1

2
4� � / ( ); J is the moment of inertia of the homogeneous sphere about an axis tangential to its surface. Using formulas

(A.1) and (A.4), we set up a Lagrangian equation of the second kind for the generalized coordinate !:

d

dt

T T�

�

�
�

�

� �
�

��! ! !

(
.

If ! is small, we have � �y r
A
� 2 !, z r

r

R r
A
� �

�

2
1

2

2
2

( )
! . Taking into account these relations and using (A.5), we obtain

the linear equation
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Considering that y r
A
� 2 !, we find

m y
mg

R r
y

A A1
4

0��

( )
�
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� .

The coefficient of y
A

is the gravitational stiffness c
mg

R r
�

�4( )
referred to the Oy-axis of the body undergoing small

deviations from the equilibrium position.

Conclusions. A nonlinear mathematical model of a gravitational vibratory system with a controlled electromagnetic

seismic damper has been developed. We have experimentally established the dependence of the force of attraction of

ferromagnetic bodies by a solenoid of specific design on the current. An analytic expression of the force has been obtained using

the least-squares method and a system of continuous piecewise-linear functions of special form. It was used as a mathematical

model of the force pressing the solenoid to the surface of the frictional element of the damper. In the case of multifrequency

inertial excitation, we have calculated the acceleration amplification factor depending on the time constant and gain of the

feedback circuit for two control laws for the solenoid current. It has been established that it is possible to damp by controlling

absolute velocity and acceleration.
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