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The theory of long-term damage is generalized to unidirectional fibrous composites. The damage of the

matrix is modeled by randomly dispersed micropores. The damage criterion for a microvolume is

characterized by its stress-rupture strength. It is determined by the dependence of the time to brittle

failure on the difference between the equivalent stress and its limit, which is the ultimate strength,

according to the Huber–Mises criterion, and assumed to be a random function of coordinates. An

equation of damage (porosity) balance in the matrix at an arbitrary time is formulated. Algorithms of

calculating the time dependence of microdamage and macrostresses or macrostrains are developed and

corresponding curves are plotted in the case of stress-rupture microstrength described by a fractional

power function
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Introduction. One of the possible failure mechanisms in materials and structural members is the occurrence and

development of dispersed microdamages, which commonly lead to the formation of main cracks. Physically, the damage of a

material can be considered as dispersed defects such as microcracks, microvoids or damaged microvolumes. They reduce the

effective or bearing portion of the material, which resists loads.

There are three types of damage models. The models of the first type proceed from the micrononuniformity of the

elastic and strength properties of the material, resulting in dispersed microdamages under loading, which are modeled by

microcracks or micropores. The damage equations are derived from the theory of deformation of structurally inhomogeneous

media and certain failure criteria for microvolumes of the material. The models of the second type formally introduce a damage

parameter as a measure of discontinuity of the material but do not indicate its physical meaning and postulate an evolutionary

equation that relates the damage rate and the applied stress. The models of the third type describe damage by thermodynamic

(rather than structural) parameters, which contribute, together with stresses and strains, to the laws of thermodynamics. This

gives formal relationships among stresses, strains, and damage parameters.

It is obvious that the models of the first type most adequately represent real damage processes. The ideas and methods of

the mechanics of stochastically inhomogeneous media make it possible to describe the coupled processes of deformation and

short-term damage of both homogeneous [11, 12] and composite [14–17] materials and to study these processes over a wide

range of mechanical properties, including thermal effects [10, 12, 18–21] and physically nonlinear deformation [22–35].

However, experimental data on and observations of the behavior of structural members and structures suggest that

damage can be either short-term (occurring instantaneously after the application of stresses or strains) or long-term (building up

with time after the application of load). Long-term damage is usually considered to result from the accumulation of dispersed

microdamages such as micropores and microcracks. At the microscopic level, the strength of a material is inhomogeneous, i.e.,
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the ultimate strength and the stress-rupture strength for a material microvolume are random functions of coordinates described

by certain distribution densities or distribution functions. When a macrospecimen is subjected to a constant stress, the

microvolumes whose ultimate strength is less than the applied stress are destroyed, i.e., they give rise to microcracks or

microcavities. On those microareas where the stress is less than yet close to the ultimate strength, failure occurs in some time that

depends on how close the stress is to the ultimate microstrength.

The theory of long-term damage of homogeneous materials developed in [13] based on models and methods of the

mechanics of stochastically microinhomogeneous media is generalized here to fibrous materials. The damage of the matrix of a

fibrous material is modeled by dispersed microvolumes destroyed to become randomly arranged micropores. The failure

criterion for a single microvolume is determined by its stress-rupture strength described by a fractional power function, which is,

in turn, determined by the dependence of the time to brittle failure on the difference between the equivalent stress and its limit,

which characterizes the ultimate strength according to the Huber–Mises criterion. The ultimate strength is assumed to be a

random function of coordinates whose one-point distribution is described by a power function on some interval or by the Weibull

function. The effective elastic properties and the stress–strain state of a fibrous material with randomly arranged microdamages

in the matrix are determined from the stochastic equations of elasticity of porous materials. We will derive the damage (porosity)

balance equation from the properties of the distribution functions and ergodicity of the random field of ultimate microstrength,

and the dependence of the time to brittle failure for a microvolume on its stress state and ultimate microstrength for given

macrostress or macrostrain and an arbitrary time. The macrostress–macrostrain relationship for a fibrous material with porous

matrix and the porosity balance equations for the matrix describe the coupled and interacting processes of deformation and

long-term damage, which cause the macrostrain to increase at given macrostress or the macrostress to decrease at given

macrostrain. An iteration method is used to develop algorithms for calculating the time dependence of microdamage,

macrostress, and macrostrain and to plot the corresponding curves in the case of stress-rupture microstrength described by a

fractional power function.

1. Consider a unidirectional fibrous material of stochastic structure. Let the fibers be transversely isotropic and directed

normally to the isotropy plane x x
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otherwise.

According to [6, 8], the effective moduli K
p2

and �
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We will use the Huber–Mises criterion [3] to describe the short-term damage in a microvolume of the undamaged

portion of the matrix:

I k
�

2

2
� , I

pq pq�
� �

2 2 2 1 2
� � �( )

/
, (1.6)
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is the average-stress deviator for the undamaged portion of the matrix; k
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If the invariant I
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in some microvolume of the matrix, then, according to the

stress-rupture criterion, failure will occur in some time �
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case, this dependence can be represented as some function:
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or by the Weibull function
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where k
02

is the minimum value of k
2

that initiates failure in some volumes of the matrix; k m
12 2

, , and �
2

are constants found

from strength scatter fitting in the matrix.
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Assume that the random field of the ultimate microstrength k
2

is statistically homogeneous, which is typical of real

materials, and microdamages and the distances between them are negligible compared with the inclusions and the distances

between them. Then the distribution function F k
2 2

( ) is ergodic because it defines the content of the undamaged portion of the

matrix in which the ultimate microstrength is less than k
2

. Therefore, if the stresses �
jk

2
are nonzero, the function F I

2

2
( )
�

defines, according to (1.6), (1.9), and (1.10), the content of instantaneously damaged microvolumes in the matrix. Since the

damaged microvolumes are modeled by pores, we can write a balance equation for damaged microvolumes or porosities of the

matrix subject to short-term damage:
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Here the average stresses � ��
jk

2
in the matrix are related to the average strains � ��

jk

2
as follows:

� � � � � 	 � �� � � 
 � �
jk p rr jk p jk

2

2

2

2

2
2 . (1.13)

Given macrostrains � ��
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, the average stresses � ��
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in the matrix are related to them as follows [2, 7, 9]:
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Given macrostresses � ��
jk

, the average stresses � ��
ij

2
in the matrix are related to them as
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the effective moduli �
2 p

and �
2 p

being defined by (1.5).

If the stresses �
jk

2
act for some time t, then, according to the stress-rupture criterion (1.8), those microvolumes of the

matrix are damaged that have k
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such that
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jk

or macrostresses � ��
jk

are given.

At low temperatures, the time to brittle failure �
k

2
for the matrix of real materials is finite beginning only from some

value of I
�

2
0� . In this case, the durability function �

�2

2

2
( , )I k can be represented as

� �

*

*
�

�

�

�2

2

2 02

2

2

2

2 2

2 2

2

12

( , ) (I k
k I

I k

k I k

n

�
�

�

�

�





�

�

�

�
� �

2 2
1, )* � , (1.19)

where some typical time �
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, exponent n
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, and coefficient *
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are determined from the fit of experimental durability curves for

the matrix.
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Considering the definition of the distribution function F k
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( ), we conclude that the function F I t
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defines the relative content of the damaged microvolumes in the undamaged portion of the matrix at the time t
2

. Then, in view of

(1.9), the porosity balance equation for the matrix subject to long-term damage can be represented as
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where the porosity p
2

is a function of the dimensionless time t
2

, and the invariant I
� ��

2
is defined by (1.13)–(1.15) or by (1.13),

(1.16), and (1.17), respectively, depending on whether the macrostrains � ��
jk

or microstresses � ��
jk

are given.

At t
2

0� , the porosity balance equation (1.22) with (1.13)–(1.17), (1.21) defines the short-term (instantaneous) damage

of the matrix. As time elapses, Eqs. (1.22), (1.13)–(1.17), (1.21) define its long-term damage, which consists of short-term

damage and additional time-dependent damage.

2. Relations (1.2)–(1.5), (1.22), (1.13)–(1.17), and (1.21) can be used to set up an iterative algorithm to determine the

volume fraction of microdamages in the components and the stress–strain state of the composite. To this end, we will use the

secant method [1].
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it is easy to verify that the root p
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Here � is the accuracy with which the root is calculated.

We used the above calculations to plot macrodeformation curves for fibrous composites with microdamaged matrix for

the Weibull distribution (1.10) and the function +
2 2

( )t defined by (1.21), when either macrostresses � ��
jk

or macrostrains

� ��
jk

are given. The composite has aluminoborosilicate-glass inclusions with the following characteristics [2] and volume

fractions:

E
1
� 70 GPa, ,

1
� 0.2, c

1
0� , 0.25, 0.5, 0.75, 1.0 (2.6)

and an epoxy matrix with the following characteristics of the undamaged portion [4]:
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is related to the macrostrain � ��
33

by

� � �

	

	 � � ��

� �

� � � � �
33

11 12

11 12 33 13

2

33

1

2
* *

* * * *
[( ) ( ) ] . (2.10)

In the porosity balance equation defined by (1.22), (1.13), (1.16), and (1.17), we use

� � � � � �� �
11 22

0, (2.11)

which is equivalent to (2.9).

Figures 1 and 2 show the porosity p
2

and macrostrain � ��
33

, respectively, as functions of time t
2

for c
1
� 0.25 and

different values of � ��
33

. Plots of p
2

versus t
2

and of � ��
33

versus t
2

for c
1

0� are given in [36]. As can be seen, the macrostrain

and porosity approach horizontal asymptotes when c
1

0� and � ��
33

< 0.0115 GPa and when c
1
�0.25 and � ��

33
< 0.0163 GPa,

i.e., they show behavior similar to that of the experimental curves for polymers [5]. When the macrostress is higher than these

values, the macrostrain and porosity reach, at some values of t
2

, the critical levels at which failure begins.

If

� � -�
11

0, � � � � � �� �
22 33

0, (2.12)

according to (1.1), the macrostress � ��
11

is related to the macrostrain � ��
11

by

� � �
�

�

	 ��
� �

� � �

� � �
11

11 12

11 33 13

2
11 12 33

2

* *

* * *

* * *

( )

[( ) (� �
13

2

11

*
) ]� �. (2.13)

In the porosity balance equation defined by (1.22) and (1.13)–(1.15), we use
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�
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2
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( )
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, � � �
�

�

� ��
� � �

� � �

�
33

12 11 13

11 33 13

2
11

( )

( )

* * *

* * *

, (2.14)

which is equivalent to (2.12).

Figure 3 shows the porosity p
2

as a function of time t
2

for � ��
11

= 0.001, 0.005, 0.04 and c
1

0� (solid line), c
1
�0.25

(dashed line), c
1
�0.5 (dotted line), and c

1
�0.75 (dash-and-dot line). The notation is the same in Fig. 4. It can be seen that the

porosity p
2

increases with the macrostrain � ��
11

. Here damage builds up with time, whereas the experiments on polymers [5]

indicate that damage does not change noticeably at constant strain. This disagreement may be attributed to either stress relaxation

in polymers due to creep, which is neglected here, or the approximateness of the finite-time damage model.

Figure 4 shows the macrostress � �� �
11 2

/ as a function of time t
2

for � ��
11

= 0.005, 0.04 and different values of c
1
. As

is seen, the curves are descending for all values of c
1

< 1. As the macrostrain � ��
11

increases, the influence of the volume fraction

c
1

on � �� �
11 2

/ as a function of t
2

becomes weaker. As is seen, the curves are descending for all values of c
1

1� . However, it

should be noted that the decrease in the stresses with time is not a monotonic function of strains.

If

� � -�
33

0, � � � � � �� �
11 22

0, (2.15)

according to (1.1), the macrostress � ��
33

is related to the macrostrain � ��
33

by (2.10). In the porosity balance equation defined

by (1.22), (1.13)–(1.15), we use

� � � � � � �

	

� �� �
�

� �

�
11 22

13

11 12

33

*

* *

, (2.16)

which is equivalent to (2.14).
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Figure 5 shows the porosity p
2

as a function of time t
2

for � ��
33

= 0.001, 0.005, 0.04 and different values of c
1
.

Calculations reveal that the curves of p
2

versus t
2

are similar for all values of c
1
. It can be seen that the porosity p

2
increases

with the macrostrain � ��
33

at arbitrary t
2

.

Figure 6 shows the macrostress � �� �
33 2

/ as a function of time t
2

for � ��
33

= 0.005 (solid line), � ��
33

= 0.04 (dashed

line), and different values of c
1
. As is seen, the curves are descending for all values of c

1
� 1.
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