
RESONANT VIBRATION AND HEATING OF RING PLATES WITH PIEZOACTUATORS

UNDER ELECTROMECHANICAL LOADING AND SHEAR DEFORMATION

I. F. Kirichok

The bending vibration and dissipative heating of a viscoelastic isotropic ring plate with piezoceramic

actuators under electromechanical loading and shear deformation are studied by solving a coupled

problem. The temperature dependence of the complex characteristics of the passive and piezoactive

materials is taken into account. The nonlinear problem of thermoviscoelasticity is solved by time

stepping with discrete orthogonalization used at each iteration to integrate the equations of elasticity and

using an explicit finite-difference scheme to solve the heat-conduction equation with a nonlinear heat

source. The effect of shear deformation, fixation conditions for the plate, the geometry of the

piezoactuators, and the dissipative-heating temperature on the active damping of the forced vibration of

a circular plate subject to uniform transverse monoharmonic compression is studied
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Introduction. Inelastic circular and ring plates are widely used in various fields of modern engineering. They are often

subject to intensive nonstationary (including harmonic) loading and tranresonant vibrations accompanied by large

displacements and heating because of internal dissipation. Along with passive damping of such vibration with the help of highly

elastic coatings, active damping with embedded piezoactive elements has recently been used [17, 20]. They either play the role of

sensors providing information on the vibratory state or actuators to which an electric potential with certain amplitude and phase

and a frequency equal to that of the mechanical load is applied to balance it. The effectiveness of damping is influenced by such

factors as the geometrical and electroelastic characteristics of the passive and piezoactive components, electric and mechanical

boundary conditions [10, 11], and heating due to hysteresis losses or heat transfer to the environment [4, 5, 7, 8, 14, 15, 23, etc.].

Because of the temperature dependence of the electroelastic characteristics, these factors may considerably affect the

effectiveness of damping a thin-walled structural member with piezoactuators and the performance of the system as a whole.

Simulating the mechanical behavior of thin-walled inelastic members to analyze the vibration spectra and to study the influence

of the factors on active damping was mainly based on the Kirchhoff–Love hypotheses supplemented with assumptions on the

electric and temperature fields [6, 9, 13, 15, 19, 20–23, etc.]. However, if the vibrating element is thick and the material

properties of the passive and piezoactive layers are very different, it is necessary to use refined mechanical hypotheses and

relevant assumptions on the electric and thermal variables [5, 9, 12, 14, 18, etc.].

Here we solve, in a refined formulation, the problem of the forced monoharmonic vibration and dissipative heating of a

viscoelastic ring plate with piezoelectric actuators considering that the electroelastic characteristics depend on temperature.

1. Problem Formulation. Consider a ring plate of thickness h described in an orthogonal coordinate system 0, , ,r z�

such that z � 0is the midsurface and r r�
0

and r R� are the inner and outer radii. The plate is orthotropic and viscoelastic. The

outside planes z h� � / 2 of radii r r�
1

and r r�
2

are divided into three ring zones in each of which thin piezoactive pads

(actuators) of equal thickness �can be attached to the surface z h� � / 2. The actuators are polarized throughout the thickness in

opposite (to each other) directions. The polarization of the pads is characterized by a piezoelectric modulus d
31

in the direction
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z � 0 and by �d
31

in the opposite direction. The outside surface of the actuators and the surface between them and the passive

layer are covered with infinitely thin solid electrodes. The plate is subjected to harmonic (in time t) axisymmetric pressure

P r t( )cos � with nearly resonant circular frequency� . Moreover, an electric potential difference of the same frequency is applied

to the external electrodes of the actuators:

� �( / )h 2	 �� �( / )� � �h 2 2Re( )Ve
i t�

, V V iV� 
 	 

.

The internal electrodes are maintained at zero potential. On its surfaces, the plate transfer heat by convection to the

environment of temperature T
c
. The edges of the plate are either both clamped or the internal edge is clamped and the external

edge is hinged. Due to the harmonic deformation of the body, the behavior of the passive and piezoactive materials is described

by temperature-dependent complex moduli [7].

Simulating the forced vibration of such a plate is based on Timoshenko’s straight-line hypothesis for the mechanical

variables [2]. As for the electric-field variables, it is assumed that the tangential components D
r

and D
�

of electric-flux density

can be neglected compared with the normal component D
z
. From the simplified equation of electrostatics, it follows that D

z
in

each piezoactive layer is independent of the thickness coordinate. The tangential components E
r

and E
�

of electric-field strength

are found from the constitutive equations for the piezoceramics polarized along the z-axis when D
r
� 0and D

�
� 0. Considering

that the plate is thin and that it is in perfect thermal contact with the thin piezopads, we assume that the dissipative-heating

temperature is constant throughout the thickness.

2. Problem Solving. Due to structural symmetry, polarization of piezopads, and loading conditions, the plate

undergoes purely bending axisymmetric vibration. After some transformations, we reduce the problem of flexural vibration of

the plate to a system of ordinary differential equations in normal form for complex amplitudes Q
r
, �

r
w, , and M

r
:

dQ

dr r
Q w P r

r

r
� � � �

1 2�

�� ( ),
d

dr
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r
J M

r

D r

D

r D E

� �
�� 	 � ,
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dr k C
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(1)

with the boundary conditions

w r r r R
r

� � � �0 0
0

, ( , )� (2)

if both edges are clamped and

w r r w M r R
r r

� � � � � �0 0 0 0
0

, ( ); , ( )� (3)

if the internal edge is clamped and the external edge is hinged.

With the assumptions made above and the electric boundary conditions, the electrostatic equations for electric-flux

density and electric-field strength become

D b
V

h b
z r
� � 	 	 � 	

33 31

1

2�
� � � � �

�
( ) ( ), (4)
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33
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2 2 2 2( / / , / / 	 �).

To calculate the dissipative-heating temperature, problem (1)–(4) should be supplemented with the energy equation.

Since the temperature T is postulated to be independent of the thickness coordinate, the heat-conduction equation averaged over

the thickness of the plate and period of vibration has the form

1 1 2 1
2

2a

T

t

T

r r

T

r H
T T

H
W

s

c

�

�
�
�

�

	
�

�
� � 	
�

� �
( ) (5)

where
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is a nonlinear dissipation function.

The thermal boundary and initial conditions are

�

�
� � � � �

T

r
T T r r r R

c

�

�

1 2

0

,
( ) ( , ), T T t� �

0
0( ). (7)

In (1)–(7), the following notation is used:
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are complex compliances, piezoelectric moduli, and dielectric permittivities of the piezomaterial, their components being

functions of temperature; G G iG� 
 	 

 is the temperature-dependent complex shear modulus of the passive material; i � �1,� �

const is Poisson’s ratio assumed real and independent of temperature; � and �
*

are the densities of the passive material and

piezoceramics; w M
r r

, ,� , and Q
r

are the complex deflection amplitudes, angle of rotation, bending moment, and shearing

force, respectively; � and a are the coefficients of heat conductivity and thermal diffusivity; �
1 2, ,s

are the heat-transfer

coefficients on the lateral and face surfaces of the plate; and k
s

is the shear coefficient [2].

If the electroelastic moduli are considered temperature dependent, problem (1)–(8) is coupled and nonlinear. To solve

it, we will use step-by-step integration over time [7]. At the first step, the linear problem of electroelasticity (1)–(3) is solved with

temperature-independent material properties. The mechanical and electric-field variables found are then used to calculate the

dissipation function (6) and to solve the heat-conduction problem (5), (7). At the next time step, the electroelastic properties at

the temperature found at the first step are calculated, and the process is repeated. At each time step, the complex-valued system of

equations (1)–(3) is integrated using the discrete-orthogonalization method and a standard software program for solving systems

of ordinary differential equations in normal form [3]. The heat-conduction problem (5), (7) is solved with the explicit

finite-difference method.

We will assume that the mechanical load is independent of the spatial coordinate. The potential that should be applied to

the actuator to balance the external harmonic pressure is found from the linear relation

V k P
A

� . (9)
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According to [14], the complex coefficient k
A

in (9) is calculated from the integral relations following from a

variational problem formulation:

k R wrdr h b rdr
A
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� � 	 	
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! !
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2

( ) ( )� � �
�

. (10)

Moreover, if the electroelastic properties of the plate are independent of temperature, k
A

can be found as the ratio

(calculated at the resonant frequency) of the maximum deflection w
p max

caused by a unit mechanical load P �1Pa ( )V � 0 to the

maximum deflection w
E max

caused by a unit electric potential 
 �V 1V ( , )

 � �V P0 0 applied to the actuator:

k

w

w
A

p

E

� �
max

max

. (11)

The minus sign in (10) and (11) indicates that the electric potential is applied to the actuator in antiphase to the

mechanical load to suppress vibration.

3. Numerical Results. The results below represent a plate with a middle-ring actuator ( )r r r
1 2
� � as the most effective

to damp the forced vibration of ring plates [22]. Equations (1)–(3) and (5)–(7) were integrated over the dimensionless spatial

( ( ) ( ) / ,x r r R L L R r� � � �
0

) and time (" � at L/
2

) coordinates using the dimensionless heat-transfer parameters � � �
s s

L� / ,

� �
1 2,

/L . The plate is made of passive polymer [16] and the actuator of TsTStBS-2 piezoceramics [1]. The temperature

approximations of the electroelastic moduli and the thermal coefficients of these materials are presented in [21, 23]. The plate

has radii r
0
� 0.05 m, R � 0.2 m, its internal boundary is heat-insulated ( )�

1
0� , and heat-transfer conditions with coefficients

� �
s
� �

2
0.638 are prescribed on the other surfaces. The shear coefficient k

s
� 5/6 [2].

Figures 1–3 present calculated vibration characteristics of the ring plate with temperature-independent material

properties (T T
R

� � 20 °C) and either both edges clamped (Figs. 1a–3a) or internal edge clamped and external edge hinged

(Figs. 1b–3b) depending on the dimensionless width# � � � �x x x r R L
i i2 1

, ( ) / of the actuator. The parameter#was selected so

that the mid-radius of the actuator was equal to the radial coordinate r r R� 	( ) /
0

2of the plate where the deflection amplitude is

maximum under electrically excited vibration. Curves 1, 2, 3, and 4 correspond to the following thicknesses of the passive layer

and actuator:

(i) h � 0.01 m, � � 0;
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(ii) h � 0.01 m, � � $
�

05 10
4

. m;

(iii) h � 0.04 m, � � 0 m;

(iv) h � 0.04 m, � � $
�

05 10
4

. m.

Figure 1 shows (dash-and-dot curves) resonant frequencies of the first flexural mode calculated using Kirchhoff–Love

theory (curves 1–4) and allowing for the shear strain (curves 1
*
–4

*
). The maximum amplitudes w

h
w

p

*
| ( . )|� $

1

2
0 5 10

5
(curves 1

and 2) and w
h

w
p

**
| ( . )|� $

1

2
0 5 10

7
(curves 3 and 4) calculated at these frequencies and caused by a unit mechanical load (P �1Pa)

are shown by solid lines in the case of Kirchhoff–Love theory and by dashed lines in the case of accounting for the shear strain. It

is seen that the presence of the shear strain increases deflections and natural frequencies of the plate compared with classical
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theory, a fact known in the theory of elastic plates. The thicker the plate, the greater the increase. At certain thicknesses of the

passive layer and the actuator, the maximum deflection may become an ambiguous function of the actuator width because of the

spatially nonuniform stiffness of the plate.

Figures 2 and 3 show the maximum deflection amplitudes w
h

w
E

*
| ( . )|� $

1

2
0 5 10

3
(curves 1 and 2) and

w
h

w
E

**
| ( . )|� $

1

2
0 5 10

5
(curves 3 and 4) caused by a unit electric potential ( 
 � �V 1V, 

 �V 0) applied to the actuator and the

absolute values of the control coefficient k
A

, respectively. The solid lines represent Kirchhoff–Love theory, and the dashed line

the presence of shear strain.

Table 1 summarizes the absolute values of the control coefficients k
A1

and k
A 2

calculated from the resonant

frequencies by formulas (10) and (11), respectively, for a plate with internal edge clamped and external edge hinged. The values

in the numerator and denominator correspond to the cases of using Kirchhoff–Love theory and allowing for shear strain,

respectively.

Curves 1–4 demonstrate that the maximum deflection (Fig. 2) and control coefficient (Fig. 3) are ambiguous functions

of #. It can be seen that the most effective (optimal) are ring actuators that excite maximum deflections. The associated control

coefficient is minimum (Fig. 3), which leads to the minimum electric potential needed to balance the mechanical load. The

control coefficient for the optimal actuator is weakly dependent on the actuator thickness, especially if the passive layer is thick

(curves 2 and 4). The effect of shear strain on the distribution of electrically excited deflections is very weak for thin plates and

stronger for thicker plates. At the same time, the shear strain increases the control coefficient (Fig. 3). The thicker the passive

layer, the greater the increase (curves 3 and 4). Comparing the values of k
A1

and k
A 2

in Table 1 shows that they are in good

agreement over a wide range of actuator widths #. This suggests that the control coefficient can satisfactorily be calculated from

the local vibration characteristics (11) even when the shear strain is allowed for.

Comparing Figs. 2a, 3a and Figs. 2b, 3b reveals that the width#of the optimal actuator is greater when the external edge

is hinged (Figs. 2a and 3a). Figures 4 and 5 show the amplitude–frequency characteristics (AFCs) % %w
h

w x
max

( . )� �
1

2
0 5 and
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TABLE 1

#

� � 0 m,

h � 0.01 m

� � $
�

0 5 10
4

. m,

h � 0.01 m

� � 0 m,

h � 0.04 m

� � $
�

0 5 10
4

. m,

h � 0.04 m

k
A1

10$ k
A 2

10$ k
A1

10$ k
A 2

10$ k
A1

2
10$ k

A 2

2
10$ k

A1

2
10$ k

A 2

2
10$

0.5
0142

0147

.

.

0138

0142

.

.

0168

0176

.

.

0165
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.

.

0354

0519

.

.
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.

.
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.

.

0360

0551

.

.

0.6
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.

.
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.

.
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.

.
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.

.
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.

.
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.

.
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.

.
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.
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.

.

0295

0425

.
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.
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.
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.
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.
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.
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.
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.
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.

.
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.

.
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.

.

0305
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.

.
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.

.
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.

.
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.

.
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.

.
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.

.

0130
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.

.
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.
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.
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.

.
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.

.
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temperature–frequency characteristics (TFCs) T T x
max

( . )� � 0 5 for a plate of thickness h �0.04 m clamped at the internal edge

and hinged at the external edge, having an actuator of thickness � � $
�

05 10
4

. m and optimal width # � �0 8
1

. (x 0.1, x
2
�0.9), and

subjected to surface pressure P � $05 10
4

. Pa. Curves 1 represent the classical theory of plates and curves 2 shear strain accounted

for. The dashed lines represent the case of temperature-independent electroelastic properties, while the solid lines

temperature-dependent properties. When the material properties are independent of temperature, the amplitudes of the electric

potential balancing the load P are equal to | |V
A
� –14.4 V if the problem is solved using the Kirchhoff–Love hypotheses at the

resonant frequency �
p
� $0134 10

5
. Hz and | |V

A
�–21.06 V if the shear strain is taken into account at frequency �

p
� $0990 10

4
.

Hz. If the material properties are dependent on temperature, then | |V
A
� –14.16 V and | |V

A
� –21.06 V, respectively, at the

respective frequencies. Curves 3 take into account the shear strain and represent the joint effect of the mechanical load

P � $05 10
4

. Pa and the electric potential | |V
A
�–14.4 V applied in antiphase to the actuator and calculated by the Kirchhoff–Love

theory of plates.

The calculations show that the AFCs and TFCs due to the electric load with | |V
A

coincide with those (curves 1 and 2)

due to the mechanical load P � $05 10
4

. Pa. When both loads act simultaneously on the plate, its flexural vibration is suppressed

at the first resonant frequencies (AFCs and TFCs degenerate into a straight line). The AFCs and TFCs plotted with allowance for

thermomechanical coupling are soft nonlinear ones [7, 8] with ambiguous lower and upper sections. Accounting for shear strain

(curve 2) does not change the curves qualitatively. The processes corresponding to the upper section BC occur only if the loading

frequency decreases beginning with the point C. Here use is made of the parameter continuation method: at each subsequent

loading frequency, the electroelastic properties are calculated for the temperature of the plate vibrating at the previous frequency.

The numerical experiments and the plots show that allowing for the shear strain not only decreases the resonant

frequency and increases the deflections, but also increases the vibrational heating temperature and the electric potential applied

to the piezoactuators to damp the first mode of forced vibration of a ring plate. The thinner the plate, the weaker the effect of this

factor. Allowing for the temperature dependence of the piezoactuator has a weak influence on the effectiveness of damping the

forced vibration of a viscoelastic ring plate. If the piezoelectric pads are thin ( / . )� h � $
�

05 10
2

, the terms with the piezoelectric

and dielectric loss moduli can be neglected in formula (6) for the dissipation rate W .
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