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The paper outlines a numerical procedure for solving physically and geometrically nonlinear problems

of statics for thin shells based on three mesh-based methods: finite-difference, variational difference,

and finite-element methods. The methodological, algorithmic, and analytical aspects of implementing

the Kirchhoff–Love hypotheses are analyzed. The algorithmic approach employs Lagrangian

multipliers. The advantages and disadvantages of these methods are evaluated
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Introduction. Strength analysis of structural members such as shells of complex geometry is mainly conducted on a

computer using numerical mesh-based methods, including the finite-difference method (FDM), the variational difference

method (VDM), and the finite-element method (FEM). To derive the basic equations of the theory of thin shells, it is sufficient to

use the classical model based on the Kirchhoff–Love hypotheses. The Kirchhoff–Love kinematics is implemented differently in

these three methods.

The system of governing equations in the FDM is known to be derived from the equilibrium equations for an element of

the shell, while the Kirchhoff–Love constraints are incorporated analytically, by substituting the corresponding relations into the

formulas describing the distribution of displacements throughout the thickness of the shell. This way causes no complications.

Contrastingly, the system of governing equations in the VDM and FEM is derived from the extremum condition for

some functional. An attempt to implement Kirchhoff–Love constraints analytically gives rise to higher-than-first-order

derivatives of displacements in the functionals. Note that the complications in the VDM are only restricted to more awkward

equations and the necessity of deriving them because the VDM imposes no special requirements upon the smoothness of the

integrands and functions. In the FEM, however, certain requirements are placed upon the smoothness of the coordinate

functions, and the construction of an element is complicated if the integrands include higher-order derivatives.

These circumstances led to a search for alternative ways of incorporating the Kirchhoff–Love constraints such as those

that would not produce derivatives of higher than the first order in the integrands. Noteworthy are two groups of approaches that

employ Lagrangian multipliers and penal functions. Applying them requires certain correctness [17, 52] associated with the

variation order and additional conditions.

However, the use of Lagrangian multipliers to implement the Kirchhoff–Love hypotheses increases the number of

varied functions and requires much computing. This is obviously why the Kirchhoff–Love constraints were first (1967) used

[46] in the FEM for a plate by specifying them at discrete points of an element (discrete Kirchhoff element). Later, this method

was extended to thin shells [45, 70] and is widely used now [26, 71] within the framework of the so-called discrete Kirchhoff

theory (DKT). A somewhat different approach was employed in [37], where the Dirac delta function was used to interpolate

Lagrangian multipliers. Similar results were obtained in [30–33, 43, 64] without delta function. In the VDM, Lagrangian
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multipliers were first used to implement the Kirchhoff–Love hypotheses in [8] and then successfully used in [17, 18, 52] to solve

linear and nonlinear problems.

There is an alternative approach that uses shear models to design thin shells and abandons [7, 28, 59] or partially adopts

the Kirchhoff–Love hypotheses. However, an attempt to directly apply shear FE models to thin-walled structures encounters

so-called shear locking [26, 52, 69], which slows down the convergence of numerical methods, and the partial implementation of

the hypotheses should be justified appropriately. The approaches to solving this and related problems are classified in [69].

Note that the VDM and FEM and associated software are developed based on variational principles traditionally in two

stages: analytic and algorithmic. The analytic stage involves the selection of a variational principle; the selection of varied

functions; the consideration of the dimension of the problem, hypothetical simplifications, and a priori information on expected

solutions; the establishment of the relationships between the functions chosen; incorporation of these relationships analytically

or using Lagrangian multipliers; possible elimination of some Lagrangian multipliers; discretization of the problem; and

variation of the functional. The algorithmic stage involves the derivation and numerical solution of the system of governing

algebraic equations. Note that in the calculus of variations, it is generally incorrect to introduce any relationships among the

varied functions after the variation of the functional. It is for this reason that the two stages are separated after the variation.

In this context, some methods for the overcoming of locking (reduced integration and the like) and the partial

incorporation of the Kirchhoff–Love hypotheses may be considered heuristic. Such methods were not universal and sometimes

produced erroneous solutions. Some of such shortcomings were indicated in [26, 135] and in the literature referenced therein.

The reason is apparently that the stages overlap and, thus, the requirement of the calculus of variations that no relationships

should be introduced after variation is not met. The correct [17–19, 52] use of the Lagrangian multiplier method for the

implementation of the Kirchhoff–Love hypotheses based on mixed functionals is universal and produces correct solutions.

There are numerical analytical [60], meshfree [36, 47], and other [27, 58] methods free from these shortcomings.

Here we generalize the results of the studies that have been performed under the leadership of Academician A. N. Guz at

the Department of Dynamics and Stability of Continua of the S. P. Timoshenko Institute of Mechanics for four decades. These

studies involved the development of mesh-based methods for stress–strain analysis of thin nonlinear elastic composite and

elastoplastic isotropic shells. Emphasis was on stress concentration in complex shells weakened by curvilinear holes.

Note that the paper [42] was the first to point to the necessity of allowing for physical and geometrical nonlinearities in

the stress–strain analysis of shells with holes.

Pioneering theoretical studies into the SSS of elastoplastic shells of revolution with finite deflections based on the FDM

date back to 1966 [29]. The further development of this method is reflected in [13, 24, 41, 52]. Shells of revolution made of

nonlinear elastic orthotropic materials were considered in 1986 [35], and allowance for physical and geometrical nonlinearities

was made in 1988 [55]. The basic results obtained with the FDM in the axisymmetric case are presented in Sec. 1.

Two-dimensional problems are addressed in Secs. 2–4. The methods outlined in Secs. 2 and 3 are applicable to domains with

four corner points, while the modified FEM described in Sec. 4 is free from such a restriction.

1. Finite-Difference Method. The method of deriving and solving nonlinear governing equations for thin shells made

of isotropic materials is well developed [41, 68]. As far as physically nonlinear anisotropic composites are concerned, there are

difficulties associated with the theoretical description of the nonlinear deformation of composites, the experimental

determination of the quantities and functions used by the theory, and the establishment of the explicit stress–strain relationship.

The basic results on nonlinear elastic orthotropic shells of revolution are outlined below with emphasis on the methodical aspects

[13, 20, 35, 40, 41, 54, 55].

1.1. Problem Formulation and Basic Equations. Consider a thin deep shell of varying thickness made of a nonlinear

elastic orthotropic composite. The loading process occurs under surface and boundary forces and at constant temperature and is

active and simple [16]. The axes of orthotropy of the composite are aligned with the lines of principal curvature of the shell and

the axes of the orthogonal curvilinear coordinate system ( , , )s � � used to describe the shell (Fig. 1). At certain levels of the load,

the shell exhibits the nonlinear properties of an anisotropic material at which displacements along the normal to the shell surface

are comparable with or much greater than its thickness, though strains are small. These facts allow us to use the geometrically

nonlinear second-order theory of shells [21, 24] and the theory of anisotropic plasticity [15, 16, 40] to derive the governing

equations.

Then the strains at an arbitrary point of the shell (� �const) are expressed by the formulas

e
s s s
� �� �� , e

� � �
� ��� � (1.1)
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in terms of the strains of its midsurface:
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where u and ware the displacements along the coordinate axes ( , )s � ; � � � �k u w
s

is the angle of rotation of the normal around the

axis (coincides with the angle of rotation of the tangent to the s-axis in the case of the Kirchhoff–Love hypotheses); k s
	

	 �( , )�

are the principal curvatures; B B B
*

/� � , B B B
**

/� �� , B r� is the parallel circle radius; and (�) denotes differentiation with

respect to s. Note that formulas (1.1) and (1.2) partially incorporate the change of the metrics throughout the thickness of the

shell.

If the stress state is plane and loading is simple, the strain components are nonlinearly expressed in terms of the stress

components as
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where E
s
, E

�
, �

s
, and �

�
are the elastic constants of an orthotropic composite; �( )f is a function describing the nonlinear

deformation of the composite; q
ss

, q
��

, and q
s�

are the components of the tensor responsible for the anisotropy of the composite;

and f q q q
ss s s s
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2 2
2 2 is a quadratic stress function.

The constants and function in (1.3) are determined in tests on composite samples subject to tension along the axes of

orthotropy and at an angle of 45° to them. An experimental procedure and a data processing technique were proposed in [16] and

improved in [13, 40].

Equations (1.3) are essentially nonlinear. Unlike the equations of the deformation theory of isotropic plasticity, they are

analytically unresolvable for the stresses. They can be resolved numerically, using, for example, Newton’s method [53], which

will be detailed in Sec. 3 for the more general case of two-dimensional problems. After numerical inversion of (1.3), we have


 
 �
�s s s

e e s� 
( , ) ( ), (1.4)

where we can separate out nonlinear (

s

*
) and linear (


s

0
) terms:
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Equations (1.4) and (1.5) and all the subsequent ones that include the total stresses 

s

and 

�

or their nonlinear

components 
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and 
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should be considered as approximate formulas rather than analytic expressions. Contrastingly, the

formulas for the linear stress components are analytic:
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Note that Eqs. (1.3) yield, as a special case, the constitutive equations for a linear elastic orthotropic material [14] if

� = 0 and the constitutive equations for an isotropic incompressible elastoplastic (E E E
s
� �

�
) material Q

s
if� � �

�s
� � �0.5,

q q
s
� �

�
2, q

s�
� �1, f

i
� 


2
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i i
E/ ( )2 1 , where �

i
is the plasticity function and 


i
is stress intensity.

We now introduce thickness-average internal (Fig. 2) forces T
s
, T

�
and moments M

s
, M

�
, which have, according to

(1.5), linear and nonlinear components. Applying the displacement method [24], we obtain a system of nonlinear differential

equations of the sixth order with variable coefficients:
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where a
ij

and b
ij

are variable coefficients obtained [54] using the linear theory of thin orthotropic shells of revolution of varying

thickness h h s� ( ); P s P s
i
( ) ( )�

	
are the components of the surface load vector; D E h

s s s
� �

3
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i
are nonlinear terms,
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The variables appearing in (1.7) are defined by the formulas
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To solve applied problems for open shells of revolution, the equilibrium equations (1.6) should be supplemented with

boundary conditions [24].

1.2. Solution Technique. The technique of solving nonlinear problems is based on the method of successive

approximations and FDM [13, 24]. It appears that the simple iteration method is quite acceptable for not very flexible shells

[54, 55].

The algorithm of solving such (non)linear problems is based on the numerical discretization of a plane curve

F x y( , ) � 0. The reason is that the coordinate ( )s that measures the arc length of the meridian is reckoned in the midsurface of the

shell. For some noncanonical domains (say, an ellipsoid [39]), the coefficients of the quadratic forms of the surface are not

expressed explicitly in terms of this coordinate. The numerical discretization algorithm [34] for a curve in a Cartesian coordinate

system ( , )x y is as follows.

Consider a point M x y
1 1 1

( , ) on the curve. It is necessary to find a point M x y
n n n

( , ) on this curve such that the arc

length M M
n1

is equal to a preset value. To this end, we use the tangent method to divide the arc M M
n1

by n points spaced by a

small interval �. After that, the arc is replaced by a tangent segment near the nodal points. The numerical discretization of a plane

curve is schematized in Fig. 3.
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If some point ( , )x y
i i

belongs to a curve, i.e., F x y
i i

( , ) � 0, then the next point ( , )x x y y
i i i i
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system of equations
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Next, the coordinates of the point M x y
n n n

( , ) are determined by the algorithm

x x x
i i i�

� �
1

� , ( , ) ( )i n x y� � �1 1 .

Note that the sign in formulas (1.8) represents the direction of tracing a plane curve.

1.3. Stress–Strain Analysis of a Nonlinear Elastic Orthotropic Flexible Spherical Shell. Let us analyze the nonlinear

elastic SSS of a flexible spherical shell around a circular hole. The geometrical parameters and mechanical characteristics are the

following [24, 55]: R h/ = 62.5, r h
0

/ = 5, E
s

= 15 GPa, E
�

= 12 GPa,�
�

= 0.12, q
ss

= 2, q
��

= 3.14, q
s�

= 0.24. The material of

the shell is orthotropic glass-reinforced plastic PN-1, Ò-1 (see [16] for its nonlinear properties). The shell is subject to a

uniformly distributed load p p
�

�
0
�9.81�10

4
Pa.

We will discuss specific results for thin-walled shells (h = const) subject to internal ( p
0

= 15) and external ( p
0

= –15)

pressure.

Table 1 summarizes the maximum deflections
~

/w w h� and hoop stresses on the outside (
 

� �

�
� �9.81�10

4
Pà), inside

(

�

�
), and middle (


�

0
) surfaces of the shells on the boundary of the nonreinforced hole. The meridian s h

k
/ = 10 is divided by

k = 160 nodal points. The relative error achieved in successive approximations of the maximum strains is � = 0.001. The results
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TABLE 1

Problem p
0

~
w 


�

�



�

0



�

�

LP 15 0.392 1668 1359 1050

PNP 15 0.467 1430 1236 1008

GNP 15 0.362 1557 1299 1041

GNP –15 –0.439 –1848 –1433 –1017

PGNP 15 0.411 1333 1172 988

PGNP –15 –0.688 –1721 –1397 –965



have been obtained by solving linear elastic (LE), physically nonlinear (PNP), geometrically nonlinear (GNP), and physically

and geometrically nonlinear (PGNP) problems.

These results allow us to assess the effect, both individual and collective, of nonlinear factors on the stress–strain state

of the shells.

1.4. Flow Theory in the Stress–Strain Analysis of Orthotropic Shells of Revolution. The above presentation is based

on the assumption of simple loading and the finite stress–strain relation (1.3). It is of interest to solve such problems by using

flow theory [15].

The nonlinear incremental constitutive equations of the theory of anisotropic plasticity [15] are algebraically invertible

at preset finite stresses, unlike finite relations (1.3). Let us express [56] the stress differentials in terms of the strain differentials,

similarly to the linear equations of the theory of anisotropic shells:
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The method of incremental loading [2] can be used to reduce the nonlinear problem to a sequence of linear problems

with variable elastic parameters E
	

�
and�

	

�
(	 �� s, ), which depend on the variables s and � as in an inhomogeneous orthotropic

shell of variable stiffness. Here the method of variable elastic parameters is applied during incremental loading.

It is also possible to use the method of elastic solutions during incremental loading. This approach allows us to employ

the nonlinear governing equations for a homogeneous orthotropic shell. In this case, the stress increments can be represented as

� � �
 
 

s s s
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while the increments of additional stresses are defined by

� � � �


� �

� 

� �s

s

s s

s s

E
e e

*
( )�

�

� �

�

� �

�

1

0
(s 
 �). (1.13)

Here the nonlinear problem is solved by the method of elastic solutions at each step of loading. Equations (1.9), (1.10) or

(1.11)–(1.13) are used to modify the above procedure of solving nonlinear problems for orthotropic shells of revolution.

We will analyze [56] the nonlinear SSS around a hole in thin orthotropic spherical shells (bottoms) subject to internal

pressure p [MPa] (0 5" #p ) and shearing forceQ pr
0 0

2� / applied to the boundary of the hole, which is reinforced with a linear

elastic ring with the following parameters [24]:
~

/F E F E r
k k k s k

�
2

,
~

/J E J E r
k k k s k

�
4

.

The outer edge ( )s s
N

� is hinged. The bottom is made of nonlinear elastic glass-reinforced plastic and has the

following parameters: R = 275h, r
0

= 0.156R, s
N

= 50h, E
s
= 15 GPa, E

�
= 12 GPa,�

s
�0.12. The other parameters and functions

in (1.10) responsible for the anisotropy of the material are given in [16]. Two rings of different stiffness have been examined

[56]:
~
F

k
= 0.901�10

–2
,

~
J

k
= 0.101�10

–4
(case 1) and

~
F

k
= 0.18,

~
J

k
= 0.203�10

–3
(case 2). We used the second (1.11)–(1.13), more
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efficient version of the method of incremental loading with step �p �0.25. Table 2 (case 2) collects the meridional (

s
) and hoop

(

�

) stresses [MPa] on the boundary of the hole and the ratio 
 

�s

/ for different values of load. They have been obtained by

solving nonlinear ( )2 5# #p and linear (p = 1) problems.

Note that reinforcing the hole with a ring of low [56] or high (Table 2) stiffness causes redistribution of stresses on the

shell surfaces in both nonlinear and linear problems. An increase in the load changes the ratio 
 

�s

/ , which depends on the

stiffness of the reinforcing ring. For example, as the load increases, the stresses 

s

and 

�

become closer to each other if the ring

has low stiffness and become more different if the ring has high stiffness (Table 2).

Comparing the solutions of nonlinear problems obtained using flow theory and finite constitutive equations [56] (the

maximum stresses differ by no greater than 1%) leads us to the conclusion that they can be used to solve problems for shells

under active loading.

2. Variational Difference Method. Analytic Implementation of the Kirchhoff–Love Hypotheses. The solution of

nonlinear two-dimensional problems for plates and shells with holes involves severe mathematical difficulties. They are often

solved with variational methods. The boundary-value problem for the differential equilibrium equations for plates and shells is

equivalent to the variational problem of finding a stationary value of a functional for which the original differential equations are

the Euler–Lagrange equations [1, 5]. In what follows, we will outline the variational difference method [4, 25] as applied to

physically and geometrically nonlinear problems for shells where the geometrical Kirchhoff–Love hypotheses are incorporated

in a conventional manner (by expressing the angles of rotation of the normal in the formulas for strains in terms of the

displacements of the midsurface of the shell [48, 62]).

2.1. Basic Nonlinear Equations for Elastoplastic Isotropic Shells. Consider an arbitrarily shaped thin shell of

thickness h subject to surface ({p} = {p
1
, p

2
, p

3
}

T
) and boundary ({m

b
} = {T

b
, S

b
, Q

b
, M

b
}

T
) forces. To describe it, we choose an

orthogonal curvilinear coordinate system ($
1
, $

2
, �) with the $

1
- and $

2
-axes being not aligned with the lines of principal

curvature. Assuming that the strains of the shell are small and the displacements along the normal to its midsurface are

comparable with the thickness, we derive the kinematic equations from the nonlinear second-order theory of shells, which is

based on the Kirchhoff–Love hypotheses [6, 24]:
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TABLE 2
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1

0.5 –34 13 –2.62

–0.5 369 54 6.83

2

0.5 –69 26 –2.65

–0.5 721 103 7.00

3

0.5 –115 38 –3.03

–0.5 1058 146 7.25

4

0.5 –177 48 –3.69

–0.5 1385 184 7.53

5

0.5 –254 57 –4.62

–0.5 1699 217 7.72
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where u, v, and w are the components of the displacement vector; A A k k k
1 2 11 22 12

, , , , are the Lamé parameters, curvatures, and

twist of the shell’s midsurface; and %
1

and %
2

are the angles of rotation of tangents to the coordinate lines.

The nonlinear constitutive equations derived from the deformation theory of plasticity [11, 12] considering

compressibility beyond the elastic limit have the form
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G and� are the shear modulus and Poisson’s ratio; �
i

and�
i

are the plasticity function and the variable Poisson’s ratio [11]; the

superscripts “0” and “N” mark the linear and nonlinear terms, respectively.

Using formulas (2.2), we represent the internal forces and moments in the form
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2.2. Numerical Solution of Nonlinear Two-Dimensional Problems for Flexible Shells Subject to Plastic

Deformation. The nonlinear governing equations for displacements follow from the Lagrange equation [1, 5]:

�- � 0, (2.7)

where - � �Ý A
p

is the total energy of the shell, Ý is the strain energy of the shell, and A
p

is the work done by the external

surface and boundary forces.

The procedure of solving these equations, which describe the stress–strain state of shells taking into account both

physical and geometrical nonlinearities, is based on the method of successive approximations (simple iterations) in combination

with the variational difference method. The linearized total energy of the shell is represented in the following form using Eqs.

(2.1)–(2.6) [48, 62]:
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To derive the difference equations, we cover the domain (.) with main ( , )i j and auxiliary ( / , / )i j� �1 2 1 2 meshes with

spacings l
1

and l
2

along the coordinate lines $
1

and $
2

and change over expression (2.8) from derivatives to finite differences

and from integration to summation by the rectangle rule.

We use the stationarity conditions for the total energy to derive the system of governing equations at the node ( , )i j
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where a b c
m n

k

m n

k

m n

k

,

( )

,

( )

,

( )
, , , and d

k
are variable coefficients; �

k
are the nonlinear terms representing the plastic strains and large

deflections.

In the case of shallow thin shells, simplifying the kinematic equations (2.1), we arrive at the system of governing

equations (2.9). The nonzero coefficients of the first equation in this system at internal nodes ( , )i j are defined by the formulas
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where �� À A l l
1 2 1 2

.

This method for solving two-dimensional stress–strain problems for a shell with both nonlinearities has been

implemented in a software package, which made it possible to obtain specific numerical results for cylindrical and conical shells

with a circular hole [48, 62, 67], a spherical shell with an elliptic hole [66], and a spherical shell in the form of an eccentric ring

[72].

2.3. Elastoplastic State of a Flexible Cylindrical Shell with a Circular Hole. We will present results from the

stress–strain analysis [48] of a shell of radius R with a hole of radius 	
0

subjected to internal pressure p � �	
0

5
10 Pa. The

41



geometrical and mechanical parameters of the shell are R � 56.25h, 	
0

375 15� �( . )h, E � 67 GPa, v � 0.3–0.5, 

n

� 130 MPa,

�
n

� 0.002.

We choose a semigeodesic coordinate system ( , )	 � for describing the midsurface of the shell and assume that the hole

( )	 	�
0

is closed by a special plug transmitting only the shearing forces ( / )Q pp
p

�
0

2 to its boundary and that the stress state is

a membrane one far from the perturbation zone ( )	 	4
n

.

The linear and nonlinear problems have been solved for different geometrical parameters (� 	�
0

/ Rh = 0.5, 1.0, 1.5,

2.0) and different loads ( )0 20
0

" 5p . The data are given for p
0

20� .

Table 3 collects the relative deflections ( / )w h at two typical points ( , )	
0

0 and ( , / )	 6
0

2 on the boundary of the hole

for different geometrical parameters of the shell. The values have been found by solving linear, physically nonlinear,

geometrically nonlinear, and physically and geometrically nonlinear problems.

Figures 4 and 5 show the variation of the maximum stresses (
 

� �

� �
0 5

10 Pa) along the boundary of the hole on the

inside (case a) and outside (case b) surfaces of the shell (curves 1, 2, 3, and 4 correspond to LP, GNP, PNP, and PGNP,

respectively) for two sets of geometrical parameters: � � 1.5 (Fig. 1) and � � 0.5 (Fig. 2).

It can be seen that the stresses peak on the boundary of the hole at the point (	
0

, 0) on the inside surface of the shell.

Allowing for the nonlinearities reduces the maximum stresses compared with the linear elastic solution. For example, this

decrease is 34% in the GNP, 66% in the PNP, and 71% in the PGNP if � �1.5 and 1.4%, 44%, and 46%, respectively, if � �0.5.

3. Variational Difference Method. Algorithmic Implementation of the Kirchhoff–Love Hypotheses. The idea of

this approach is to use Lagrangian multipliers to incorporate the Kirchhoff–Love constraints into the Timoshenko theory of

shells. Unlike similar approaches, the Lagrangian multipliers are varied functions as the primary independent functions of the

problem (displacements) are.

The idea was implemented in [8] and further developed in [13, 17, 18, 49, 50, 51, 52] in solving linear and nonlinear

problems and related problems [61].

Variational principles and methods in the theory of shells are addressed in the monographs [1, 5].

In what follows, we will outline the key aspects of the algorithmic implementation of the Kirchhoff–Love constraints in

the VDM (see [52] and the references therein for more details).

3.1. Basic Equations. Consider a thin orthotropic shell made of a nonlinear elastic composite. Its midsurface is

described in a coordinate system ( , , )$ $ $
1 2 3

aligned with the lines of principal curvature.

42

TABLE 3

� � LP GNP PNP PGNP

0.5

0 0.102 0.098 0.163 0.141

6/2 0.113 0.115 0.184 0.152

1.0

0 0.130 0.132 0.391 0.291

6/2 0.231 0.229 0.672 0.443

1.5

0 0.121 0.131 0.810 0.533

6/2 0.592 0.680 1.294 0.939

2.0

0 0.242 — 1.015 0.632

6/2 1.065 — 2.080 1.281



Note that the static part (

33

0� ) of the hypotheses that the normal stresses are small is the same in the cases of the

Kirchhoff–Love and Timoshenko hypotheses. Formally the same formulas express the displacement components of an arbitrary

point of the shell in terms of the displacements u
1
, u

2
, and u

3
of its midsurface and the angles of rotation %

1
and %

2
of the normal:

U u U u
1 1 2 3 1 1 2 3 1 1 2 2 1 2 3 2

( , , ) ( , ) ( , ), ( , , )$ $ $ $ $ $ % $ $ $ $ $� � � ( , ) ( , )$ $ $ % $ $
1 2 3 2 1 2

� ,

U u
3 1 2 3 3 1 2

( , , ) ( , )$ $ $ $ $� .

The difference is in that %
1

and %
2

are independent functions in the case of the Timoshenko hypotheses and are

determined by equating the transverse-shear strains to zero,

� �
13 23

0� � , (3.1)

and equal to the angles of rotation of tangents in the case of the Kirchhoff–Love hypotheses.

This circumstance allows us to derive a functional for thin shells from the functional for shells subject to transverse

shears. With geometrically linear and physically nonlinear relations, the mixed functional has the form

( , , , , , , )u u u T T
f f

1 2 3 1 2 13 23
% %7

� � � � ��� A u u u d A A T T d
n k

f f
( , , , , ) ( )

1 2 3 1 2 13 13 23 23
% % � �� �

� �

�� , (3.2)

where { } { , , , , , , }U u u u Ò Ò
f f

�
1 2 3 1 2 13 23

% % is the vector of unknown functions; A
n

and A
k

are the works done by the external

surface and boundary forces; A is the strain energy density,
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In (3.2), the Kirchhoff–Love kinematics (3.1) is implemented algorithmically, using Lagrangian multipliers ( , )T T
f f

13 23
,

which are shearing forces. The superscript “f ” in (3.2) indicates that the function is varied, unlike, for example, the shear strains,

which are expressed as

� %
$

13 1

1

3

1

1 1

1
1 2� �

�

�
� 


A

u
k u ( ),

where A i
i
( , )�1 2 are the coefficients of the first quadratic form; k

i
are the curvatures of the midsurface.

Since the shearing forces T
f

13
and T

f

23
are assumed independent functions, they can be set, as displacements, before

constructing a functional, on that portion of the shell boundary where they are known. For instance, it is expedient to set T
i

f

3
0�

on the lines of symmetry $
i
�const because �

i3
0� always there.

If the stress state is plane, the constitutive equations are

e
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q
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,
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� 
 , (3.3)

where E E
11 22

, , G
12

, and�
12

are the elastic constants of the composite;�( )f is a function describing the nonlinear deformation

of an orthotropic material; q
1111

, q
2222

, q
1122

, and q
1212

are the components of a tensor that accounts for the anisotropy of the

composite; and f is the quadratic stress function [13, 16].

3.2. Methodical Aspects of Numerical Solution of Nonlinear Problems. The procedure is based on the MSA and VDM

and outlined in [49, 50]. Use is made of the Lagrange equation �- � 0and Eqs. (3.1)–(3.3). It is assumed that nonlinear parts in

the basic equations are known from the previous approximation and not varied. Finally, we arrive at a system of algebraic

equations [50], which can be briefly represented at the point ( , )i j as

A k l f k l V i j q
mn n

n

K

l j

j

k i

i

m

F

( , ) ( , ) ( , ) (

�� �

�

� �

�

��� �

11

1

1

1

� i j s i j T i j i j
m m

, ) ( , ) ( , ) ( , )� �� 8
�

,

m K i K j K
F I J

� � �1 1 1, , , , , , (3.4)

where [A] is a symmetric band matrix of variable coefficients; { }8 is the vector of nonlinear terms; { }q and { }T
�

are the vectors of

surface and boundary loads; �V and �sare the discrete analogs of surface and arc elements; K
I

and K
J

are the number of nodes

of the mesh along the $
1
- and $

2
-axes, respectively.

Note that if the functional is mixed, negative numbers may appear on the diagonal. The system is solved by the

Cholesky square-root method as more stable. For �1not to appear on the diagonal, the equation is algorithmically divided by

�1. Though the stability theorems for the Cholesky method are proved for positive definite matrices, experience suggests that

the method also works in the case being considered.

To calculate the nonlinear terms { }8 in (3.4), it is necessary to resolve the nonlinear constitutive equations (3.3) for the

stresses. We represent them in the form

F e
i
({ }, { })
 � 0 ( , )i �1 3 , (3.5)

where { } { , , }
 
 
 
�
11 22 12

T
and { } { , , }e e e e�

11 22 12

T
. The nonlinear system of equations (3.5) is numerically solved by

Newton’s method:
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{ } { } { }
 
 

j j j�

� �
1

� , (3.6)

where the increments { }�

j

at the jth step are found by solving the linear algebraic system of equations

F
F

i

i

j

j
�

�

�

�

{ }

{ }





� 0, (3.7)

using the stress { } { }
 

1 0

� for a linear elastic body as the initial approximation. The iterative process (3.5)–(3.7) is terminated

once the maximum (in absolute magnitude) stress components in two successive iterations differ by less than a predefined

tolerance. The same method was used for the numerical inversion of the nonlinear constitutive equations (1.3) in axisymmetric

problems based on the FDM.

Thus, the nonlinear elastic deformation of a shell can be analyzed by solving a sequence of Eqs. (3.4) with appropriate

boundary conditions. The algorithm for the numerical solution of nonlinear problems and the software for the stress–strain

analysis of shells allow us to calculate the displacements, angles of rotation, shearing forces {U}, and strain and stress tensors

taking into account the varying parameters of the shell, level and type of load, the properties of the material, and the type of

boundary conditions.

Numerous examples of solving nonlinear, linear, so-called pathological [57] test problems are given in [52].

Noteworthy is the positive experience of [8, 18] in using Lagrangian multipliers to implement the kinematic hypotheses

of the theory of thin shells in solving linear and nonlinear problems by the VDM. Though the computational effort has somewhat

increased and the matrix of the system of algebraic equations resulting from the application of the VDM and MSA is no longer

positive definite, we have got a more algorithmic approach to both derivation and numerical solution of the governing equations.

For physically nonlinear problems, there is no need to perform calculations for the shearing forces T
f

13
and T

f

23
because they,

actually, are Lagrangian multipliers and determined automatically. Geometrically nonlinear problems can be simplified for thin

shells subject to considerable bending because there is no need to explicitly express the angles of rotation of the normal in terms

of the displacements.

4. Finite-Element Method. In the theory of thin shells based on the Kirchhoff–Love hypotheses, the solution must

satisfy severe smoothness conditions. This means that when problems for thin shells are solved by the finite-element method,

approximating functions for the displacement components should be selected so that the tangential displacements u and v are

continuous functions, and the deflection w is continuous together with its first derivatives on the sides of a finite element [9, 22].

Practically, deriving piecewise-continuous polynomial expressions with continuous first derivatives involves certain

difficulties. A number of finite elements [9, 22, 38] that satisfy compatibility conditions have been developed. We will consider

two types of finite elements for design of thin shells: traditional (classical) and modified.

In exposing the principles of the finite-element method, it is convenient to represent the equations of the theory of shells

in matrix form.

4.1. Matrix Equations of the Theory of Shells. The nonlinear kinematic equations for thin shells in a curvilinear

orthogonal coordinate system ( , , )$ $ �
1 2

not aligned with the lines of principal curvature have the following matrix form [44]:

{ } { , , , , , } {{ } , { } } { }Ý Ý� � � �� � � � � � � �
11 22 12 11 22 12

0
2

T T T T
{ }Ý

N
,

{ } { , , } { } { } [ ]{ } [ ]{ }� � � � � � %
�

� � � � �
11 22 12

0 1

2

T N
A U A

L
,

{ } { , , } { } [ ]{ } { } [ ]{ }� � � � � % %
%

� � � �
11 22 12

0
2

T
,A A U

¿
,

{ } { , , } { } { } { } { }e e e e e e� � � � �
11 22 12

0T N
� � � ,

{ } { } { }, { } { }e e
0 0

� � �� � � �
N N

, (4.1)
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where �
ij

and �
ij

are the membrane and bending strains of the shell’s midsurface; { } { , , }U u v w�
T

and { } { , }% % %�
1 2

T
are the

vector of displacements and the angles of rotation; [ ]A
�

, [ ]A
�

, and [ ]A
%

are the matrices of linear differentiation operations; and

[ ]A
L

is the matrix of angles of rotation.

To analyze the elastoplastic stress–strain state of a shell under complex loading, we will use the theory of flow with

isotropic hardening that employs the Mises yield criterion and the associated flow rule [12]. Let the total strain { }e consist of

elastic { }e
el

and plastic { }e
pl

components. Then the stress vector { } { , , }
 
 
 
�
11 22 12

T
depends on the strain vector { }e as

follows:

{ } [ ]({ } { }) [ ]{ } { } [ ]{ } { }
 
 
� � � � � �D e e D e D e
pl pl N0

, (4.2)

where { } [ { }

pl pl

� � D e , { } [ ]{ } { }
 

N N pl

� �D e , [ ]D is the stiffness matrix for a plane stress state.

Considering Eqs. (4.1) and (4.2), we represent the vector of internal forces ( )T
ij

and moments ( )M
ij

as the sum of linear

and nonlinear terms [12]:

{ } { , , , , } {{ } ,{ } }m T T T M M M T M� �
11 22 12 11 22 12

T T T T
,

{ } { } { } { } { }m m m m m� � � �
el pl N0

, (4.3)

where { } { , , , , , }m T T T M M M
0

11

0

22

0

12

0

11

0

22

0

12

0
�

T
( , , )0 � y p H , [ ]D

0
is the stiffness matrix of the shell; { } [ ]{ }m D Ý

0 0 0
�

correspond to the linear elastic case, { } [ ]{ }m D Ý
el

�
0

to the geometrically nonlinear case; { }m
pl

to the physically nonlinear case,

and { }m
N

to the physically and geometrically nonlinear case.

4.2. Finite-Element Method for Solving Nonlinear Problems for Shells. Considering the essential nonlinearity of

(4.1), (4.2), and (4.3) and seeking to trace the deformation history of the shell, we use the procedure of incremental loading and

represent the original equations in incremental form to derive the governing equations. To this end, we also use the

virtual-displacement principle [1, 5], the modified Newton–Kantorovich method, the method of additional stresses, and the

finite-element method.

Applying the procedure of incremental loading and performing linearization, we arrive at the following functional [44]:

- � � � � .

.

� ���
1

2

0
({ } [ ]{ } { } [ ] { })

( )

Ý D Ý A T d
L

L T L T T
% � ��� ({ } { } { } [ ] { })

( )

� � � � � .

.

Ý m A T d
L

L T N T T
%

� ��� �{ } { } { } { }

( ) ( )

� � . � �

. 9

U p d U m ds
k k

k

T T
� � ��� �({ } { } { } { }) { }{ }

( ) ( )

� � . �

. 9

Ý m U p d U m ds
k k

k

L T T
, (4.4)

where { },{ }, { }, { }T m p m
k

and { }, { }, { }, { }� � � �T m p m
k

are the components of the vectors of internal mechanical factors, surface

load, and boundary forces at the beginning of the ith step, and their increments at this step; { }�m
N

is the vector of increments of

nonlinear forces and moments; { }, { }, { }� � �% U U
k

, and { }�Ý
L

are the increments of the angles of rotation, displacements of the

midsurface and boundary of the shell, and linearized strains at the ith step; .
p

is the portion of the midsurface ( ). on which a

surface load is prescribed; and 9
k

is the portion of the boundary (9) on which boundary forces are prescribed.

In solving two-dimensional linear boundary-value problems, we use the finite-element method in each of the successive

approximations. To this end, the midsurface ( ). is partitioned into E finite elements, within each of which the components of the

vector of displacement increments { }�U are represented as polynomials of two variables [9, 22]:

{ } [ ]{ }
( ) ( )

� �U f q�
e e

, (4.5)

where{ } { , ,...
( )

� � �q q q
e

�
1 2

, �q
n

}
T

is the column vector of increments of degrees of freedom of an element (e); f
( )e

is the 3: n

matrix of the shape function. Using formulas (4.1) and (4.5), we derive expressions for the increments of the strain components.

The stationarity conditions for the discrete analog of the linearized functional (4.4) yield a system of governing

algebraic equations, which has the following matrix form at the ith step of loading [44]:
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/ 0[ ] [ ] [ ] { } { } { } { }K K K q P
0

� � � � �
% 


� � �� �� , (4.6)

where [ ]K
0

is the stiffness matrix of a linear elastic shell; [ ]K
%

and [ ]K



are the influence matrices of initial angles of rotation

and stresses; { }�q is the vector of increments of nodal degrees of freedom; { }�P is the load vector; { }�� is the vector of

nonlinearities; and { }�� is the vector of residuals of the equilibrium equations at the end of the ( )i �1 th step of loading.

To solve specific boundary-value problems, the governing equations (4.6) should be supplemented with appropriate

boundary conditions at the edges of the shell and the boundaries of the holes. They can be prescribed for displacements, forces, or

in mixed form.

4.3. Classical Finite Element for Thin Shells of Simple Geometry (Analytic Implementation of the Kirchhoff–Love

Hypotheses). Let us outline the principles of the FEM applied to solve nonlinear problems for shells with holes. If the domain (.)

of variation in the curvilinear coordinates ( , )$ $
1 2

is not canonical (rectangular), the midsurface of the shell is parametrized.

We will consider two cases of parametrization.

For doubly connected domains (.) bounded by two smooth curves ( , )9 9
1 2

that do not intersect and do not touch each

other, the following equation is used for parametrization [44]:

� � �

r r F r e� �
; ;

�( , ) , (4.7)

where r and � are the parametrization variables;
�

r and
�

r
;

are the position vectors of the points M < ( ). and M
; ;
< ( ). ,

respectively; ( ).
;

is a ring (r r r
n k

# # , 0 2# #� 6) on the midsurface that is mapped by Eq. (4.7) onto the domain (.);
�

e
;

is the

unit vector of the coordinate line � � const; and F r( , )� is a function such that F r A rB( , ) ( ) ( )� � �� � .

In the more general case of a noncanonical domain (.) bounded by four smooth curves, the following compound

function is used for parametrization [10]:

�

r
k

(=
1
, = % = =

2 1 1
) ( ) (� �

�

F , = % =
2 2

) ( ) ( )� # #1 1
1

= ,

% = % = % =( ) { , ( ), ( )}
1 1 1 2 1

1� � , % = =
1 1 1

05 1( ) . ( )� � ,

% = =
2 1 1

05 1( ) . ( )� � ( )= =
1 2
� , (4.8)

where
�

F ( , )= =
1 2

is a 3:3 matrix whose elements are the position vectors of the boundaries and nodes of the domain (.).

The domain of parametrization coordinates is a rectangle or square (.
s
). Let us cover the domain (.

s
) with a mesh of

rectangular finite elements (FEs) whose sides are parallel to the parametrization lines.

Within each FE, the tangential displacements are approximated by bilinear functions, and the deflections by bicubic

splines [9, 22]:

u u N
i

i

i

�

�

�
( )

( , )> >
1 2

1

4

, v v N
i

i

i

�

�

�
( )

( , )> >
1 2

1

4

,

w w N w N w
i

i

i

i

i

i
� � �

�

� [ ( , ) ( , )
( ) ( ) ( ) ( ) ( )1

1 2

2

1 2

1

4

1 2

> > > >
= =

N w N
i

i

i

( ) ( ) ( )
( , ) ( , )]

3

1 2

4

1 2
1 2

> > > >
= =

� , (4.9)

where u v w w w
i i i i i( ) ( ) ( ) ( ) ( )

, , , ,
= =

1 2

, and w
i

= =
1 2

( )
are the nodal displacements and derivatives of the deflection at the ith node;

N
i
( , )> >

1 2
and N

i

j( )
( , )> >

1 2
are the shape functions as a product of one-dimensional Hermite polynomials of the local

coordinates >
1

and >
2

.

The partial derivatives of the shape functions with respect to $
1

and $
2

in the expressions for the strain components are

evaluated using the formulas for the differentiation of a complex function of several variables.

The finite element (4.9) satisfies the continuity conditions for the first derivative of the deflection and has 24 degrees of

freedom (six at each node). Note that the main shortcoming of this element is the unsatisfactory approximation of its rigid-body

displacements.
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Let us also present the relations for the finite element proposed in [3]. It uses identical bicubic approximations of all the

three displacements:

u u N u N u
i

i

i

i

i

i
� � �

�

� [ ( , ) ( , )
( ) ( ) ( ) ( ) ( )1

1 2

2

1 2

1

4

1 2

> > > >
= =

N u N u v
i

i

i

( ) ( ) ( )
( , ) ( , )] ( )

3

1 2

4

1 2
1 2

> > > >
= =

� � ,

w w N w N w
i

i

i

i

i

i
� � �

�

� [ ( , ) ( , )
( ) ( ) ( ) ( ) ( )1

1 2

2

1 2

1

4

1 2

> > > >
= =

N w N
i

i

i

( ) ( ) ( )
( , ) ( , )]

3

1 2

4

1 2
1 2

> > > >
= =

� . (4.10)

The finite element (4.10) has 48 degrees of freedom, satisfies the compatibility conditions, and quite accurately

approximates the rigid-body displacements.

4.4. Modified Finite Element for Thin Shells of Complex Geometry (Discrete Implementation of the Kirchhoff–Love

Hypotheses). If the domain of parametrization coordinates is complex (noncanonical), it cannot be partitioned into only

rectangular elements. To design shells of such geometry, use is made of elements with sides nonaligned with the parametrization

lines. Constructing a FE in this case involves certain difficulties associated with the selection of approximating functions for the

deflection that would satisfy the continuity conditions for the first derivatives.

A modified FE for thin shells of complex geometry that satisfies the continuity conditions was proposed in [44]. A

feature of this FE is that the angles of rotation %
1

and %
2

in the expressions for the flexural strains are not defined by (4.1), as is

the case in the classical FEM, and are approximated by biquadratic serendipity polynomials [9], with the geometrical

Kirchhoff–Love hypotheses being valid only at the FE nodes. Such an approach is, in essence, the use of discrete

Kirchhoff–Love constraints. A method for the discrete implementation of the Kirchhoff–Love hypotheses was first proposed in

[45, 70]. The angle of rotation of the normal about the tangent to the boundary of the FE is assumed to vary linearly along the side

of the FE. The membrane strains are calculated using vector expressions for strains and approximating the displacement vector
�

U

on the axes of the global Cartesian coordinate system ( , , )X Y Z :

�
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, (4.11)

where
� �

e e
1 2

, , and
�

n are the unit vectors of the coordinate system ( , , )$ $ �
1 2

.

In determining the membrane strains this way, it is possible to make accurate allowance for the rigid-body translation of

the FE.
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This FE satisfies the continuity conditions for the angles of rotation on its sides, has 20 degrees of freedom, and is used

to design both shells of simple geometry and shells whose midsurface boundary contains more than four corner points.

Note that this approach and algorithm allow us to obtain, as special cases, the solutions of the elastoplastic (method of

elastic solutions) and geometrically nonlinear (simple iteration method) problems. Comparative analyses of the solutions of

linear and nonlinear axisymmetric problems for shells of revolution and two-dimensional stress-concentration problems for

shells with one or two holes lead us to conclude that our approach is efficient and can be used to solve doubly nonlinear problems

for shells of complex geometry.

4.5. Inelastic Deformation of a Flexible Spherical Shell in the Form of an Eccentric Ring. Let us discuss the results

from the stress–strain analysis [23] of a spherical shell of radius R and thickness h having the form of an eccentric ring in plan and

being subjected to an internal pressure p � �4 10
5

Pa. We denote the radii of the inside (circular hole) and outside boundaries of

the shell by r
1

and r
2

, respectively, and the distance between their centers by d (Fig. 6).

We will describe the midsurface of the shell using orthogonal curvilinear coordinates ( , )	 � related to the Cartesian

coordinates ( , )x y by

x
a

a a

�
�

� �

	
� 	

	 � 	

cos

cos1 2
2 2

, y

a a

�

� �

	 �

	 � 	

sin

cos1 2
2 2

. (4.12)

The curves 	 �const and � �const are two orthogonal families of circles with the lines of centers lying on the x- and

y-axes, respectively.
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TABLE 4

d/r � >



�

0
e
�
�10

2
w h/

LP PGNP LP PGNP LP PGNP

4.5

0

0.5 5265 1853 0.7610 1.2020

1.561 1.825

–0.5 3430 1769 0.4985 0.8264

6

0.5 3446 1658 0.4979 0.7607

1.071 1.273

–0.5 2551 1501 0.3693 0.4758

4.0

0

0.5 5114 1882 0.7392 1.1600

1.592 1.831

–0.5 3116 1826 0.4526 0.7965

6

0.5 5421 1806 0.7827 1.1090

1.776 1.818

–0.5 2958 1690 0.4297 0.7185

3.0

0

0.5 5010 1958 0.7233 1.1220

1.579 1.828

–0.5 3049 1929 0.4407 0.7693

6

0.5 5235 1858 0.7549 1.1750

1.710 1.943

–0.5 3136 1805 0.4521 0.7928

0.0 0

0.5 5141 1891 0.7367 1.1630

1.674 1.941

–0.5 2961 1806 0.4241 0.7719



The inside and outside boundaries of the shell coincide with the coordinate lines 	 	�
1

and 	 	�
2

, respectively.

The parameter a and the coordinates of the shell boundaries are defined by

a d r r d r r d� � � � �/ ( ) ( )
2

2

1

2 2 2

1

2

2

2 4
2 ,

	
1

1

2 2

1

2

1 4 1

2

�
� �r a

r a

, 	
2

2

2 2

2

2

1 4 1

2

�
� �r a

r a

. (4.13)

The shell is made of AMg-6 alloy and has the following geometrical and mechanical characteristics: R h/ � 400,

r h
1

30/ � , r r
2 1

6/ � , d r/
1

0� , 3, 4, 4.5, E � 70GPa, � � 0.3–0.5, 

ï

�140 MPa, �
ï

� 0.002.

The hole is assumed to be closed with a special plug that transmits only the shearing forces Q qr
ê

�
1

2/ to the inside

boundary. The outside boundary is clamped.

For reasons of geometrical and mechanical symmetry, the problem can be solved in the domain (	 	 	
1 2
# # , 0 # #� 6)

covered with a uniform 16:16 FE mesh.

Table 4 summarizes the stresses (
 

� �

� �
0 5

10 Pa), strains ( )�
�

, and relative deflections ( / )w h at two points (	 	�
1
,

� � 0) and (	 	�
1
, � 6� ) of the hole boundary on different surfaces (> � �0.5) for both LPs and PGNPs and the following

distances between the centers of the outside and inside boundaries: d/r
1

= 0, 3, 4, 4.5.

The stresses (

�

0
, 


	

0
)and strains ( )�

	
at the point (	 	�

2
, � 6� )of the outside boundary on different surfaces are given

in Table 5.

It can be seen that the hoop stresses ( )

�

, strains ( )�
�

, and deflections ( )w simultaneously peak on the hole boundary at

the point (	 	�
1
, � 6� ) in the LP for d/r

1
= 3, 4 and at the point (	 	�

1
, � � 0) in the PGNP for d r/

1
4� . The section at these

points on the outside surface of the shell is most critical.

The closer the shell boundaries, the less stressed the free boundary and the higher the stress concentration on the

clamped boundary.

When both plastic strains and finite deflections are allowed for, the stresses level off throughout the thickness of the

shell and along the boundary of the hole and the maximum stresses decrease, compared with the linear elastic solution, by 63, 64,

67, 58%, and the maximum deflections increase by 14, 12, 2, 14%, and the maximum strains increase by 37, 36, 33, 54% for d/r
1

= 0, 3, 4, 4.5, respectively.
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TABLE 5

d/r >



�

0 

	

0
e
	
�10

2

LP PGNP LP PGNP LP PGNP

4.5

0.5 –1320 –1097 –4399 –2225 –0.5718 –1.3310

–0.5 1642 1135 5475 2295 0.7117 1.6540

4.0

0.5 –295 –590 –983 –1679 –0.1278 –0.2756

–0.5 703 859 2344 1964 0.3048 0.5261

3.0

0.5 –116 –189 –387 –631 –0.0504 –0.0820

–0.5 484 540 1612 1633 0.2095 0.2435

0.0

0.5 –190 –186 –633 –622 –0.0822 –0.0809

–0.5 543 532 1811 1626 0.2354 0.2390



4.6. Elastoplastic Deformation of a Flexible Cylindrical Shell with Two Circular Holes. Numerical solutions of

physically and geometrically nonlinear stress–strain problems for a cylindrical shell with two circular holes are presented in [63,

65]. We will analyze the elastoplastic state of a thin-walled cylindrical shell with two equal circular holes with centers on one

generatrix (Fig. 7). The shell is under axial tensile forces P P h P h( / /� �
0

5
10 Pa).

The shell has the following geometrical and mechanical parameters [63]:

~
/r r Rh� �

0
2,

~
/l l r� �

0
2, 3, …, 4 (l

*
/r

0
= 0.3–2.0), E � 0.65 GPa,

� � 0.3–0.5, 

n

� 130 MPa, �
ï

� 0.002, 

ò

� 165 MPa, 

â
� 325 MPa, (4.14)

where R and h are the radius and thickness of the shell; r r r
0 1 2

� � is the radius of the holes;
~

( )
*

l l is the distance between the

centers (boundaries) of the holes.

The shell is described in a Cartesian coordinate system ( , , )x y z ; ( , )r � is a polar coordinate system with the pole at the

center of the hole.

The boundaries of the holes are assumed to be free from reinforcements and forces (T S Q
k k k

� � � 0, M
k

� 0), and the

stress state is membrane far from the holes:

on the boundary x x
k

� :
~ ~*
T Q

xy x
� � 0, M

x
� 0,

~
T P

x
� , (4.15)

on the boundary y y
k

� :
~ ~
T T

y xy
� � 0, M

y
� 0, w PR Eh� �� / . (4.16)

Symmetry conditions hold on the lines y = 0 and x = l/2 (Fig. 8).

Given (4.14), (4.15), (4.16), and load ( )P h
0

1300� , the loading process was divided into 10 steps. For reasons of

mechanical and geometrical symmetry, just a quarter the midsurface was considered. This domain was divided into fragments

8
i

i( , )�1 4 , each partitioned into quadrangular FEs.

Table 6 summarizes the maximum hoop stresses (

�

� 

�

0 5
10� Pa) along the boundary of the hole at three points

throughout the thickness ( /> � �z h 0, �0.5) for
~
l �2.3, 2.5, 3.0, 4.0. These results have been obtained by solving LP, PNP, GNP,

and PGNP.

Table 7 gives the radial and hoop stresses (
 

i i
� �

0 5
10 Pa, i r� , )� at the center of the bridge (point D) on the outside

and inside surfaces (> � �0.5).

It can be seen that the stresses change insignificantly on the boundary segment ( / )0 2# #� 6 . The interaction of the

holes can be neglected at the point A r r( �
0

, � � 0), which is the farthest from the second hole. The change in the stresses at the

point C r r( , )� �
0

� 6 , which is closest to the second hole, is insignificant compared with shells under internal pressure [65].

Thus, when a shell (even with closely spaced holes
~

,l � 2 3) is subject to axial tensile forces, the point (B) in the section

( , / )r r� �
0

2� 6 on the inside surface (> � –0.5) is the most critical.
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TABLE 6

~
l � >



�

0

LP PNP GNP PGNP

2.3

0

0.5 299 1300 1044 1687

–0.5 –2582 –1737 –2284 –1676

6/2

0.5 3952 1997 4209 2059

–0.5 6037 2457 4430 2069

6

0.5 1603 1821 1577 1748

–0.5 –2151 –1894 –1595 –1620

2.5

0

0.5 290 1266 995 1664

–0.5 –2577 –1738 –2252 –1674

6/2

0.5 3963 2011 4224 2071

–0.5 6062 2473 4433 2080

6

0.5 1345 1723 1263 1600

–0.5 –1589 –1705 –1229 –1484

3.0

0

0.5 272 1192 911 1624

–0.5 –2607 –1723 –2211 –1646

6/2

0.5 4058 2027 4306 2071

–0.5 6277 2461 4510 2074

6

0.5 843 1487 803 1450

–0.5 –1320 –1466 –1065 –1348

4.0

0

0.5 258 1136 840 1578

–0.5 –2651 –1725 –2187 –1632

6/2

0.5 4134 2047 4416 2076

–0.5 6471 2475 4600 2079

6

0.5 376 983 513 1171

–0.5 –1665 –1440 –1428 1444



As the parameter
~
l decreases, the maximum stresses ( )


�
slightly decrease in the LP (to 7%) and GNP (to 4%) and

remain almost constant (difference #0.5%) in the PNP and PGNP. The stresses at the center of the bridge for different values of
~
l

are much smaller than the maximum stresses on the hole boundaries.

Analyzing the results, we conclude that for
~
l �2.3, 2.5, 3.0, 4.0 the maximum stresses decrease by 59, 59, 61, and 62%

in the PNP, by 27, 27, 28, and 29% in the GNP, and by 66, 66, 67, and 68% in the PGNP compared with the LP.

Conclusions. We have outlined an approach to solving physically and geometrically nonlinear problems of statics for

thin shells using three mesh-based methods: FDR, VDM, FEM. Two ways of implementing the Kirchhoff–Love hypotheses

have been considered: analytic (algebraic substitution into the formulas for strains) and algorithmic (using Lagrangian

multipliers). The VDM and FEM were used as examples to analyze the advantages and shortcomings of these ways.

The analytic implementation of the Kirchhoff–Love hypotheses in the FDM presented no difficulties. This method is

expedient to apply to one-dimensional problems. The analytic implementation in the VDM and FEM is more difficult and limits

the capabilities of these methods in the case of shells of complex geometry.

The algorithmic implementation based on Lagrangian multipliers is simple and expands the capabilities of numerical

methods in the case of nonlinear problems and complex domains. However, it involves some methodological problems
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TABLE 7

~
l 


i

0
>



�

0

LP PNP GNP PGNP

2.3



r

0
0.5 78 323 184 476

–0.5 –14 –265 34 –76



�

0
0.5 1453 1834 1546 1785

–0.5 –2130 –1899 –1471 –1583

2.5



r

0
0.5 64 263 124 1351

–0.5 –152 –263 –97 –116



�

0
0.5 1087 1650 1148 1628

–0.5 –1580 –1750 –1145 –1494

3.0



r

0
0.5 –150 –225 –73 –2

–0.5 –226 –200 –87 –135



�

0
0.5 857 1300 780 1403

–0.5 –724 –1388 –548 –906

4.0



r

0
0.5 –306 –725 –4 –146

–0.5 294 188 283 176



�

0
0.5 402 657 328 614

–0.5 132 –228 28 –195



associated with the justification of its application and the possible loss of positive definiteness of the corresponding algebraic

systems of equations.

We have numerically solved, as an example, stress-concentration problems for shells made of nonlinear elastic

orthotropic composites and elastoplastic isotropic materials.

Note also that the methodological, algorithmic, and analytic aspects in the implementation of the Kirchhoff–Love

hypotheses in the theory of thin shells remain to be of current importance, especially for very thin shells. Of interest is joining

objects with different number of dimensions (thin shells with rods, three-dimensional bodies, and nonthin shells) described by

different types of equations.
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