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FORMATION OF THE PLASTIC ZONE IN AN ANISOTROPIC BODY WITH A CRACK

E. E. Kurchakov and G. V. Gavrilov UDC 539.3

The influence of the length of a mode I crack on the plastic zone in an anisotropic body under hard
loading is studied. The case of a generalized plane stress state is examined. A boundary-value problem is
solved numerically to study the behavior of the main plastic zone at the crack tip, the additional plastic
zone on the lateral face of the body, and the merged plastic zone

Keywords: anisotropic body, mode I crack, plastic zone

Introduction. Various crack models are widely used in elastoplastic fracture mechanics [9-11, 1316, 19]. To justify
these models, it is necessary to know the size and shape of the plastic zone at a crack and to solve the corresponding
boundary-value problems. The papers [4-6, etc.] solved (both analytically and numerically) many boundary-value problems for
plane and antiplane strains and generalized plane stress state. However, they are all concerned with the plastic zone in an
isotropic body. The plastic zone in an anisotropic body is still inadequately understood. There are just a few studies on the subject
[17, 18], where several boundary-value problems have been solved (numerically) for the case of plane strain and the effect of
anisotropy and loads along the crack on the size and shape of the plastic zone has been established.

This paper studies the plastic zone at a crack in an anisotropic body in the case of a generalized plane stress state. Strains
are assumed small. The body is rectangular and thin and has a mode I crack at the center. The governing equations are written for
the components of the displacement vector. By numerically solving the boundary-value problem, we can describe how the
plastic zone forms and, in particular, can establish the effect of the crack length on the size and shape of the plastic zone.

1. Preliminaries. We assume that Poynting’s effect is absent when a body is deformed. Hence, tensor-linear
constitutive equations may be used to derive the governing equations.

1.1. Tensor-Linear Constitutive Equations. The following equations are derived in [2] to relate the components of the
stress tensor .§ with the components of the strain tensor D:

(1.1)
where
E=g™Dyg, Z=Fup,58*Pg"®, H=Fup5g°P8",
K =FupsSPS®,  E=G*®DD.;. (1.2)
Note that the anisotropy tensors F and G are reciprocal, i.e.,
FopsGHPE =558% (2.0) (1.3)
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where

L n=t,
oL = 1.4
n {0, n#t (14

The components of F are to be derived from experimental dependences of all the components of the strain tensor D on
each component of the stress tensor §. Using formulas (1.3) and the components of F, we can calculate the components of G.

The above-mentioned anisotropy tensors show high symmetry. In other words, the indices in any index pair and the
index pairs themselves can be interchanged in these tensors.

We will show that Egs. (1.1) go over into the Hencky—Nadai equations [12, 21] with certain restrictions imposed on the
components of F.

Let the components of F be expressed in terms of two constants (p and ):

Fopys =Pgap&ys +08ay&ps  (1,0). (1.5)

With (1.5), formulas (1.3) become
PGUPg ne.s +0G g ggs =555 (.0) (1.6)
Contracting formulas (1.6) by g"g %% and considering (1.4), we get
PGHgapgn? +0GNYE =ggt?  (2,0)
or
pGHPog 5gM% + oGNS =gt (g,() (1.7)
Contracting formulas (1.7) by g, we arrive at
pGHPelg pg. g +6GENS g =gn¥. (1.8)

Contracting formulas (1.8) by g g , we find

G g pg . +0GT g gy =3 (1.9)
Formula (1.9) yields
GPlg gy = (1.10)
3p+o

Substituting formula (1.10) into (1.8), we derive

GaCnSgSC =3p+cgn9, (1.11)
Formulas (1.11) yield
GaBSCgaB :3p+6gsf;. (1.12)
Based on (1.7) and (1.12), we obtain
GEms :1(gsngz;9 _pgscgn\‘)j (8,0) (1.13)
c 3p+o
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Formulas (1.13) yield

GoPr =i[g‘“g55 —3picg°‘ﬁgY5J (v.8).

Using (1.14) and the first formula in (1.2), we find

LI :1(gowgﬁsDy6 __ P peup ]
c 3p+o

We will transform the invariants Z, H, K, and = as follows (see (1.2)).
In view of (1.5), the invariant Z becomes

Z=3(3p+0)

For the invariants H and K, formulas (1.5) yield

H=0Cp+0)D, K=pD?+cX (P=g;S", X =g,,gp55PST)

With (1.14) and the first formula in (1.2), the invariant = becomes

s-dly__P g2
c 3p+o

where ¥ :g“Yg%DaB Dys.
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Using formulas (1.15)—(1.18), we transform Egs. (1.1) as follows:

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

Hence, we arrive at the Hencky—Nadai equations [12, 21]. The invariants of the tensors § and D in Egs. (1.1) should be
related to each other.

According to [8], we may assume that

H=E.

A thermodynamic analysis of Egs. (1.1) shows [3] that K —H? / Z is a single-valued function of VZ—E2 / Z:

(1.19)

(1.20)

(1.21)



holds if VE—E2 / Z > v, where

_ , (1.22)

2 3 2
p=tib ot 1 26 1h e BT (1.23)
3¢ 302 ¢ 27¢3 362 ¢ Z

The constants b and ¢ are to be derived from experimental dependence of \/ Z-E?/Zon \/ K —H? / Z, which should be

fitted by a polynomial:
2 2 2 2 2 3
B[ R
Z VA Z Z

whenVK —H? /Z >v.

Considering (1.19) and (1.21), we write Egs. (1.1) as follows:
SO —GuBp . G :_E2 G p _E af (1.24)
= ¥~ 4= A Y8 Eg . .

1.2. Plasticity Criterion. If formulas (1.20) and (1.21) hold, we have the following plasticity criterion [17]:

N —EZZ _ (1.25)

Let us show that criterion (1.25) transforms into the von Mises criterion [20] with the same restrictions on the
components of the tensor F.
With (1.16) and (1.18), criterion (1.25) becomes

1( —Ez] =v. (1.26)

[1]

c 3

2 we represent criterion (1.26) as Y —E2 / 3=v'. Hence, we arrive at

Introducing a new constant v’, namely, v’ = cv
the von Mises criterion [20].

2. Generalities. Assume that the body is described in a Cartesian coordinate system x!, x2, x3 such that

]5 8=C9
&6 —
£ {0, e+ (. @D

2.1. Constitutive Equations. Let us write the constitutive equations for the displacement vector u. The components of
the strain tensor D and the components of the displacement vector u are related as follows [7]:
Ou,

Dy =" % (2.0 22)

In view of (2.2), Egs. (1.24) become
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ou 2 ou
sob —goprs Mgl = E7 | gaps Mr _E ap | (2.3)
oxd A oxd Z

Let us dwell on the invariants Z, E, and = (see (1.2)). With (2.1), the invariant Z becomes simpler:
Z=Fiin +Fin +Frizs +Faorn +F00 + £33 +F3311 +F3300 +F3333. (2.4)

With (2.1) and (2.2), the invariant E becomes

_om | Oup | Ous

E . (2.5)
ol ox? ox?
In view of (2.2), the invariant Z becomes
= =Gobrd Ot aﬂ (2.6)
P axd .

Assume that the body is orthotropic and the principal axes of orthotropy are aligned with the x!-, x2-, and x> -axes.
Consider a generalized plane stress state:

S“:S”(xl,xz), S12 ISIZ(XI,XZ), S22 =S22(x1,)€2), (27)
s3=0 §2=0 53=0 (2.8)
Considering the third equation in (2.8) and formula (2.1) and using Egs. (2.3), we establish

02311 M 53322 02 53333 U3

ox Oox ox3
-5 E—ﬁ G331 O 53322 U2 | 3333 5“3_E]. 2.9)
VA ox! o2 o Z

Equation (2.9) yields

ouy 1 / _E? G3311%+G3322 %+G3333 6“3_Ej_Gssn‘3”1_G33225“2 . (2.10)
ox3 G333 Z ox! ox2 ox3 Z ox! ox2

Considering formulas (2.1) and Eq. (2.10) and using Egs. (2.3), we find

gop :[Gaﬁll GO’ G3311]5“1+[Ga322 _Gop33 G3322J5“2

[1]

G333 ol G333 o2
-5 - E* GoBll _GPP 31 |9 [ cap22 _GPP G332 |92 _ LGP E
=T G333 ol G333 Py G333 |z
(a,p=12,00=0) (2.11).

Considering formulas (2.1) and using Egs. (2.3), we obtain

oy Gopn Q2 gl |2 E? GaB12a“1+Gal3218”2j
ox2 ox! Z ox2 ox!

S of :GOL|312

(o,p=120a#p) (2.12)
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Since (NVE—-E? / Z)# 0, considering formulas (2.1) and the first and second equations in (2.8) and using Eqs. (2.3),

we get
Ouy Ouz ., Oup Ouz (2.13)
o3 ol T3 o2
Let
GM=pyy, G2 =pge, G2 =p,e, G2 =pcc,
GM"P =pyp,  GPP =pgp, G =g, (2.14)
With (2.13) and (2.14), formula (2.6) becomes
mop, O, OO Ou Guy Bg[aulaul”@ul Ouy | Oup 5“2)
ox! ax! ox! ax? ox? ox? ox2 ox? ax? ox! ox! ax!
Ouy Ouy Ouy Ouz Ous Ouz
YMyp 3 TMCeF 5 oy THEF 3 (2.15)
ox! ox3 o2 ox3 ax3 ox3
The equilibrium equations can be written for the components of the stress tensor § as follows [7]:
op
6(;9 5 =0 (2.16)
X
With (2.7) and (2.8), Egs. (2.16) yield
11 12 21 22
as + as =0, as + as =0 (2.17)
ox! ox2 ! ox2
Then we suppose that
G1133 3 G2233 B
Wﬂiu, W=§CF» (2.18)
and
G1133 ~ G1133 _
1111 _ 3311 _ 1122 _ 3322 _
G o353 GP =y, G e G =py
G2233 G2233
G2211 _ G3311 G2222 _ G3322 (219)

G333 =Hca> G333 =Hcc-

It is obvious that i 4o =[1cy.
Let the anisotropy tensor G be independent of the coordinates x' and x%. Then substituting Eqs. (2.11) and (2.12) into
(2.17) and considering the second notation in (2.14) and notation (2.18) and (2.19), we find

o%u, o%u 02u,

_ 1 ~ |

B a4 +U R + (Mg tupg ) ——5 =0,
oxloxl oxlox? A€ oxlox?
%uy d%u, _ %uy 2

U BB +hce +(Wpp tHhey ) ——5 =07, (2.20)
oxlox! ox2ox2 ox!ox?

where
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:@4_6%’ Q2 :%4_&.

oxl  ox oxl  ox?

- E2 _ Oul _ 6u2 E
T, = R — —+ —=—(1- — 1,
4 5{1/ ~ J|:P-AA ol THac 5 ( E.;AF)Z:|
~ E2 6141 8u2
Tp =@ |E— (-i—],
B { Z } BB ox2  ox!

~ - E2 . 61,41 _ auz E
Te = o5—— —+ ——(1- — | 2.22
c (P[\/ ~ ][HCA ol THee 3 (1=&cr )Z} (2.22)

Thus, we have derived differential equations with the second-order partial derivatives of the components u; and u, with

0! (2.21)

Formulas (2.21) contain

respect to the coordinates x! and x2.
Either the stress vector P or the displacement vector 1" can be specified on the surface of the body.
The boundary conditions can be written for the components of the stress vector P as follows [7]:

S pg =P, (2.23)

where ng are the components of the unit outward normal vector to the body surface.
Using (2.23) and (2.8), we get

SUny +852n, =P, §2n +8522n, =P2. (2.24)

Substituting Egs. (2.11) and (2.12) into (2.24) and considering the second notation in (2.14), notation (2.18) and (2.19),
and formulas (2.22), we obtain

—~ 5“1 _ 6u2 ] [6u1 6u2 j 1 1
Hag —FTHac — 1 +Hpp| — +— |12 =P +R,
[ ox! ¢ o2 o2 I

Ox
6u1 8u2 j (A 6141 . 6142 j 2 2
U BB —_—t 4l +l U A —F+u — "2 =P“+R N (225)
[6x2 ox! c ox! e o2
where
R1 :fAn1+TBn2, R2 :TBn1+an2. (226)

Thus, we have derived differential equations with first-order partial derivatives of the components u; and u, with
respect to the coordinates x! and x2.

Equations (2.20) and (2.25) can be integrated using I1’yushin’s method of successive approximations [1]. To this end,
0',0% and R!, R? should be set at zero as a first approximation and then calculated in all the subsequent approximations from
the components u; and u, determined in the previous approximation.

2.2. Statement of the Boundary-Value Problem. Consider a thin rectangular body with a central crack. The symmetry
axes of the body are aligned with the x!- and x?-axes.

The components P! and PZ are prescribed on the lower and upper crack surfaces and on the lateral surfaces of the body.
The components ul* and uék are prescribed on the lower and upper surfaces of the body symmetrically about the x!- and x2-axes.
In this connection, it suffices to consider a quarter the body (Fig. 1).

On the upper crack surface, we have —n; =1and n, =0. Equations (2.25) become
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ouy ou Ouy Ou
{HAA 71+“AC 2] Pl +RI, _HBB( L+ 2]=P2 +R2.
ox! o2

o o
Formulas (2.26) yield
—R'=T,, -R2?2=Ty.
On the lateral surface of the body, n; =0and n, =1. Equations (2.25) become

Ouy

Ou; Ou _ _ Ouy
HBB( -+ 2} PY 4R, gy aiﬂzlcc ?—P2+R2'
X X

PPN
Formulas (2.26) yield
R'=Ty, R?=T,.
On the upper surface of the body

%
uy =uy, Uy =Uyp.

Due to the symmetry about the x!-axis, we have

ul(xl, _— )—uy (xl, +x2 )=0, up (xl, _— )+uy (xl, +x2 )=0.

Due to the symmetry about the x2-axis, we have

uy (—x1 ,x2 )+uy (+x1 ,x2 )=0  u, (—x1 ,x2 )—uy (+x1 ,x2 )=0

and

ouy
ox!

u1=0, =0

at the crack tip.

(2.27)

(2.28)

(2.29)

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

Note that Egs. (2.20), (2.27), (2.29), (2.31), and (2.32)—(2.34) are the governing equations for the components u; and

Uy.

2.3. Discretization of Variables to Transform the Governing Equations. Let us form a mesh of coordinates (with a

spacing h):

! J

==k (i=le.d), x> =(-2h (j=l..e
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Denote

(P = v upxt) =y, (2.35)
[ L
where
s=2(i-De+j—f]+1, t=2[(i-De+j—f]+2. (2.36)

Considering notation (2.35), expressing the partial derivatives of u; and u, with respect to x! and x2 (at the point

()gl ,)gz )) in terms of finite differences, and using Egs. (2.20), (2.27), (2.29), and (2.31)—(2.34), we obtain #n linear algebraic
i
equations (n = 2(de — f+1)) with variables y,..., y,:
Agys+ Agsi2eVsi2e ¥ Ass2eVs2e ¥ Agsi2 Vg2 T Agg 2 Vs 2
FAg 1204 1) Vi 2(e+ 1) T Asts 2(e=1) Ve 2(e=1) T Ast—2(e=1) Vi-2(e=1) T Ast—2(e+ 1) Vi-2(e+ 1) =B
Ay yi+AyreVivre t Au—2eVi2e tAys2 V2 +Ay2¥i2
Ay 2(e1) Vst 2(er 1) F Ausi 2(e=1) Vst 2(e=1) T Ais—2(e=1) Vs—2(e=1) + Ais—2(ex 1) Vs—2(ex 1) ® By
(i=2, j= [+l e, i=3,..,d—1, j=2,..,e—1)
Ag v+ Agg0eVsi2e ¥ AggraeVsrae ¥ Agr2 V2 + Ay 212 =By,
Ao Vsio ¥+ A2 Vs 2+ AV + AyyreVivre T AurdeVirde =By
(i=2, j=2,...f—1)
Agys+ Ags V52 + Ags4 Vs 4 * A1 2eVir2e T Asi-20Vi-20 = By
AgireVsi2e t As2eVs2e v Ay Vi ¥ Ay 2V 2+ Ay_4y1-4 =B,
(i=2,....d—1, j=c)
Agys=Bg,  Ayy, =B, (i=d, j=2,..e),
Ag o5 2Vs 2+ Agag2Vsi2 =Bs o, Ar o aVia+tAi 2 Vii2 =By (i=2....d, j=2),
Ag pes2eVs2e T As2esi2eVsi2e =Bs2es  Ar2er-2eVi-2e Y Ar2erv2eViv2e =Bi2e (i=2, j=f,....e)
Agys =Bgs Ay +ApiaeVivze Y AuvaeVevae =B (=2, j=f), (2.37)
where
Ay =8 gq t1p )y Ager2e =MWags  Age2e =My, Agin =dpp, Ay =4upp,
Agrr2(e+1) =Hac tUBes  —Asi2(e-1) =Hac +U B>

~ _ 12
—Ag-2(e-1) =Hac *UBB>  As—2(ex1) =Hac THpp, By =4h2Q1(3i€ JJC )

Ay =8upp +Rcc ), Auysze =g, Ay2e=4Mpp, Ayy2=4cc, Ay =%cc,
Aggy2(e+1) =M BB tHea>  —Aggi2(e-1) =M BB THCAS

_ _ 12
—Ay2(e-1) =M *Hca»  Ai2(e41) =M tHcas By =4h2Q2(Jl§ JJC )
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(i=2, j=f+L.,e—1, i=3,....d-1, j=2,.,e1)
Ags =30 s>  —Agi2e =W au>  Agerde =Raa>  —Agr2 =H4c> Ag-2 =Hac,

By =2h[P'(x".x* )+ R (x, x)].
l' ] il j2

—Aise2 =W, A;so=wpp, A;; =31, —Aii2e =4Mpp>  Aiir4e =HBB>

B, =2h[P2(x',x* )+ R2(x',xP)] (i=2, j=2..,f-1)
! J i J

Ass =3MBBﬂ _ASS—2 =4HBB’ Ass—4 =HKBB> Ast+2€ =HKpBB> _Ast—Ze =HKpBB>

By =2h[P'(x',x* )+ R (x',x?)],
1 J L J

Aisrre =Bca>  —Ais2e =Rcuas A =30ce,  —Aj—2 =4cc,  Aj—a =Bccs

B, =2h[P2(x ,x?)+R2(x xP)] (i=2,..,d-1, j=e)
L o

Ay =1, BS:ul*(xl,xz), Ay =1, B,:u;(xl,xz) (i=d, j=2,..,e),
i i

Agosn =l —Agrur=L By,=0 4,5 5= A;24,=1, B;,=0

(i=2,....d, j=2)

Ay res-2¢ =L Agoe20=1 By, =0, Ai—2e1-2¢ =1 A 2et42¢ =1 Bi2, =0
(i:29 j:f""ﬂe)7

Ag =1 B;=0, —Ay =3, Ayire=4 ~Ayrae =1 B; =0 (i=2, j=)) (2.38)

It is also needed to express Q' (xl, x? ),0?2 (xl, x? Yand R! (xl, x? ),R? (xl, x? )in terms of yy,..., y,,.
i i i i

Expressing the partial derivatives of T 1,Tp,and T, ¢ Wwith respect to x! and x? in terms of finite differences and using

formulas (2.21), we establish

L

1,.1 .2
X X7 )=
Q(l_ j) o

f ‘ —f ‘ +T 1 2. T, 1 2
Aty Ml B‘(,x X7) B‘(.f X))
i+l i-1 i+l -1

2 7y T -7, 7 T
0 ()tc ,3; ) oh B‘(ifll’);% B‘(iicll’);2)+ C‘()‘cl,‘x 2) C

1 2
>, x7)
J+1 i j-1

(i=2, j=f+1...,e—-1, i=3,...,d-1, j=2,...,e-1). (2.39)
Formulas (2.28) yield

1 2
Lo RE(x xT)=Ty
(x JF) i

R x?)=T,
i iy

12
‘(x %)
iJ

(i=2, j=2,....f-1) (2.40)

and formulas (2.30) yield
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Rl(xl,xz)zTB 1.2y,

(i=2,...,d-1, j=e) (2.41)
Due to the symmetry about the x!-axis, we have

_TB‘(xl,xz)zTB‘(x"xz)’ Tc| 1 2 =Tc| g
il i3 1 i

(i=3,...,d-1) (2.42)

Ty 12y 44,0 2y _TB‘(XIJZ) =Tp (xl,xz)
L 3

(G=f+1....e-1) (2.43)

The first-order partial derivatives of u; and u, with respect to x! and x? appearing in the formulas for 7, Ty, and T~

should be expressed in terms of finite differences considering (2.35).

Equations (2.37) are solved using the modified Gaussian elimination proposed in [17].

3. Studying the Formation of the Plastic Zone. Let us examine the effect of the length of a mode I crack on the plastic
zone in a body under hard loading in the case of a generalized plane stress state.

3.1. Solution of the Boundary-Value Problem. To solve the boundary-value problem, we used data for D16 alloy
reported in the paper [2], which has determined the components of F of which important ones are

Fiipy =0.193-10710Pal, —F 15, =0.045-10710Pa”l,  —F} 33 =0.049-10710 Pa~!,
Fia1p =0.107-10719Pa~l,  Fi3,5 =0.121-10719Pa~l,  Fpyny =0.142.10710 P2,
~Fyy33 =0.045-10719Pa7l,  Fy305 =0.107-10719Pa~!,  Fy343 =0.193-10710 Pa!,
and the components of G of which important are
G =63951010Pa, G'122 =2.744.10'0Pa,  G'!33 =2.263-1010 P,
G212 =2336.1010Pa, G313 =2.066-1010Pa, G2222 =8.781-10'0 Pa,

G2233 227441010 Pa, G2323 =2.336-1010Pa, (3333 =6.395-1010 Pa.

The paper [2] has also established the dependence of\/: —E%?/Zon \/K —H? / Z such that v =3.25-102 Pa!2 and b =
0.1964347-102 Pa 12, ¢ =0.5632820-10* Pa! for #=0.2 mm, d =302,e =152, f =62,42,22.

Note that with such values of / and f, the crack length L is equal to 24, 16, 8 mm.

The boundary-value problem has been solved for

Pl(xlaxz)zoa Pz(xlsxz)zo (i=2,j=2,,,,,f—1),
i i

Pl x?)=0, P2(lx?)=0 (i=2....d-1j=e),
i i

uf (¢ x?)>0, w3 x?)=0 (i=d,j=2....e)
i i
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x110%, m x110%, m x110%, m

8
24 24 . 24 -
6 7
1.8 / 1.8 /5/ 1.8 N
) 7 ) = )
1.2 %3 1.2 ST V% 1.2 ™
4 7
1
0.6 N\ > 77 0.6 R } ﬁ 0.6 } ) /
6 >1 2 8
1
0 0.6 1.8 24 x2103,m 0 06 12 18 24 x2103m 0 06 12 1.8 24 x%2103m
Fig. 3 Fig. 4
The values of yy,..., y,, have been found in nine approximations. In doing so, 0! ()gl , )gz )02 ()gl , )gz yand R! ()gl , )gz ),
i [ rJ

R? ()_c1 , )?2 )were set at zero in the first approximation and calculated in subsequent approximations (by formulas (2.39)—(2.41)
L

and (2.42), (2.43), (2.22), (1.22), (1.23), (2.4), (2.5), (2.15), and (2.10)) from the values of yy,..., y,, found in the previous
approximation.

Note that the ninth approximation has revealed values of the indices i and j at which the radical VE—E? / Z on the
left-hand side of (1.25) becomes larger and smaller than the constant v. This made it possible to calculate the coordinates of
points on the boundary of the plastic zone.

3.2. Analysis of the Results. The plastic zone is illustrated in Figs. 2 (L=24-10"2 m), 3 (L=16-10"2 m), and 4

(L =08-10"2 m) for the following values oful* (3;1 , ng )-10°, m: 70 (curve 1), 80 (curve 2), 82 (curve 3), 84 (curve 4), 86 (curve
i

5), 88 (curve 6).
The dashed line represents the boundary of the plastic zone in the case of plane strain (ul* (xl, x? )=70-10°m) [17].
i j

Note that the main plastic zone occurring at the crack tip when ul* ()c1 , x2 )=70-10"%m in the case of a generalized plane
i

stress state is different from that observed in the case of plane strain. Indeed, it has shifted far along the x 2 -axis and become larger
(more than twice as long along the x2-axis as before). The subsequent behavior of this plastic zone remained unchanged. It
expanded under tension and bent toward the lateral surface of the body.

An additional plastic zone formed near the point ( x!=13.6 mm, Xx 2230 mm) on the lateral surface at some
70 152

u [k ()gl ,)gz )larger than 80-10~° m but smaller than 82-10~° m. Under further tension, both plastic zones expanded and merged,
i

forming a single plastic zone. The merged plastic zone expanded further. It is noteworthy that its shape near the lateral surface of
the body substantially changed.

The curves in Fig. 3 (L =16 mm) correspond to the following values of ul* ()gl, 3;2 )-10°, m: 70 (curve 1), 80 (curve 2),
i

88 (curve 3), 89 (curve 4), 90 (curve 5), 91 (curve 6), 92 (curve 7).

Note that the main plastic zone formed at the crack tip at u [k (x1 , x? )=70-10"% m became much smaller. As before, the
iJ

main plastic zone expanded and bent toward the lateral surface of the body under tension. An additional plastic zone formed near

the point ( x I-152 mm, x 2230 mm) on the lateral surface at some ul* ()c1 , x? )larger than 88-10~% m but smaller than 89-10~6 m.
78 152 i

Under further tension, the main and additional plastic zones expanded and merged, forming a single plastic zone, which further
expanded. Its shape near the lateral surface also significantly changed.
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TABLE 1

)gz- 102, m
)_cl- 102, m J
2.28 2.46 2.64 2.82 3.00

1.5840 1.5597 1.5393 1.5330 1.5526

1.08 —0.0048 0.0281 0.0394 0.0303 0.0000
—0.4408 -0.4082 —0.3811 -0.3639 -0.3620

1.5408 1.5360 1.5335 1.5438 1.5791

1.26 -0.0464 -0.0103 0.0085 0.0114 0.0000
—0.4230 -0.3994 -0.3786 -0.3661 —0.3682

1.4973 1.5074 1.5191 1.5415 1.5853

1.44 -0.0781 —0.0423 -0.0183 —0.0053 0.0000
—0.4000 —0.3852 -0.3716 —0.3645 —0.3696

1.4567 1.4771 1.4986 1.5285 1.5748

1.62 -0.1007 —0.0665 —0.0395 -0.0185 0.0000
-0.3768 -0.3694 -0.3624 -0.3601 -0.3671

1.4201 1.4468 1.4741 1.5074 1.5520

1.80 -0.1156 —0.0833 —0.0546 -0.0279 0.0000
—0.3558 —0.3542 —0.3525 —0.3540 -0.3618

TABLE 2
)gz- 102, m
)_cl- 102, m J
2.28 2.46 2.64 2.82 3.00

1.5972 1.5772 1.5622 1.5544 1.5578

1.08 0.0201 0.0286 0.0284 0.0194 0.0000
—0.4045 —0.3869 -0.3735 -0.3650 -0.3632

1.5838 1.5720 1.5641 1.5640 1.5762

1.26 -0.0034 0.0094 0.0141 0.0110 0.0000
—0.4029 -0.3872 -0.3749 -0.3675 -0.3675

1.5662 1.5621 1.5610 1.5671 1.5850

1.44 -0.0244 —0.0090 —0.0002 0.0024 0.0000
—0.3958 —0.3835 -0.3736 —0.3681 —0.3695

1.5471 1.5492 1.5536 1.5641 1.5848

1.62 —0.0415 —0.0248 -0.0130 —0.0052 0.0000
-0.3860 -0.3774 -0.3704 -0.3670 —0.3695

1.5279 1.5345 1.5428 1.5559 1.5771

1.80 —0.0544 -0.0374 -0.0234 -0.0115 0.0000
-0.3755 -0.3703 -0.3661 —0.3646 -0.3677




TABLE 3

)g2~ 102, m
)_cl- 102, m J
2.28 2.46 2.64 2.82 3.00

1.6044 1.5966 1.5905 1.5866 1.5859

1.08 0.0048 0.0064 0.0064 0.0044 0.0000
—0.3828 -0.3774 -0.3733 -0.3706 -0.3697

1.6017 1.5954 1.5908 1.5886 1.5901

1.26 -0.0021 0.0009 0.0024 0.0021 0.0000
—0.3833 -0.3779 -0.3738 -0.3712 -0.3707

1.5975 1.5928 1.5896 1.5888 1.5917

1.44 —0.0090 —0.0047 —0.0018 —0.0003 0.0000
—0.3823 -0.3774 -0.3736 -0.3712 -0.3711

1.5923 1.5890 1.5868 1.5870 1.5906

1.62 —0.0152 -0.0101 —0.0060 -0.0027 0.0000
-0.3801 -0.3760 -0.3727 -0.3708 -0.3708

1.5866 1.5842 1.5829 1.5834 1.5870

1.80 -0.0204 -0.0148 -0.0097 -0.0049 0.0000
-0.3774 -0.3741 -0.3714 —0.3698 —0.3700

The curves in Fig. 4 (L =8 mm) correspond to the following values of ul* (xl,
i

J

)gz )-10°, m: 70 (curve 1), 80 (curve 2), 90

(curve 3), 92 (curve 4), 93 (curve 5), 94 (curve 6), 95 (curve 7), 96 (curve 8). Note that the main plastic zone occurred at the crack

tip at ul* (xl, x2 )=70-10"° m became even smaller. With increasing ul* (xl, x2 ), the main plastic zone expanded and bent
i i

toward the lateral surface, but to a smaller extent. An additional plastic zone formed near the point ( x I'-146 mm, x 2230 mm)
75 152

on the lateral surface at some u [k (x1 , x? )larger than 94-10~% m but smaller than 95-10~% m. Under further tension, the main and
ij

additional plastic zones expanded and merged, forming a single plastic zone, which further expanded. Its shape near the lateral
surface did not change so significantly.
Noteworthy is that the position of the point near which the additional plastic zone formed on the lateral face is weakly

dependent on the crack length L. For example, while the coordinate x! of this point did increase from 1.36 mm to 1.52 mm as the
i

crack length L decreased from 24 mm to 16 mm, it even decreased from 15.2 mm to 14.6 mm as the crack length L decreased
from 16 mm to 8 mm. The region (i =56, ..., 92, =116, ..., 152) around the point of occurrence of the additional plastic zone has

been examined. In particular, the components Dy (xl, x? ),Dyp (xl, x? ), and D5, (xl, x? ) have been calculated for u; ()c1 ,
i i i i

J
2 -6 * o1 2 -6 ®* o1 2 -6 .
x7)=80-10" m (L=24 mm), u; (x ,x")=88-10 m (L=16 mm), and u; (x', x* )=94-10" m (L =8 mm), i.e., for the
J [ i

displacements that precede the occurrence of the additional plastic zone. To this end, we used relations (2.2) according to which
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Dll()(:19xz):au1 > 1)12(9617952):1 au] au2
i ox! o ?) i 2| ox? o X% o' o x%)
i j i j i j
1 2 au
Dy (¢, 3" )= 3.1)
i ox

)
(x",x7)
iJ

The partial derivatives in (3.1) are calculated from the values of yy,..., y,. Tables 1 (L =24 mm), 2 (L =16 mm), and 3

(L =8 mm) summarize the calculated values of Dy (ch, x? )-103, Dy, (xl, x2 )-103, and Dy, (x1 , x? )-103.
it J i i

These tables show that the component D (x1 , x? ), which is predominant, is greater at points on the lateral surface than
i

at neighboring points inside the body. This confirms that an additional plastic zone naturally forms on the lateral surface.

The tables also show that as the crack length L decreases, the values of Dy (xl, x? )at different points of the region in
i

question become close to each other.

Therefore, the decrease of the crack length causes more rapid expansion of the main and additional plastic zones and
formation of the merged plastic zone.

Conclusions. A boundary-value problem has been numerically solved to study the effect of the length of a mode I crack
on the plastic zone in a body under hard loading in the case of a generalized plane stress state. It has been established that as the
crack length decreases, the main plastic zone at the crack tip substantially decreases, an additional plastic zone occurs on the
lateral surface later, and the main and additional plastic zones expand more rapidly to form the merged plastic zone.
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