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A method to determine the nonstationary temperature fields and the thermoelastoplastic stress–strain

state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical

properties are dependent on temperature. The heat-conduction problem is solved using an explicit

difference scheme. The temperature variation throughout the thickness is described by a power

polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is

solved using the geometrically nonlinear theory of shells based on the Kirchhoff–Love hypotheses. The

theory of simple processes with deformation history taken into account is used. Its equations are

linearized by a modified method of elastic solutions. The governing system of partial differential

equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The

partial case where the stress–strain state does not change along the generatrix is examined. The systems

of ordinary differential equations obtained in all these cases are solved using Godunov’s discrete

orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The

stress–strain state found by numerical integration along the generatrix is compared with that obtained

using trigonometric Fourier series. The effect of a Winkler foundation on the stress–strain state is

analyzed

Keywords: thermoelastoplasticity, noncircular cylindrical shell, Kirchhoff–Love hypotheses, linearization

method, explicit difference scheme, Godunov’s discrete orthogonalization, cylindrical shell of

elliptical cross-section

Introduction. Methods and elastic problems of designing noncircular cylindrical shells with arbitrary cross-section and

arbitrary thickness are addressed in [3–6, 8]. These methods were further developed and some problems were solved in [14–21,

29]. The thermoelastoplastic stress–strain state (SSS) of this class of inelastic shells is analyzed below. To calculate thermal

stresses, we will preliminarily solve the nonstationary heat-conduction problem for shells that transfer heat to the environment

by convection.

1. Problem Formulation. Basic Equations. Let us determine the thermoelastoplastic SSS of a cylindrical shell with

arbitrary cross-section and thickness varying in two directions. The shell can be coupled with an elastic foundation so that there

can be no separation between them. At time zero, the shell, which is unstressed at temperature Ò0, is subjected to mechanical and

thermal loads that do not cause buckling. We will formulate a noncoupled quasistatic problem and use the geometrically

nonlinear theory of shells to solve it. The meridian and thickness of the shell and the applied loads permit accepting the

Kirchhoff–Love hypotheses. The physical and mechanical characteristics of the shell material are assumed

temperature-dependent.

The position of points on the mid-surface of the shell is defined by the longitudinal coordinate s (s0 � s � sN) and the

circumferential coordinate q (q0 � q � qN) (Fig. 1).

Let the mid-surface be bounded by the principal curvature lines s = const and q = const. The distance from an arbitrary

point of the shell to the mid-surface is denoted by � (�h / 2� � � h / 2), where h (s, q) is the thickness of the shell. The cross section
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lies in the plane xz of the Cartesian coordinate system Oxyz with the Oy-axis being collinear with the generatrix s. The

mid-surface in described by the following equations in Cartesian coordinates:

x x q� ( ), z z q� ( ), y s� . (1.1)

The Lamé parameters As = Aq = 1; the principal curvatures ks = 0, kq = d dq� / , where � – � is the angle between the

normal to the mid-surface and the z-axis (Fig. 1).

The loading process is divided into rather small steps. Their number and length are selected so as to describe with

adequate accuracy the deformation process in each element of the shell. The loading process is considered to be such that elastic

unloading may occur in individual elements after active elastoplastic deformation. In turn, after elastic unloading, there may be

reloading in either the initial or opposite direction. It is assumed that the strain paths of elements under initial loading slightly

deviate from straight lines and the strain paths under unloading and reloading slightly deviate from the strain paths under initial

loading. It is also assumed that while the shell deforms, stress, temperature, and time change within such limits that the

rheological properties of the material can be neglected. The geometrically nonlinear theory of shells of the second order [9]

assumes that strains and shears are small compared with unity and retains the terms with squared angles between the normal and

the mid-surface in the kinematic equations and the nonlinear terms in the equilibrium equations. It is also assumed that the

difference between the directions of unit vectors in the deformed and undeformed coordinate systems has a minor effect on the

stress–strain relationship.

The displacement components of an arbitrary point of the shell are expressed in terms of the displacement components

u, v, and w of the mid-surface and the angles between the normal and the mid-surface �s and �q as follows:

u u s�
�� � � , v v q�

�� � � , w w s q�
�� � �

1

2

2 2
( )� � . (1.2)

The strain components at a point of the shell are expressed in terms of the strain components 	s, 	q , 	sq , 
 s, 
 q , and 
 sq

of the mid-surface (up to kq� compared with unity) as follows:

	 	 �
ss s s

�
� � , 	 	 �
qq q q

�
� � , 	 	 �
sq sq sq

�
� �6 . (1.3)

Let us replace the components of the stress tensor by their integral characteristics—forces and moments. The

differential equilibrium equations for the mid-surface’s element bounded by arcs of the coordinate lines and contacting with the

elastic foundation are the following [5]:
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where Ns, Nq, S , Qs, Qq, Ms, Mq, and H are forces and moments; qs, qq, q
�
, ms, and mq are the components of the distributed load

in the mid-surface statically equivalent to mass and surface forces; �
�

is the Winkler modulus.

The nonlinear kinematic equations are the following [5]:
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The forces Ns, Nq, S , the moments Ms, Mq, H, and the strains of the mid-surface are related as follows [10]:

N D Ps N s q s� � �( )	 � 	0 , N D Pq N q s q� � �( )	 � 	0 , S D PN sq� � �
1

2
1 0( )( )� 	 ,

M D Is M s q s� � �( )
 � 
0 , M D Iq M q s q� � �( )
 � 
0 , H D IM sq� � �
1

2
1 0( )( )� 
 ,

D
G h

N �

�

2

1

0

0�

, D
G h

M �

�

0
3

06 1( )�

. (1.6)

Equations (1.6) have been written in the form of Hooke’s law including additional integral terms Ps, Pq, P, Is, Iq, and I to

describe plastic and thermal strains and the temperature dependence of the mechanical properties of the material. In deriving

Eq. (1.6), we considered the fact that the strains change linearly throughout the thickness and neglected kq� compared with unity.

The stress–strain relationship (hereafter the index � for strains is omitted) is written using the theory of simple deformation

processes and linearized by the modified method of elastic solutions [22, 25]:
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0 0( ) (s q� ), � 	sq sq sqG b� �2 0 0( ), (1.7)

� � � �	 � � �� � 	ss ss ss qq0 2 2 01� � � � � �( ) ( ) (s q� ), � � 	 � �sq sq sq0 1 11� � � �( ) , (1.8)
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where 	 �T T� �( )T T0 is the thermal strain; �T is the coefficient of linear thermal expansion; T is the temperature at a point of

the shell; T0 is the initial temperature of the shell; K is the bulk modulus; G is the shear modulus; � is Poisson’s ratio; G0, �0, K0,

and �0 are the respective quantities at the initial temperature T0; �ij is the Kronecker delta; 2G S
*

/� � is the secant modulus; �
*
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is Poisson’s ratio; S is the tangential-stress intensity; � is the shear-strain intensity; �0 is the mean stress; and 	0 is the mean

deformation.

It is assumed that under initial loading the quantities S, �, and Ò are related by a function S = F(�, Ò) that is independent

of the stress mode and is determined from the thermomechanical surface � = f (	, T) obtained in uniaxial tension tests for

cylindrical specimens at different temperatures [11, 12]. Here � and 	 are the stress and strain in the specimen. The uniaxial and

complex stress states are related by the formulas

S �
�

3

, � �
�1

3

�
	

*

, �
�

�

�

	

*

( )
� �

�

�

1

2

1 2

4 1G
. (1.13)

Under elastic unloading, G G
*

� . The quantities 	ss

p1
(ss � qq � �� � sq) are equal to zero under initial loading and to

the components of the plastic-strain tensor at the time of unloading under unloading and reloading in the region of secondary

plastic strains [13]. Under reloading in the region of secondary plastic strains, the function S = F(�, Ò) accounts for the perfect

Bauschinger effect. This makes it possible to use the function S = F(�, Ò) obtained for initial loading instead of testing specimens

under compression after tension to different levels of plastic strains. The relevant relations are presented in [13].

To ascertain how well the constitutive equations describe the deformation of the shell, it is necessary to draw strain

paths in Il’yushin’s three-dimensional subspace. The radii of curvature and torsions of these trajectories can be used to judge the

reliability of the results [28, 26]. If the strain paths hardly deviate from straight lines, then it is justified to use the theory of

deformation along straight-line paths. Otherwise, it would be necessary to use more complicated theories of plasticity [12].

Note that Eqs. (1.4) and (1.5) are based on the Kirchhoff–Love hypotheses and the condition 	
��

= 0. At the same time,

the strain 	
��

(1.11) in the plastic relations is determined from the condition �
��

= 0.

2. Determining Nonstationary Temperature Fields. To determine the temperature fields, it is necessary to solve the

nonstationary heat-conduction problem for cylindrical shells with arbitrary cross-section. It is assumed that there are no heat

sources and that the thermal and physical characteristics of the material may depend on temperature. The initial temperature of

the shells is given by the function T0

T T s q� 0 ( , , )� at t = 0. (2.1)

The shell transfer heat to the environment by convection:
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q
s T q q5 5 0( )( )� at , � �
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� � � �
T

q
s T q q N6 6( )( )� at , (2.2)

where t is time; �1, �2, �3, �4, �5, and �6 are the temperatures of the ambient media; �1(T), �2(T), �3(T), �4(T), �5(T), and

�6(T) and �(Ò) are the temperature-dependent heat-transfer and thermal-conductivity coefficients; �1 and �2 are the outward

normals to the boundary surfaces � = h(s, q)/2 and � = –h(s, q)/2.

To determine the nonstationary temperature field of an arbitrary cylindrical shell, it is necessary to integrate the

equation
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where c = c(T) is heat capacity; � = �(T) is the density of the shell material. The differential equation (2.3) has been derived from

the heat-conduction equation [11] written in arbitrary curvilinear orthogonal coordinates and including the Lamé coefficients

with kq� neglected as small compared with unity.
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To simplify the solution of the nonstationary heat-conduction problem, we introduce a function � [24]:
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Then

� �  �dT
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(2.5)

and Eqs. (2.1)–(2.3) become
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�dT
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where a = � ! �( )c is the thermal-diffusivity coefficient.

In solving Eq. (2.6), we approximate the function � by a power polynomial of order n in the thickness coordinate [1, 7,

23, 24], which makes it possible to reduce the solution of the problem to the determination of integral functions independent of

the coordinate �:

� �( , , , ) ( , , )s q t s q tp
p

p

n

� ��

�

"
0

. (2.9)

To determine the functions � p appearing in (2.9), we multiply the differential equation (2.6) by �
p

and integrate it over

� ( / / )� � �h h2 2� . Transforming the resulting integrals and introducing the function

v s q t s q t dp
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we arrive at the heat-conduction equations written for the integral functions vp:
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where

T
�

(s, q, t) = T(s, q, h / 2, t), T
�

(s, q, t) = T(s, q, �h / 2, t),

�
�

(s, q, t) = �(s, q, h / 2, t), �
�

(s, q, t) = �(s, q, �h / 2, t). (2.12)

In deriving Eqs. (2.11), we assumed that the thermal-diffusivity coefficient a hardly varies throughout the thickness so

that this variation can be neglected. We similarly transform conditions (2.7) and (2.8), also assuming that the heat-transfer

coefficients �3, �4, �5, and �6 hardly vary throughout the thickness. As a result, we have
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Let us use an explicit difference scheme in time to solve system (2.11):

v t t v t a tF tp p p( ) ( ) ( )� � �+ + , p = 0, 1, …, n, (2.17)

where +t is the time step; Fp(t) is the right-hand side of (2.11).

The derivatives with respect to s and q in the expression for Fp(t) are approximated by finite-difference formulas [7, 15,

16]. To this end, the generatrix of the mid-surface is divided by Ks nodal points into Ks – 1 intervals of variable length +s. The

directrix of the mid-surface is divided by Kq nodal points into Kq – 1 intervals. We use the following finite-difference

approximations in s:
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where i is the number of an arbitrary node in the s-direction (1 � i � Ks).

The derivatives with respect to q can be represented in a similar manner. To exclude points beyond the boundary, we use

the boundary conditions (2.13) and (2.14) where the derivatives with respect to s and q are also approximated as in (2.18). Then

relations (2.17) can be used to determine the function vp at the time t + +t from its values at the time t. Next, we find the function

�p. To this end, we substitute (2.9) into (2.10) and perform transformations to obtain
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The values of �l found by solving the system of linear algebraic equations (2.19) are then used to determine the function

� (2.9) and then the temperature T (2.5) at all nodal points.
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3. Analyzing the Temperature Field in a Shell of Elliptic Cross-Section. As an illustrative example, let us determine

the nonstationary temperature field of a cylindrical shell with infinite length and elliptic cross-section (Fig. 2).

The Cartesian coordinates x and z (1.1) defining the position of an arbitrary point on the mid-surface of the shell are

specified parametrically using an angle �:

x a� sin �, z b� sin �. (3.1)

In the calculations, the angle � varies within the limits �0 � � � �/2, �0 = 7�/16 (see Fig. 2 for the sense of the angle).

This choice of the limits is because the temperature remains constant in the circumferential direction as the angle changes from 0

to �0. One of the ellipse semiaxes a = 5 m. The thickness and semiaxis b were not varied in the calculations. The initial

temperature, the temperature of the environment, and the heat-transfer factors are the following:

T0 = 293 K, �1 = 373 K, �2 = 873 K, �1 = �2 = 500 W/(m
2
,deg), �3 = �4 = �5 = �6 = 0. (3.2)

The thermal-conductivity and thermal-diffusivity coefficients are � = 20 W/(m
2
,deg), a = 4,10

–4
m/sec. The number of

nodes partitioning the directrix Kq = 33, while coordinate � varies within �0 � � � �/2. The number of nodes partitioning the

thickness K
�

= 9. In the power series (2.9), n = 7. The step of integration over time +t = 0.01 sec. Numerical experiments confirm

that with this partitioning, the results do not depend on the discretization parameters. Some results calculated at t = 10 sec are

presented in Tables 1 and 2. These are temperatures on the outside (� = h/2), middle (� = 0), and inside (� = –h/2) surfaces

calculated for different values of a and b and for h = 0.01 m (Table 1) and h = 0.005 m (Table 2).

The variation of the temperature throughout the thickness is essentially nonlinear. Of especial interest, however, is the

considerable decrease in the circumferential temperature at high ellipticity in a small neighborhood of � = �/2, where the

curvature of the ellipse is maximum. With b = 5 m, the ellipse turns into a circle, and, naturally, the circumferential temperature

remains constant. At great values of b (b = 1; 0.5 m), the change in the temperature is insignificant. In the case of high ellipticity

(b = 0.2; 0.1 m), the temperature can decrease by 25%.

4. Governing Equations to Determine the Stress–Strain State of Cylindrical Shells. The equilibrium equations

(1.4), the kinematic equations (1.5), the thermoplastic equations (1.6), and the boundary conditions at the edges of the shell

constitute a closed-form system of equations for solving the problem with external loads prescribed and the temperature fields

found.

For the basic unknowns of the governing equations, we choose functions in terms of which the boundary conditions at

the shell edges are expressed:

N q , S , �Qq , M q , u, v, w, � q , (4.1)

where �Q Q
H

s
q q� �

�

�

is the reduced transverse force.

Functions (4.1) and their linear combinations make it possible to formulate a wide range of boundary conditions for

forces, moments, displacements, and their combinations. Using the equilibrium, kinematic, and thermoplastic equations, we

obtain a system of partial differential equations for the vector of unknown functions:
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TABLE 1

b, m � 7�/16 15�/32 61�/128 31�/64 63�/128 �/2

5

h/2

0

–h/2

83

116

422

83

116

422

83

116

422

83

116

422

83

116

422

83

116

422

1

h/2

0

–h/2

83

115

421

83

114

420

83

114

420

83

114

420

83

114

419

83

114

419

0.5

h/2

0

–h/2

83

115

421

83

113

418

83

112

417

83

110

415

83

108

413

83

108

412

0.2

h/2

0

–h/2

83

116

421

83

113

418

83

110

414

83

103

405

84

92

386

85

87

374

0.1

h/2

0

–h/2

86

116

422

83

114

420

83

111

416

83

103

405

85

91

375

87

83

345

TABLE 2

b, m � 7�/16 15�/32 61�/128 31�/64 63�/128 �/2

5

h/2

0

–h/2

155

256

433

155

256

433

155

256

433

155

256

433

155

256

433

155

256

433

1

h/2

0

–h/2

154

255

432

154

255

431

154

255

431

154

255

431

154

255

430

154

255

430

0.5

h/2

0

–h/2

155

255

432

153

252

429

152

250

428

151

247

426

149

245

424

149

244

424

0.2

h/2

0

–h/2

155

256

432

153

252

430

150

247

426

145

235

417

136

216

401

131

205

390

0.1

h/2

0

–h/2

155

256

433

154

254

431

152

249

428

145

236

417

134

208

390

127

189

363



�

�

�

� �Y

q
A s q Y F s q� �( , ) ( , ), (4.2)

where

�

Y s q( , ) = {y1, …, y8} is the vector of unknown functions (4.1), A(s, q) = {aij(s, q)} is a differential operator containing

partial derivatives of the unknown functions with respect to the coordinate s;

�

F s q( , )= {fi (s, q)} is the vector of free terms; i, j = 1,

2,..., 8.

System (4.2) has the following expanded form:

�

�

� �
�

�

� �
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s
k Q q

q

q q q
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2
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2 0
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D
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. (4.3)

The operator A (s, q) is independent of the SSS. The terms that describe plastic and thermal strains, geometrical

nonlinearity, and the temperature dependence of mechanical properties appear only in the free terms

�

F s q( , ). These specific

features of the system of equations, which are owing to the linearization methods used, highly reduces the amount of

computation. At each step of loading, the problem is solved by the method of successive approximations. The vector of free

terms

�

F s q( , ) is known from the previous iteration, and the system of equations (4.3) is linear at each iteration of each step.

Boundary conditions should be prescribed at the edges s = s0, s = sN, q = q0, q = qN. For example, if the edges s = s0 and

s = sN are hinged, then

N M v ws s� � � � 0. (4.4)

For open shells, boundary conditions at the rectilinear edges q = q0 and q = qN are formulated similarly. For example,

the periodicity conditions are

S Q vq q� � �� �� 0. (4.5)

If a closed shell has a plane of symmetry (for the geometry and loads) coming through the Oy-axis, then it is enough to

compute half the shell, i.e., an open shell with the periodicity conditions (4.5) set at the edges q = q0 and q = qN.

5. Governing Equations with Some Specific Boundary Conditions. The dimension of the problem can further be

reduced by various methods [3–6, 8]. We will dwell on one of the boundary conditions—hinged edges (4.4). Satisfying these

boundary conditions, we expand the functions entering them as follows:

{ ( , ), ( , ), ( , ), ( , )} { ( ), ( ), (N q s M q s u q s w q s N q M q us s sn sn n� q w q s sn

n

N

n), ( )}sin[ ( )]

�

" �

1

0� ,
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�
�

n

N

n

s s
�

�( )0

. (5.1)

Expanding all the given and unknown functions in a similar manner, we can separate variables in (4.2) and obtain a

system of ordinary differential equations of the eighth order for each number n = 1, 2, …, N:

dY q

d q
A q Y q F q

n

n n n

�

� �( )
( ) ( ) ( )� � , (5.2)

where

�

Yn = {y1n, …, y8n} are the amplitudes of the unknown functions (4.1); the elements of the operator matrix An(q) and of the

vector

�

Fn (q) depend on the harmonic number n. The nonzero elements of the matrix An(q) and of the vector

�

Fn (q) are given by

a a n12 56� � � � , a a a a kq13 31 67 76� � � � � � � , a a n21 66 0� � � �� � , a DN n25 0

2 2
1� �( )� � ,

a a n34 88 0
2

� � �� � , a DM n37 0

2 4
1� � �( )� � �

�
, a a43 78 1� � , a DM n48 0

2
4 1� �( )� � ,

a DN52 0
1

2 1� �
�

[ ( )]� , a D
N61

1
�

�
, a D

M84
1

�
�

,

f qn qn1 � � , f q D P D P D qn sn N n sn N n qn N n n2 0 0

2
2

1

2
1� � � � � �� � � � �( ) ,

f q m D I D I qn n n sn M n sn M n qn n3
2

0
2

3� � � � �
�

� � � � ,

f m D I qn qn M sn n4 0 42 1� � � � �( )� , f P qn n n5 5� � � ,

f P qn qn n6 6� � � , f I qn qn n8 8� � � , (5.3)

where Psn, Pqn, Pn, Isn, Iqn, and In are the amplitudes of the additional terms Ps, Pq, P, Is, Iq, I, and gjn (j = 1, …, 8) are the

amplitudes of the terms gj. The nonzero terms gj are given by

g s2
2

�� , g N k M Ss q q s q3 � � �( )� � , g N Sq q s4 � �� � ,

g s q5 � �� � , g q s6
2 0 21

2 2
� � �� �

�
, g kq q8

21

2
� � . (5.4)

The problem is reduced to the integration of independent equations of the eighth order for the amplitudes of unknown

functions at each iteration of each step N.

In the specific case of an infinitely long shell (its SSS does not vary in the s-direction), it is sufficient to choose six

unknown functions N q , Qq , M v wq , , , and � q . Then the governing equations become

dN

dq
k Q q

q

q q q� � � ,
dQ

dq
k N w q

q

q q� � ��
� �

,
dM

dq
Q m N

q

q q q q� � � � ,

dv

dq D
N k w P

N

q q q q� � � � �
1 1

2

2
,

dw

dq
k vq q� �� ,

d

dq D
M I k

q

M

q q q q

�

� � � �
1 1

2

2
. (5.5)

The following boundary conditions should be satisfied for the unknown functions or their linear combinations:

D Y b1 1

� �

� at q = q0, (5.6)

D Y b2 2

� �

� at q = qN, (5.7)

where D1 and D2 are the matrices of boundary conditions;

�

b1 and

�

b2 are the vectors of free terms of boundary conditions.
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To determine the thermoelastoplastic SSS numerically, we divide the generatrix, directrix, and thickness of the shell

into Ks, Kq, and K
�

intervals, respectively. The shell appears covered with a three-dimensional mesh. A surface load is prescribed

at the nodes of the mid-surface. The elements of the vectors of unknown functions are determined at the same nodes. The

temperature is set or calculated and the strains, stresses, and other quantities needed for the subsequent approximation are

calculated at the nodes of the mesh.

System (5.2) is solved by the Runge–Kutta method with intermediate orthogonalization and normalization of partial

solutions [2]. The solution of the boundary-value problem (5.2), (5.6), (5.7) is sought in the following form [28]:

Z Z Z C Z Zi

i

i� � � �

�

"
0

1

4

* *
, (5.8)

where Zi are the partial solutions of the Cauchy problems for the homogeneous system of equations (5.2) (

�

Fn (q) = 0) with the

initial conditions at the edge q = q0 equal to zero for the given unknown functions and equal to the respective columns of a unit

matrix for the other functions; Z
*

is the solution of the Cauchy problem for the inhomogeneous system of equations (5.2) with the

initial conditions at the edge q = q0 coinciding with the boundary conditions (5.6) for the given unknown functions and equal to

zero for the other functions; Ci are the constants of integration determined from the boundary conditions (5.7). Since Àn(q) is

independent of the SSS, this operator and Z
0

can be calculated only in the first approximation of the first step. Thus, five Cauchy

problems are solved at the first iteration of the first step, and only one Cauchy problem is solved (to find Z
*
) at the subsequent

iterations.

The process of successive approximations at each step is considered to converge once the tangential-stress intensity

found from the calculated stresses and the tangential-stress intensity obtained from the thermomechanical surface have differed

by some preset amount �1. Simultaneously, the absolute values of the displacement vector found in two successive

approximations must differ by less than a small amount �2. These criteria ensure convergence in both physical and geometrical

nonlinearities.

6. Assessing the Accuracy of the Method. To test the method and to assess its accuracy, we will consider an infinitely

long circular cylindrical shell without geometrical nonlinearity and compare the solution obtained by numerical integration over

the circumferential coordinate and the solution found using trigonometric Fourier series in powers of the same coordinate [28].

The radius and thickness of the shell are R = 0.1 m and h = 0.005 m. The shell is made of ÉI-395 alloy; its Young’s modulus and

Poisson’s ratio are E = 1.95 MPa and �0 = 0.3; its tensile stress–strain curve is given in [27]. The shell is subjected to loads

q q R
�

�10 2cos ( / ). Since the load is symmetric, we can consider half the shell (0 � �q R/ �). The periodicity conditions

Q vq q� �� � 0 are prescribed at the edges q � 0 and q R� � . The number of intervals of integration Kq = 2001 along the

circumference and K
�

= 21 across the thickness. In addition to the second harmonic corresponding to the load, the following

higher harmonics were retained in the Fourier series: m = 6, 10, 14, 18, 22, 26, 30. The plastic problem has been solved with

accuracy �1 = 0.001. The results obtained are practically independent of the above discretization parameters.

Table 3 collects the values of the stresses �ss and �qq and the shear-strain intensity � at q = 0. As is seen, both methods

give identical values, which means high accuracy of our method. Note that the lower harmonics in the Fourier series used to solve

the elastoplastic problem always generate an infinite decaying spectrum of higher harmonics. The contribution of these

harmonics to the maximum values of shear-strain intensity exceeds 10%.

7. Effect of the Winkler Foundation on the SSS. Let us consider the shell described in Sec. 6. It is subjected to load

q mq R m
�

� �10 0 1 2cos ( / ), , , .
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TABLE 3

q = 0 �ss �qq �

� � �h / 2 –2524 –6793 0.003759

� � h / 2 2496 6759 0.003672



Table 4 summarizes the stresses �ss and �qq for q = 0, two values of the Winkler modulus�
�

, and three first harmonics.

The amplitudes of the load being equal, the stress of the second harmonic is much higher than the stresses due to the zero and first

harmonics. Comparing the results for different�
�

reveals a strong effect of this parameter for the second harmonic. For the zero

and first harmonics, the effect the Winkler foundation is much weaker.
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