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The elastoplastic state of cylindrical shells with a circular hole is studied considering finite deflections.

The material of the shells is isotropic and homogeneous; the load is axial tension. The distribution of

stresses, strains, and displacements along the hole boundary and in the zone of their concentration is

studied by solving a doubly nonlinear problem. The data obtained are compared with the solutions of the

physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem
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Introduction. Using the real properties of structural materials in creating various thin-walled structures and their

elements (shells or plates) is one of the basic lines of development of modern engineering. Such elements made of modern metal

and composite materials often have complicated shape (geometry), which includes stress concentrators (holes, cutouts,

inclusions, and joints) [1, 3–5, 12]. Therefore, it is important to examine the influence of the properties of materials and the way

they deform on the stress (strain or displacement) fields near holes under static loads of high levels.

It should be noted that the publications [2, 4, 6, 7, etc.] are concerned with the statement and solution of certain classes

of nonlinear problems for thin shells with stress concentrators under surface and boundary loads of high levels, with the

nonlinear properties of structural materials and large (finite) deflections taken into account. A generalized procedure for

numerical solution of physically and geometrically nonlinear problems for arbitrary thin-walled shells made of metals and

occupying simply and multiply connected domains is presented in the paper [2], which gives a generalized statement of

nonlinear problems that allows for the shape of shells and holes, the type and stage of loading, and features of the algorithm and

associated software. The publications [8–11] present numerical solutions to two-dimensional (nonaxisymmetric) nonlinear

problems for flexible spherical, cylindrical, and conical shells under surface pressure. Numerical data for shells subject to axial

forces are reported in [4, 7, 13].

Expanding upon [8, 9], the present paper discusses results on the elastoplastic stress–strain state around a curvilinear

(circular) hole in flexible cylindrical shells under axial tension. We will examine the combined effect of nonlinear factors (plastic

strains and finite deflections) on the distribution of stresses, strains, and displacements along and near the boundary of the hole

for certain geometrical and material characteristics.

1. We will analyze the stress–strain state around a curvilinear (circular) hole in a thin cylindrical shell subjected to axial

tensile forces P = const uniformly distributed along the edges of the shell (Fig. 1). The shell is made of an isotropic material

(metal) (see [1, 4] for its physical and mechanical characteristics and stress–strain curves (� versus �) and (� i versus � i ). It is

assumed that a high-level load causes plastic strains and large (finite) deflections comparable with the thickness of the shell [2, 4].

The nonlinear governing equations can be derived using the geometrically nonlinear relations of the theory of deep thin

shells based on the Kirchhoff–Love hypotheses (geometrically nonlinear theory of shells of the second order [4, 7]) and the

physically nonlinear relations based on the theory of flow with isotropic hardening (von Mises yield criterion and associated
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flow rule). In the case of simple (or nearly simple) loading, use is usually made of nonlinear constitutive equations [2, 4], which

are derived using the theory of small elastoplastic deformation where the coefficient of transverse deformation beyond the elastic

limit is variable.

Let us consider a flexible cylindrical shell of radius R and thickness h with a hole of radius r0 under axial forces

P P h� �0
3

10/ Pa. Some boundary conditions are prescribed at the edges of the hole. The mid-surface of the shell is described in

a rectangular Cartesian coordinate system (x, y), while its geometry in a global Cartesian coordinate system (X, Y, Z) (Fig. 1) with

the OX-axis aligned with the shell axis and the OZ-axis passing through the center of the hole.

The nonlinear kinematic equations can be written for the mid-surface:
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At the active stage of deformation (simple loading), the nonlinear constitutive equations can be represented in the

following form [2, 4]:
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where �xx
*

, � yy
*

, and �xy
*

are nonlinear terms defined by the following formulas, according to the theory of small elastoplastic

deformation:
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where 
i is a plasticity function; � i and ei are the stress and strain intensities; G and	are the shear modulus and Poisson’s ratio;

the symbol ( )
 denotes permutation of the indices.

In the theory of flow with isotropic hardening (combined loading), the nonlinear constitutive equations relate the stress

vector { }� and the strain vector { }e as follows (in vector–matrix form) [2, 4]:
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Denoting the displacement vectors and angles of rotation as

{ } { , , } , { } { , }U u v w
T T

� �� � �1 2 (6)

and considering that
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, (7)

we obtain the following equalities for the linear and nonlinear components of the strain vector:
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where [ ]A
�

, [ ]A
æ

, and [ ]A
�

are matrices of linear differentiation operations; and [ ]AL is the matrix of angles of rotation �1 and

�2 .

2. To derive the governing equations describing the elastoplastic state of a cylindrical shell with a curvilinear hole

subject to finite deflections and to develop methods for approximate solution of nonlinear problems, we use the

incremental-loading procedure and the nonlinear relations (1), (2) or (5)–(8) and governing equations in incremental form.

In the general case of arbitrary thin shells described in coordinates not aligned with the lines of principal curvatures,

these relations and governing equations are represented in matrix form. This system was derived in [2] using the

virtual-displacement principle, the modified Newton–Kantorovich method, the method of additional stresses, and a modified

finite-element method.

The final system of governing algebraic equations follows from the stationarity conditions for the linearized total

energy of the shell. At the nth step of loading, the system has the form

[ ]{ } { }S q V� �� , (9)

where [ ] [ ] [ ] [ ]S S S S� � �0 � �
, { } { } { } { }� � � ��V R N� � � , where [ ]S 0 is the stiffness matrix for linear elastic shells, [ ]S

�
and

[ ]S
�

are the influence matrices of the initial angles of rotation �1 and �2 and stresses, respectively; { }�q is the column vector of

displacements of nodal degrees of freedom (nodal unknowns); { }�R , { }�N , and { }�� are the vectors of loads, nonlinearities, and

residuals of the equilibrium equations at the end of the (n – 1)th step of loading.

In solving specific boundary-value problems for shells, Eqs. (9) should be supplemented with boundary conditions at

the external and internal edges.

We will use the following boundary conditions:

(a) free-edge conditions for the hole [4]:

~ ~
T Tr r� �

�
0, M r � 0,

~
*

Qr � 0, (10)

(b) symmetry conditions on the boundaries x = 0 (y = 0):

u y � 0, � y � 0,
~
Txy � 0,

~
*

Q y � 0 ( )y x� , (11)

(c) membrane deflection and zero forces and moment on the boundary y yk� :

w
PR

Eh
� �

	

,
~ ~
T Ty xy� � 0, M y � 0, (12)

(d) membrane stress on the boundary x xk�

M x � 0,
~ ~

*
T Qxy y� � 0,

~
T Px � . (13)
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TABLE 1

� �

er � 10
2

LP PNP GNP PGNP

0

0.5 0.0117 –0.0254 –0.0009 –0.0353

–0.5 0.1214 0.2229 0.0986 0.1513

�/7

0.5 –0.0096 –0.0341 –0.0042 –0.0096

–0.5 0.0742 0.1804 0.0256 0.0419

�/4

0.5 –0.0601 –0.1127 –0.0562 –0.0492

–0.5 –0.0425 0.0875 –0.0644 –0.0400

5�/14

0.5 –0.1276 –0.4679 –0.1312 –0.2225

–0.5 –0.1646 –0.2217 –0.1447 –0.3661

�/2

0.5 –0.1794 –0.9510 –0.1833 –0.7376

–0.5 –0.2636 –0.1569 –0.1937 –0.7518

TABLE 2

� �

e
�

� 10
2

LP PNP GNP PGNP

0

0.5 –0.0215 0.0962 0.0197 0.1186

–0.5 –0.4026 –0.6189 –0.3265 –0.4392

�/7

0.5 0.0415 0.1182 0.0180 0.0395

–0.5 –0.2470 –0.5211 –0.0824 –0.1329

�/4

0.5 0.1995 0.3266 0.1842 0.1680

–0.5 0.1020 –0.2440 0.2165 0.1461

5�/14

0.5 0.4153 1.1050 0.4320 0.7848

–0.5 0.5464 0.6086 0.4808 0.8710

�/2

0.5 0.5820 1.9200 0.6046 1.6410

–0.5 0.8745 3.6370 0.6412 1.6800



To construct a design model for the shell, we consider the domain ( )� of the mid-surface bounded by the lines x = 0,

x xk� , y �0, and y yk� and the boundary of the hole (Fig. 2). Next we partition the domain ( )� into four fragments �i i( ... )� 1 4

to divide them into quadrangular finite elements (FEs) of sizes 7�14, 7�7, 7�7, and 7�7, respectively. The internal and external

boundaries of the first fragment are circles of radii r r� 0 and r r� 2 0 , and the other lines that fragment the domain ( )� are straight.

3. The numerical results to be discussed below have been obtained for a cylindrical shell with the following geometrical

parameters (Fig. 1): � � �R h/ 400, � � � � �r h r Rh0 030/ ( /æ 1.5) ( )x y rk k� � 6 0 . The shell is subject to axial forces

P h0 1200/ � and is made of AMg-6 alloy with the following characteristics: Å = 70 GPa; 	 = 0.3–0.5; �n = 140 MPa; �n = 0.002;

�T = 165 MPa.

We used Eqs. (9) with the boundary conditions (10)–(13). The loading process was divided into ten steps.

We used the developed method and associated software [2] to analyze the stress–strain state of this shell with allowance

for plastic strains and large (finite) deflections. Some of the numerical results are presented in the tables and figures below.
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TABLE 3

� �

�
�

0

LP PNP GNP PGNP

0

0.5 –138 682 149 831

–0.5 –2817 –1805 –2284 –1673

�/7

0.5 297 831 129 282

–0.5 –1728 –1705 –575 –926

�/4

0.5 1396 1395 1287 995

–0.5 713 –1188 1517 896

5�/14

0.5 2900 1836 3020 1808

–0.5 3823 1634 3364 1847

�/2

0.5 4063 1976 4228 1986

–0.5 6119 2399 4485 1995

Fig. 3 Fig. 4
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Tables 1–3 summarize the strains (e er ,
�

) and stresses � �
�

�
� �

0 5
10 Pà on the outside and inside ( / . )� � � �z h 05

surfaces of the shell on the boundary of the hole ( / )0 2� �� � obtained considering the nonlinear material properties and large

deflections (PGNP).

For comparison, the tables include the solutions of the linear elastic problem (LP), the physically nonlinear problem

(PNP), and the geometrically nonlinear problem (GNP). Table 4 gives the hoop stresses �
�

0
along the radial cross section

( , / )r r r0 06 2� � �� � .

Figures 3 and 4 show the variation in the relative deflection ( / )
*

w w h� and the concentration factor for membrane

hoop stresses ( / )K h P
� �

�� along the boundary of the hole for the LP (curve 1), PNP (curve 2), GNP (curve 3), and PGNP

(curve 4). Analyzing these results, we conclude that when a cylindrical shell with a circular hole is subjected to axial tension, the
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TABLE 4

r r/
0 �

�
�

0

LP PNP GNP PGNP

1

0.5 4063 1976 4228 1986

–0.5 6119 2399 4485 1995

1
4

7

0.5 1229 1318 1766 1878

–0.5 2684 2168 2141 1975

2
4

7

0.5 955 1034 1208 1442

–0.5 1514 1756 1448 1617

3
5

7

0.5 1073 1115 1155 1292

–0.5 1172 1445 1229 1446

4
6

7

0.5 1130 998 1131 1090

–0.5 1143 1106 1142 1134

6

0.5 1212 1174 1186 1163

–0.5 1212 1174 1186 1163

Fig. 5 Fig. 6

1

k
�

max
(p0/h)�10

–1

240

2 4 6 8 10 (p0/h)�10
–2

0 1 2 3 w/h
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2

3

2

3

4
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72

1

23 4



most critical point is the one with the coordinates r r� �0 2, /� � on the inside surface, where the stresses �
�

and strains e
�

are

maximum. As is seen in Fig. 3, the displacement w is maximum at the point ( , )r r� �0 0� on the boundary of the hole.

Plastic strains equalize stresses in the most critical section ( , / )r r� �0 2� � , decrease the maximum stress by 61%, and

increase the maximum deflections and strains by 2.85 and 4.16, respectively, compared with those in the LP.

Comparing and analyzing the data in Tables 1–3 and Fig. 3, we see that the maximum stresses, strains, and deflections

obtained in the GNP decrease by 27, 27, and 37%, respectively, compared with the LP. Large (finite) deflections equalize the

stresses and strains in sections where they are maximum.

Plastic strains and finite deflections together decrease the maximum stresses by 67, 17, and 56% compared with the LP,

PNP, and GNP, respectively. Finite deflections also have a substantial effect on the strain state of the shell during the

elastoplastic stage of deformation. For example, the maximum deflections and strains in the PGNP differ from those in the LP,

PNP, and GNP by 35, 53, 116% and 92, 54, 162%. When both physical and geometrical nonlinearities are taken into account, the

stresses and strains in the most critical sections are redistributed and equalized throughout the thickness.

4. Let us analyze the variation in the stress–strain state around a hole in a shell (its geometrical and material

characteristics are specified above) with increase in the load ( / )0 12000� �P h . Figures 5 and 6 show the maximum stress

concentration factor K
�

and the maximum relative deflection in the shell as functions of the applied forces (axial tension).

These results suggest that the shell deforms elastically when 0 3000� �P in the PNP and 0 3500� �P h/ in the PGNP

and plastically when P h0 300/ � in the PNP and P h0 350/ � in the PGNP. As the axial force increases, K
�

decreases and the

plastic zone around the hole shifts in the meridional direction. In this case, K
�

� 5.1 in the LP, and K
�

� 4.5, 4.2, 4.1 for

P h0 360/ � and K
�

� 2.0, 3.7, 1.7 for P h0 1200/ � in the PNP, GNP, PGNP.

5. Let us examine the influence of the geometrical parameter ( / )æ � r Rh0 on the elastoplastic state of a flexible

cylindrical shell with a circular hole under tensile force P h0 / � 1500. The parameter æ varies from 0.2 to 2.
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Figures 7 and 8 show the maximum stress concentration factor K h P
� �

�
max max

/� and the maximum relative deflection

w w h
* max max

/� as functions of æ. Figure 8 shows how K
�

and w w h
*

/� vary along the boundary of the hole for the

maximum value of the geometrical parameter (æ = 2).

Analyzing these data, we conclude that for all values of the parameter, the stresses ( )�
�

and strains ( )e
�

peak at the

point ( , / )r r� �0 2� � on the boundary of the hole on the inside surface of the shell (� �–0.5), while the deflections are maximum

at the point ( , )r r� �0 0� . The exception is the deflections foræ= 0.5 in the LP and GNP. They peak at the point ( , / )r r� �0 2� � .

It can be seen from Fig. 7a that as the parameteræ increases, K
�

increases from K
�

�3.44 foræ= 0.5 to K
�

�5.86 foræ= 2 in the

LP, from K
�

�1.63 for æ = 0.5 to K
�

�2.44 for æ = 2 in the PNP, from K
�

�3.30 for æ = 0.5 to K
�

�3.85 for æ = 2 in the GNP,

and from K
�

� 1.57 for æ = 0.5 to K
�

� 1.64 for æ = 2 in the PGNP.

Note that this method discussed here can also be used to analyze the stress–strain state states of cylindrical and conical

shells with an elliptic hole under tensile forces.
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