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DYNAMICS OF A PRESTRESSED INCOMPRESSIBLE LAYERED HALF-SPACE
UNDER MOVING LOAD

S. Yu. Babich, Yu. P. Glukhov, and A. N. Guz UDC 539.3

The paper addresses a plane problem: a concentrated force acts on a plate resting on an elastic half-space
with homogeneous prestrain. The equations of motion of the plate incorporate shear and rotary inertia.
The half-space is assumed to be incompressible and isotropic in the natural state. The elastic potential is
given in general form and is only specified for numerical purposes. The dependence of the critical
velocity of the load and the stress—strain state on the prestresses is analyzed for different ratios between
the stiffnesses of the layer and half-space and different contact conditions. The calculations are carried
out for a half-space with Bartenev—Khazanovich potential

Keywords: initial stresses, load moving with constant velocity, two-layer half-space, incompressible
material, Bartenev—Khazanovich potential

Introduction. Three-dimensional linearized theories of stability of deformable bodies and elastic waves in prestressed
bodies were analyzed from a contemporary standpoint in [7, 8], respectively. The results of [7, 8] were used in modern analysis
of inverse problems for elastic waves in prestressed bodies in [19], contact interaction of elastic prestressed bodies in [5, 6],
stability of mine workings in the case of an inhomogeneous subcritical state in [9], and exact solutions of mixed plane problems
in the case of prestresses in [18]. The motion of cracks in elastic prestressed bodies was studied in [10—13] for homogeneous
bodies and in [14-17] for piecewise-homogeneous bodies. Static contact problems for elastic bodies were solved with and
without regard to prestresses in [20-22, 24, etc.].

The present paper addresses a plane problem for a plate subject to a concentrated mechanical load and lying on an
elastic half-space with homogeneous prestrain. The equations of motion of the plate incorporate shear and rotary inertia. The
half-space is incompressible and isotropic in the natural state. The elastic potential has a general form, which will be specified for
numerical purposes. We will analyze the dependence of the critical velocity of the load and the stress—strain state on the
prestresses for different ratios between the stiffnesses of the layer and half-space and different contact conditions. The
calculations will be conducted for a half-space with Bartenev—Khazanovich potential.

1. Consider a plate of thickness 24 on an elastic half-space whose initial strain state is determined by the following
components of the generalized stress tensor:

o, #0, o9, %0, o =0 (1.1)

The plate and the half-space are described by Cartesian coordinates (& ,&, , &3 )introduced in the initial strain state and
related to Lagrangian coordinates (x;,x,,x3 ) introduced in the natural state by the formula &; =A;x;, where A; are tensile
strains elongations (i =1, 2, 3).

The coordinate plane &;0&; coincides with the mid-surface of the plate. The half-space occupies the domain |&; | < oo,
|E5 <, &y +h < 0. Assume that the load moves over the surface of the plate (£, = /) with constant velocity v for a long time;

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kyiv. Translated from Prikladnaya
Mekhanika, Vol. 44, No. 3, pp. 36—54, March 2008. Original article submitted December 24, 2006.

268 1063-7095/08/4403-0268 ©2008 Springer Science+Business Media, Inc.



therefore, the plane strain state in the coordinate system fixed to this load is steady-state. The coordinates of the moving
coordinate system are determined from the relations y; =&; —vtand y, =&,.

The equations of motion of the plate with shear and rotary inertia have the following form in the moving coordinate
system [4]:

1=v, vy
%
20 (kGy —pv? ) = —2kG h———q =P;,
( ) M
2 2 2
207 [ 26, —pv23, M+21<G1 al—q) —1=0, (1.2)
3 \l=v oy? M

where p, Gy, and v, are the density, shear modulus, and Poisson’s ratio of the plate material, respectively; u and w are the
displacements of the mid-surface (y, = 0); ¢ is the angle of rotation of the cross-section; k is Timoshenko’s shear coefficient; ¢, t
and P,, P are the normal and tangential stresses at the interface between the plate and the half-space and on the free surface of
the plate; 6 is equal to 1 or 0.

The bending moment in the plate in the moving coordinate system is defined by the formula

3
MzﬂGlh @
3 1—\/1 dyl

(1.3)

Using formulas from [1], we rearrange the linearized equations of motion of the half-space during plane deformation in
the coordinates (y;, y, ) in terms of the function y (y;, ¥, )

[nf ;22+822}[n§ 622+822]x(f> =0, j=1,2, (1.4)
L D D)
where the roots 1} andn, are found from the equation
N4 +24n2 + 4, =0, (1.5)
and the coefficients 4 and 4, are determined from the relations
2A‘7222E2112 267121E2222 +‘7222 (Ellll —FN’VZ) ~2411322 (R1122 +K1212):
24,G5 %112 =37, (121221 —5"2): gij =%;hiqi, P =p, (1.6)

p is the density of the half-space in the natural state.
Let us consider two cases of contact between the plate and the half-space at y, =—#:
tight contact:

Oy =1, On=q, uy=w, u =u+h, (1.7)
nontight contact:
05 =0, 1=0, Oy =q, uy=w (1.8)

Thus, the perturbations in the layered medium are determined by solving Egs. (1.2) and (1.4) with the boundary
conditions (1.7) or (1.8).
Let us consider the cases of unequal and equal roots of Eq. (1.5).
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Unequal Roots. Letn; #1n,. Suppose
r=q7x®, x@ =0 (1.9)

Considering (1.9), we obtain a solution in the form

2%y -~ 0%y
Uy =- > Uy =q11922 >
M1y oyt
1~ e - 57 0% - 0% | oy
P=61111{[K1111—CI11(]221(K1122 +‘<1212)—PV2]ay2+K21126y2}%- (1.10)
1 2

When the roots of Eq. (1.5) are unequal, it is possible to represent the solution in terms of functions ®and ¥ given by

(1) 2)
oo g T @) (1.11)
P a3

Substituting (1.10) into (1.3), we obtain two wave equations for the half-space:

2 2 2 2
nfa—+ 0 ®=0, nga—+a— ¥ =0 (1.12)
6y12 Gyg oy oy?

If there are no prestresses, these equations coincide with the wave equations in the classical theory of elasticity, while
the functions ® and ¥ coincide with the longitudinal and transverse potentials for an incompressible body.
Solutions (1.10) with (1.11) can be represented in the form

oo oY o oY
Uuy=—————, Uy 2(1.17+(X2 N
M M » M
~1) _[~ ~2 0~ ~ sl ~ o*®
pP=4y —[K1111—PV —NyK2112 —Q11(122(K1122+K1212)]672
N
[Run =P —n2Rarnn a1y (Riims + %) ks (1.13)
1111 =PY™ ~NM3K2112 —411 1122 T K1212 :
2 2 V12
(a1 =q113,,n%> @2 =q1135,)- (1.14)

If there are no prestresses, the solutions (1.13) are identical with the Lamé solution for an incompressible body.

Thus, Egs. (1.12) with (1.6) and solution (1.13) are a generalization of the wave equations of motion and the Lamé
solution to the case of prestressed incompressible bodies. The functions @ and ¥ are the longitudinal and transverse potentials for
these bodies.

The stresses and displacement rates in the incompressible half-space can be expressed in terms of the functiony(y;, v» )
and in view of (1.9) as

3 3 3 3
Qii =0L(1) o°x +0t(2)6 Xa Qg :a(l)ﬂ-ka(.,z)&

Ty, U ol Vool U eyl
3 2 2
ity =v 62x . iy = Bl%wz% O Gje12 iz (1.15)
aylayZ al ayz 8)/1
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() ~ o~ o~
quqn i1 —pv? —q1195, (K1122 +R1212) | =Kiin TKi229119 5 >

2) _~ o~ 2) o~ o~ )~ L ~
Otgi)Z‘Iiqulenz, 0‘5-]-):%14221%21, Otgj)Z—Kijlz’ i#j, Bi=q11dy, B2=0 (1.16)

The stresses and displacement rates in the incompressible half-space can also be expressed in terms of the potentials @
and ¥:

Gy =(n2a? ~al) 0?® NCE e
1 ll aylz 2 aylayz

_ 0l (1) (1) 02y .. ..
0y =(n;? (l) al?) ==+ -3 — > Li=LZL i#],
=i -] mar, 0 )

. o’ %Y , %@ o2y
U ==v| ——-= , Uy =—v| o oy —- . (1.17)
;o W10y, ;

The boundary conditions (1.7) and (1.8) for tight and nontight contact can be written as

4 2 2 52
-0, 6’3)( _2‘<G1(B182+Bz a] d x—04 ¢+2‘<G1¢ P,
Gyl

5 Jon v}

02 0% | 82 02 8% | o o
93[B1+52JX { (212)62+ al) - 21<hGla—¢_P2,

2 2 2 22
o vy ) oy ayz 5} V1
02 0% ] 0 02 o2 | o o2
2G| By~ 4By~ |- x| af) el S |y 6, —j’—szlq):o, (1.18)
ay] 6)’2 6 ayl 5)/2 ayl ayl

o
2 0% | 82 n 02 2 0% | 8 o
03 [3172 5272 R 0‘(22)72 (22)72 —— X —2xhG| — =P,
oy; oy3 ) oy ay; oy )2 I
3 3 2
%G, ﬁlﬂwz ! ezﬁ—zKqu) 0, (1.19)
v oy, L
2
o, =2 290 2|, 0, =2 [T s |, 03 =24 (kG —ppv?). (1.20)
1—\/1 3 1—\/1

Similar relations with the potentials @ and ¥ have the form:

2 2 2
9187 ZKGI(XI 0 o (918+2KG1(12jaqj—9 M+2KG1¢ Pl,
oy? En &%) oyt oyt

0 R o2 0
[a163 —+0L(1) nlz (z)jz o053 — (x(zlz) (222) —-2khG; — ¢ =P,
oy G oyt ay ayl M
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(ZKGlocl n12 (1)+0L(221) 6 (ZKGlocz oc(l)+n2 (221)) 92— 2kG1$=0,
V10y2
(n2a) ~a PO (0) 2 0
a)’15y 2
[a193a+a(212) nl (2)](3 >t 0c2936722 Oc(zlz) %) ——ZKhGl % =P,
oy oy oy; 6y M M
2 2 o2
2KG1(X] +2KG1G2 67\2114'62 ¢—2KG1¢ 0.
W19y oy vy

(1.21)

(1.22)

Thus, in the case of unequal roots, the problem for a prestressed incompressible two-layer half-space steadily moving
under the action of a load moving with constant velocity is reduced to the determination of the functions y and ¢ from the
boundary conditions (1.18) (tight contact) or (1.19) (nontight contact). When the roots of Eq. (1.5) are unequal, the solution can

be represented in terms of longitudinal (®) and transverse (V) potentials, which follow from Egs. (1.22) or (1.21), depending on
the chosen contact conditions between the plate and the half-space.

Equal Roots. If the roots of Eq. (1.5) are equal (n; =m, =mn), we represent the solution as
0? 02 02 02
1,1 __“ @D (2) 11 -1 Y @1 _ (2)
up =k q X uy =hyq X
b [ M1y, o3 ] 202 [aylz M Y2 J

2 2= ~ 2 IR o < 82 QA
P=r"q [Klm —pv? —hq115' g5 (Riioa +K1212)] 5)/1 ka2 g7 oy3 | oy "

2 2 Kl
+7v22q22{('<1221 —pv )7+[K2222 M2 a7 (K2 +'<1212)]a }X(2)~

; o

With (1.23), the boundary conditions (1.7) and (1.8) can be expressed as

02 02 027®
0, Bﬁ) - B(z) +2¢G B(Z) Xz
M, ;5 Wi

3 2 1) 2
~0,pM ‘3 +26G)| BY) T o +p0) 2 0 %—94M+2KG1¢ P,
oo oy} s )| oy}

B“) 0* s 02 52 5 Qa0 @y @ o

2
B YRGB () R Rl /AW L
oy, = o P | o i
(21<G B o 0D (21<G B —a ) 6722 ox M
5 | M

(1.23)

(1.24)



2 2) 2
R R L. W
ayl 5)’ ayZ ayl

{ (12) 5 Lq O FXQ) { an 5’ Lgen @ ]ax(l) -

0,/ p0 22 0 B(l)ﬁ o2 an_0  an o’ L
21 a 2 22 6)/% 8)/1 22 aylzay 22 8)/2

3 2 2 | 2)
_lo.g@ 9 G2 07 @2 07 |0 %
63321 W‘f‘ 22 B 2 22 5 P 2KhG] P —Pz, (125)
yl %) yl y2_ M1 gl

3.(2) 2 2 ] 4, () 2
G p2 2 L1 g O~ g 97 |7 g ﬂ’—zKqu) 0
0 8y2 6y V5 ] 6y1 ayl

ki
( ") _qUan (Kknnk 8n2pv2)

M) _~ o~ o~ ]~~~ ~ 0~ | ~
0‘,(,- ) =R jinndom _Kiikqukl +qiiqkk2 [Kkkkk -pv? —Qkkqnnl(anz +‘<1212)]»
k ~ k . o
ocgl.”) =—Kl-1~nkqn,}, (x(] ) = Unkq,m, i,j,nk=12i#j, n#k,
2 1 2 1 2 1
B( )_B() 111’ B( )_B() 221’ B( ) _ B() 0. (1.26)

The stresses and displacement rates in the half-space are expressed in terms of the functions y (/) (j=1,2)in view of
(1.26) as

ii 8)/2 o ay ayl i 2 i ayz

5. = a2 02 g0 02 |a® [ ay & e 52 a®

2

0, _[ (12) 0 ee) 02 ]57((2) { a1y 02 e 02 Jax(l)
ij

ij ayl ’/ ayg ay 5 ij a 2 U ay2 ay |

. 3y M 02 o2 oy @
i) S ey 2|
y; 0ys oy 5 ) M
3 () 2 1)
_(2)576 (1>a ()0 o e
_VB B B B l)] _1723 li]' (127)

Thus, in the case of equal roots, the dynamic problem for a prestressed incompressible two-layer half-space subject to a
moving load is reduced to the determination of the functions x (/) and ¢ from the boundary conditions (1.24) or (1.25)
(depending on the contact conditions between the plate and the half-space). The stresses and displacement rates in the half-space
and the bending moment in the plate are defined by formulas (1.27) and (1.3).

2. Let us examine the effect of the velocity of the load on the roots of Eq. (1.5). We represent the solution of Eq. (1.5) in
the form
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TABLE 1

Velocity of load 1112 Tl%
O<v<y + +
Vv <v<Vvy K K
vy SV + +
V>C1 + —
n?(v)=-A+D, 2.1
where D =A% — 4.
Denote
pd =G2 Koo +G2 R 1111 —2411920 (K120 +K1012), P2 =Ky, 1,j=L2 i#j 22)
Pad =q[ %2222 t45 K111 ~2411922(K1122 tK1212)>  PC; ji>  LJ=L J- .
With (2.2), formulas (1.6) become
243,05 =d=v2q3,,  AG5,05 =q7 (] —v?), 23)

where ¢; and ¢, are the velocities of transverse waves along the Oy, - and Oy, -axes in an unbounded prestressed incompressible
body [3].

As in the case of a compressible body, the functions n? (v) take on real values when D > 0 and complex values when
D <.

If D =0, then the roots of Eq. (1.5) can be equal. The roots of the biquadratic equation D =0 are given by

~2 2 ~2 2 ~2 2
_qzz [d 2975 + (=1 \/4911 ) q”c2+q22 1 d)} (2.4
Hence, the equation D = 0 has real roots if
qhes +@5cf 2d. (2:5)

Note that v; <cy.

Thus, if inequality (2.5) does not hold, the roots of Eq. (1.5) for this incompressible material and any velocity v of the
load will not be equal (n; #m,). Inequality (2.5) is the necessary condition for the roots of Eq. (1.5) to be equal.

If Imv[.2 =0and Re vl.2 >0(i=1, 2), then the functions n12 and n% take on complex values when v; <v <v, and real,

positive, and equal values (n; =1,) whenv=v; or v =v,. Table 1 demonstrates what sign the functions n? (v)(i=1,2) have for

different velocities of the load on an incompressible body. Note thatn, =0ifv=c;.
3. The problem is solved by applying the Fourier transform with respect to the variable y;

SR = [ fr)e ™ dyy (3.1)

—00

and the inverse transform
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+00+ iy

f(J’1)— IfF(k)e’kyldk 7> 0.

—oo+ 7y

Taking the Fourier transform of Egs. (1.2), we obtain

d? d?
7_](21,]2 7_]{21,]2
{dyé az ™

]MF =0, j=12

(3.2)

(3.3)

Let us find the solution in the cases of unequal and equal roots and for different contact conditions between the layer and

the half-space. The solution will be represented in the general form for any velocity of load (subsonic, transonic, or supersonic).

Unequal Roots. Taking the Fourier transform of the boundary conditions (1.7) and (1.8) yields

F 2
k30, ?‘—zm[ﬁz d—z—kzﬁl

A% dy;

0

d? 1
k293[k2[31 B> dz]XF +[k20°52)

2
Dk —k2[31+B2d— 1F +ik| K2all) -
dy%

]xF +(k204 +2)pF =PF

22d2

Rl
dy%

F

2
—ik3 o)y ¥ + ko D) g

d2
kze{kzﬁl B> dz] i +[k2ag1;

%)

V)

, d?
2ikic [—kzﬁl +B, dZJ xF

The equation of motion and the boundary conditions written in terms of @ and ¥ can be transformed similarly:

dyz2

0@ N e -
22 dy2 dy2

— (k%05 +2ic)9F =

d? d?
2 —k*n? |®F =0, 72—1(2115 yF =,
dy dy;

_ik(k291 +2K0 dJ ®F +k2[91 d+2K0L2J‘1’F +(k204 +2c)0" =PF
dy,

dy,

d
52 (1) (2) F_; 2 1 _,2
k (oc163 s +oy nl jCD zl{oc293k +(a5) N3

ik 2k -n 2ol +0c(2)) —k? (2x0y —al) +n2a W —(k20, +21)0 =
for tight contact and
lk(nl (1) (2)) kz(a(l) (2) YF =

F
o 42 de ~2ikhF = PF,

a@ 42 ] F_(k20, +2k)0F =

ag)i YF 2ikich¢F =
dy,

3.4)

3.5)

(3.6)

(3.7)
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d 1 2 . 1 2), d .
—k2(a193 d—+a(22) —nlzocgz)](DF —ik {a263k2 +(a) -n2al) )d}PF ~2ikich¢t =P,
V2 V2
- dof 5 F_ (2 F
kot — o =2k oy WF (k205 +2)0F =0 (3.8)
lv)

for nontight contact.
The solution of Eq. (3.3) is sought in the following form considering decay at infinity:

XF = Aefkn v +Bek2kn2y2’ (3.9)

where 4 and B are constants of integration; k ; = o =|k|/k ifni. >0 andk; =i ifn? <0
Ifn; takes complex values, then it is necessity to set k; =landn ; =cRen; —(=1)/ ilmn; (G=1,2)in (3.9).

The solutions for ®F and WF are represented in the form
oF =4y WF —p ks (3.10)

where A4 and B, are constants of integration.
Note that for the values of y ', ®F, and ¥'F to be finite, it is necessary that Ren; > 0.

Note also that the function ¢ appears linearly in the systems of equations (3.4), (3.5), (3.7), and (3.8). Substituting (3.9)
into (3.4) or (3.5) depending on the boundary condition, we obtain a system of algebraic equations for 4, B, and ¢! . The solution

of this system can be written in the form

pFr/(2) , pFr(2) pFr (1) pFry(D)
IR P ey o AU P

ehakmh
K3AK) k3 A(k)

_PfU, +iPfU,
A(k)

F , (3.11)

where

Ak) = k40050 (kyy {75 —kay Py §)+ 210505 ) v ()

—kiky 0,0, (Y ) —y Oy O+ k2 20k, (kyy Py ) —kyy Dy D)

ey DY)~k y Py ) )20, (05 —2m)(ky vy P~k Py D)

+0,4 ey 95y —kay v G+ 2k [ (03 ~26mr v S —v$vE))

k0 (1P )~y |+ 2y S —kar S (3.12)

U k20,037 +k k20,7 + 2y (03 —2ih)+ by ) 1+ 2k ey D),

U =k k30,007 +k2 (0470 — 261017 )+ 2k jhocd v + 2/ =12

1 2 2 1 1 2 2 1 1 2 2)..(1
Uy =k03 (/75 =y Py S+ ky v S kv v ) — 2y v ke Gv i),

Uy ==k [y v —koy Dy D) =20y Dy —kpy By -2 (v (P92 -y Py (1)) (3.13)
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in the case of tight contact and

k) =K20,05 () vy S+ K20, oy §)v )~y )

(2))’

+2ke(03 ~26m)r D7D —y Dy D)4 2y Dy ) —hyy Dy 2

2 a1 TV o 22 721

pF =0, U =0, UY =) (k20, +2¢), j=12

U1 =0, Uy =2 Pr) 042

in the case of nontight contact.
Here

) _ 2.,.2.,(2 i) _ 1 2.2 (2
YEVJt)_O"gn)_kjnja(') szj _nj(agi)_kjnjaz('i))’

n ’

v =ng v =Bi—k2By, ijn=12 izn

Similarly, we use solution (3.10) and the boundary conditions (3.7) or (3.8) to determine 4, B, and " :

pFrr(2) Fr7(2) pFrr(l) Frr)
A _IPUN RN By _ P TR Y% gk
k2Ag (k) k2 Ao (k)
¢F _PlFUl() +iP2FU20
Ag (k)
(D)
Ak iU’ U '
A0 (k):—g’ U;%) =U§'2)9 Uﬁlo) =_7j’ Uj() =_7]9 ]=1a2
kimy kimy kimy

Taking the Fourier transform of (1.15) and (1.3), we get

F 3y F 2, F
~ ) d 2 d o~ . 1 Loy d
QiI; :_kz(xgi) X +°‘l(',-) X3 s Q,f :—lk30c§j)xF+lka§].) Xz ,
dy, dy3 e

F 2 2
if - k2D ikv(kzﬁla—ﬁszxF,

dy, ~ 7 ovp v
kG h3

MF DB G e s
V1

With (3.9) and (3.11), expressions (3.19) become

~ 1 ~
F _ pF~ (D) Fr-(2) F _
O =amy B Ly +R T Oy =

b
A(k)

Fpr(l pHF(2
(-PITD +iPfT D),

1 1
-F _ pF (1) Fr(2) -F _ Fr() , pFr(2)
) = (k)(lPI I‘1 +P2 [1 ), U, = (k)( P1 1‘2 +zP2 l2 ),

MF=A(lk)(iPlFl“$)—PzFl"éz)), nj=12% n#j

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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T = kyy DU D ekakta Ga+h) _ gy Dy @) hikm Oy ),
{0 =y@y® koot _y D@ gk O+,
r® :V(kzygz)Ut(l)ekzkﬂz(J’z*'h) kMU ki (y2+h>),
r{ :v(y(22)Ut(1)eksz]z(J/z+h) —y Oy @ ekt (y2+h)),

L CUR

. Lt=12 i+ 3.21
073 1oy, J J (3.21)

The Fourier-transformed stresses and displacement rates in the half-space and the bending moment in the plate can be
expressed in a similar way, using formulas (1.17), (1.3), (3.1), (3.10), and (3.17).
Equal Roots. Consider the case ); =1, =n. Taking the Fourier transform of (1.24) and (1.25) yields

2|0, —k2[3§2)+[3<2> +21<B(2) L OF _ ,;{ k20 B(l)i
yz dyZ

2]((—](2[3(1) B(l) HX“)F — (k%04 +2)9F =

yz

205| -42p0 4 p0) L d’ | k2ald @D 97 d? | d | F
dy3 dy; ) dv

. d 12) (22 d? 2F _~ipntF _ pF
—ik| k2053 L k201D 4o x OF _2jkichF =P
{ 21 a’y2 22 22 dy% 2

ik[—(zrcﬁé? o e + (2xBSY) - <2”) ]me
2

2
52 (262 + a2 )+ a P d” | d _F _;2 F_
{ k2 2By + a5 )+ s y 2} ™ xPF —(k20, +2)9F =0 (3.22)

for tight contact and

k2q g1]2)+ag212) d> | d L OF kzaglll)Jra%l)ﬁ 7 (OF =
a2 |d dy?
lys ) dva %)

d? d? d
k2 kZB(l) B(l) k2a(2121) 2221) e X(])F
y2 dyz dy,

ik| —k203p2) k200D o) L OF iy =
dy 22 22 d 2 ’
2 y2
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2%k2kp) 4 OF i —k2p) + ;3(‘) x OF —(k20, +2k)F =0 (3.23)
dy, dv3
for nontight contact.
The solution of Egs. (3.3) is sought in the form
x DF =140 + [kIn(y, +h)BU) e ey, | (3.24)
where 4 (/) and B(/) are constants of integration. Let
A =n4, BO =nB, 4® =cid, B® =giB. (3.25)

The constants 4 and B and the function ¢ are determined as in the case of unequal roots of Eq. (1.5). As a result, we

obtain expressions similar to (3.11). The components of formulas (3.11) are determined from either (3.12) and (3.13) or (3.14)
and (3.15), depending on the contact conditions. The following notation should be used:

) =l 2@ wall) e, P el vall) -l
Y —n[ al? +a ) (a@z)m(zl))] Mel —n[ a2 _p (3a(22>+2a<21))]
1D = pD +80 2D, 1P 2R BD). Lj-LE v
v =p@ 42 p2)), @ =2 p2) (3.26)

Formulas (1.3), (1.27), (3.1), and (3.11) can be used to represent the transformed stresses and displacement rates in the
half-space and the bending moment in the plate in the form (3.20), where the functions I lj , Fl.’ ,and I’ dt> are defined by formulas

(3.21) with (3.26).

Thus, the Fourier-transformed solution for a prestressed two-layer elastic half-space steadily moving under the action
of'a moving load has the form (3.9) or (3.10) in the case of unequal roots and (3.24) in the case of equal roots. The components of
formulas (3.9), (3.10), and (3.24) are determined from (3.11)—(3.13) for tight contact and from (3.11), (3.14), and (3.15) for
nontight contact. In (3.12)—(3.15), notation (3.16) is used forn; #n, and notation (3.26) forn; =n5,.

The Fourier-transformed stress/strain characteristics are determined from (3.20) using the roots of the characteristic
equation (3.16) or (3.26) and the boundary conditions (3.12), (3.13) or (3.14), (3.15). It follows from (3.20) that the stress/strain
characteristics of the half-space increase without limit as A(k) — 0. The expression for A(k) = 0is a quartic polynomial (in k) for
(3.12) and a cubic polynomial for (3.14). If the equation A(k ) = O has real positive multiple roots, resonance is possible [4]. The
associated velocity of the load is called critical.

To recover the original functions in (3.20), it is necessary to use the inverse Fourier transform (3.2).

4. Let us examine the effect of prestresses, the mechanical characteristics of the plate and half-space, and their contact
conditions on the critical velocities of the load in the case where the half-space is incompressible and described by the
Bartenev—Khazanovich potential [2]:

O =2uS,. (4.1)

We will use the method outlined in [4] to determine the critical velocities.

The theory of finite (large) prestrains gives the following expressions for 4,5, p;, S gB ,and g
Aip =280 i + 00, SEP =g + 0 0

wy =2 + pO(h; +1; )]7&;2%}2(7»1' +2;)7 g5 =7x_j]~ (4.2)
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TABLE 2

V2
. n/G =01 w/G, =05 w/G, =08
1 0 0 0
1.1 0.372 0.831 1.052
1.2 0.490 1.096 1.387
1.3 0.562 1.256 1.589
1.4 0.609 1.361 1.722

Assume that the initial strain state is plane (A3 =1, A4 :k’zl) and the surface load is zero (§ gz =0). Then the

components of the tensor K are expressed as
Kinn =Ko =201, Kopip =201 (2 + )71, Kyppp =203 03 + )71,
Kio12 =Ko121 =201 (2 + )71, Ryppp =Knoy1 =0 (4.3)
Using (2.2)—(2.4), (4.2), and (4.3), we obtain

vi=0, vZ=8u(2 -Dn ' (2 + )7 (4.4)

It follows from (4.4) that for A.; > Ithere exists a velocity of the load such that Eq. (1.5) has equal roots (n; =m, ). Thus,
when 0 <v <v, and A > 1, the roots n; (=1, 2) are complex (Table 1).

Substituting (4.2) and (4.3) into (1.6), (1.16), (1.26), (3.16) or (3.26) and then into (3.12) or (3.14), we find the roots of
the equation A(k) = 0in the cases of tight and nontight contact, respectively.

For numerical purposes, we setv; =0.25 (Poisson’s ratio), k =0.845 (shear coefficient), andp/p; =0.5.

Table 2 summarizes the values of v, for different values of u /G and 4.

Table 3 collects the values of the critical velocity v; (minimum of the dispersion curve) and v; (maximum of the

dispersion curve) and the corresponding values of k%, the velocity of Rayleigh waves vy, and the velocity ¢ for different values
of L/ Gy and A and different contact conditions (tight (a) and nontight (b)).
Note that the velocities in Tables 2 and 3 are divided by the velocity ¢4 of transverse waves in the plate material.
Figure 1 shows the dispersion curves with the parameters corresponding to 1/ G; = 0.8. The dispersion curve and
dashed horizontal lines (cl2 / csz) corresponding to the same value of A; have the same number n =101, —5.

We will restrict ourselves to the case ki < mwbecause the motion of the layer is described using the theory of plates and
the Timoshenko hypothesis, which is valid for waves longer than the thickness of the layer.

An analysis of the above results leads to the following conclusions. The effect of prestresses on the critical velocity of
the load is stronger for relatively soft plates and nontight contact. With nontight contact, the resonance occurs at a lower velocity
of the load than with tight contact. The softer the plate than the half-space, the less the critical velocities of the load than the
velocity vg of Rayleigh waves. Note that in the range of | being considered, the velocity vg decreases compared with ¢; under
compression and tends to ¢; under tension. In the case of tight contact for /G| =0.8 (Fig. la), the dispersion curve for A; >1
(curves 5—-9) have two extrema. In the other cases, there is only one or no critical velocity.

The critical velocities for various contact conditions between the half-space and the plate are close to the velocity vg
under compression and less than vy under tension.

The rate of change in the critical velocities increases under compression and decreases under tension.
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TABLE 3

w/ G . 06 | 07 | 08 | 09 | 1.0 | L1 | 12 | 13 | 14
e 0.252 | 0.303 | 0.353 | 0.401 | 0.447 | 0.491 | 0.532 | 0.572 | 0.609
- 0.101 | 0.232 | 0.310 | 0.373 | 0.427 | 0.475 | 0.511 | 0.556 | 0.561
0.428 | 0.457 | 0.483 | 0.486 | 0.488
o ST T T T 099 0253 | 0201 | 0300 | 0,308
Sk 0.094 | 0.219 | 0.291 | 0.346 | 0.394 | 0.432 | 0.457 | 0.467 | 0.473
° 0.059 | 0.138 | 0.186 | 0.226 | 0.262 | 0.294 | 0.314 | 0.323 | 0.329
R 0.435 | 0.478 | 0.522 | 0.560 | 0.566
kh 0.048 | 0.030 | 0.020 | 0.017 | 0.013
e 0.564 | 0.679 | 0.790 | 0.898 | 1.000 | 1.098 | 1.190 | 1.278 | 1.362
VR 0.220 | 0.518 | 0.694 | 0.834 | 0.955 | 1.063 | 1.162 | 1.251 | 1.339
0.822 | 0.844 | 0.878 | 0.914 | 0.931 | 0.941
0.5 a — — —
v 0.441 | 0.667 | 0.853 | 1.093 | 1.269 | 1.363
h 0.207 | 0.460 | 0.597 | 0.694 | 0.723 | 0.823 | 0.880 | 0.911 | 0.927
’ 0.132 | 0.317 | 0.452 | 0.578 | 0.702 | 0.810 | 1.000 | 1.138 | 1.232
¢ 0.713 | 0.858 | 0.999 | 1.135 | 1.265 | 1.388 | 1.505 | 1.617 | 1.722
VR 0.285 | 0.655 | 0.878 | 1.055 | 1.208 | 1.345 | 1.470 | 1.586 | 1.710
0.861
0.8 a — — — — — — — _
v 0.286
h 0.262 | 0.565 | 0.721 | 0.827 | 0.901
’ 0.168 | 0418 | 0.620 0835 1088 | | |

In the case of tight contact for A; <1, there exists a value A} at which there are no critical velocities. The same is

observed in relatively soft plates under tension (A; > 1) for both tight and nontight contacts.

Thus, the values and number of critical velocities of the load are strongly dependent on the prestresses in the half-space,
the mechanical characteristics of the components of the two-layer medium, and the contact conditions.

5. Let us analyze, as an example, the stress—strain state of a two-layer medium: a layer (plate) on an incompressible
half-space with Bartenev—Khazanovich elastic potential (4.1). Assume that the conditions formulated in Sec. 4 are satisfied and
the two-layer medium is subject to a linear load with components given by P; = PS(y; )cos o and P, = P3(yy )sin a, P =Gy,
where o is the angle between the load direction and the Oy, -axis.
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To calculate the components of stresses and displacement rates in the half-space and the bending moment in the plate,
we will use formulas (3.20), (3.2), and (4.3). The integrals in the inverse transform will be evaluated as in [23].

Let us examine the dependence of the stress/strain characteristics on the prestresses in the half-space for different
velocities of the load (subsonic, transonic, and supersonic) and different contact conditions between the plate and the half-space.

Letk =0.845,u/Gy =0.5,p/py =0.5,v; =0.25, a = /2. With such values, ¢; =cg if A =1

When v < ¢;, we consider only subcritical velocities of the load.

Let us examine the case v <v"* <¢;. Table 3 summarizes the critical velocities of the load for different A, and contact

conditions.

Figure 2 shows the distribution of the stress Qll for y, =—2h/ A, andv? = 0.1cs2 in the cases of tight contact (a) and
nontight contact (b). Curves /, 2, and 3 correspond to A; =0.8, 1| =1, and A; =1.2. With such velocities of the load, the diagrams
of stress/strain characteristics are symmetric about the point of load application.

Figure 3 shows the dependence of the stress/strain characteristics on the prestresses in the half-space and the velocity of
the load at the point y; =—A A, y, =—h/2of the plate and at the point (y; =—Ayh, ¥, =—2h\ ) of the half-space in the cases of
tight contact («) and nontight (b) contact. Curves /, 2, 3, and 4 correspond to v2 = 0.1c52, 0.2052, 0.3052, and 0.4052.
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Figure 4 shows the effect of rotary inertia at different velocities of the load and prestrains on sz at the point (y; =\ A,

v, =—2hA;) in the cases of tight (a) and nontight (b) contact. The notation in Fig. 4 is the same as in Fig. 3.

An analysis of the numerical results for subcritical velocities of the load leads to the following conclusions. The stress
amplitude, displacement rates in the half-space, and the bending moment in the plate are less with tight contact than with
nontight. At A, the rate of their increase under compression is greater than under tension. Decrease with distance from the point
of load application is slower under compression than under tension. The stress/strain characteristics and their dependence on the
prestresses are determined by the coordinates of the point of interest.

As the velocity of the load increases, the effect of prestresses becomes stronger. The increase is more intensive under
compression. With tight contact, the effects of the velocity and prestresses are weaker than with nontight contact.
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Figure 4 demonstrates that rotary inertia is significant with nontight contact and high velocities of the load. With tight
contact, the effect of the prestresses on the value of the inertia term is weak (Fig. 4a), whereas with nontight contact this value is
strongly dependent on not only the velocity of the load, but also the prestresses (Fig. 4b).

Consider the case v > ¢|. Figure 5 shows the stress Ql 1 as a function of the distance to the point of load application in the

cases of tight (Fig. 5a) and nontight (Fig. 5b) contact for v2 = chz and y, =-2h)\ for the half-space and y, =—h/2for the plate.

The notation in Fig. 5 is the same as in Fig. 2. With supersonic velocity of the load, the curves are asymmetric about the point of
load application, as in the case of a compressible half-space. The forward wave decays much quicker than the backward wave,
but does not disappear completely because of the presence of the plate. An analysis of the results shows that the stresses and
displacement rates in the half-space and the bending moment in the plate are strongly dependent on the prestresses in the
half-space when v > ¢;. The form of this relationship is determined by the position of a point of the layered medium relative to the
point of load application.
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