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The paper outlines a mathematical model describing the vibrations of buildings and engineering

structures with general-type passive shock-absorbers, rigid bodies, and ideal constraints. Two

modifications of systems with passive shock absorbers are considered assuming constancy of their

structure. These systems are studied numerically; the dynamic processes excited in them are compared
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Introduction. Considerable damage and numerous victims of earthquakes challenge researchers to look for ways of

minimizing the effect of such phenomena. The design of buildings is improved to enhance their capability of resisting loads due

to vibrations of the foundation (ground). Dynamic loads on various mechanical systems can significantly be reduced by using

shock-absorbing devices with flexible, frictional, and other elements [7, 13–15]. Currently, various shock-absorbers are

intensively used to reduce seismic loads on buildings and above-ground structures [2, 9, 11, 16, 17]. Relevant research efforts are

important because of the destructive earthquake in Japan (Kobe, 1995) and, for example, the recent (2005–2006) earthquakes in

Indonesia, Thailand, China, Turkey, Iran, Russia (Koryakiya), Pakistan, and other regions of the globe. This problem is also of

importance for Ukraine, especially for the Crimea, the Carpathians, and adjacent regions. There has been a recent resurgence of

interest in new designs and structures of seismic dampers with high damping capabilities owing to rubber and plastic elements

and coatings [11]. Despite the different designs of the passive shock-absorbers to be discussed below, their mathematical models

in a general dynamic system have a stereotypic description for many modifications.

This paper outlines a deterministic model of a system with general-type passive seismic dampers and compares two

modifications of this kind of shock-absorbers to assess how they reduce the inertial effect of an earthquake on a shock-mounted

body (building or engineering structure). All components of the system are considered rigid. The translational motion exciting

the system is considered kinematic and is specified as time-dependent accelerations. It is adopted that the maximum

accelerations range from 0.2 to 0.4 m/sec
2
, the duration of excitation from 10 to 40 sec, and the dominant periods in the excitation

spectrum from 0.1 to 2 sec [4, 6]. The constrains are assumed ideal, i.e., the work done by constraint forces against a possible

displacement is zero. Moreover, the constraints among bodies are considered to be ideal, holonomic, and bilateral. As possible

examples, we will use the systems shown in Fig. 1 [2, 8, 9, 17], where component 1 is the body (foundation) undergoing

oscillatory motions with seismic acceleration W xx �
��

1, and component 2 is the body (engineering structure) subject to the

dynamic load from the foundation. The contacting surfaces of bodies 1 and 2 (Fig. 1a) or bodies 2 and 3 (Fig. 1b) are represented

by circular arcs of radii R and r (in the plane of the figure); other curves can also be used for this purpose. Since the coefficient of

friction of the second kind (rolling friction) has small values (according to [11], it ranges from 0.03 to 0.06 in shock-absorbers

with a viscous layer on its contact surfaces), this type of friction is neglected in the mathematical model. Also, sliding friction is

considered absent in the system in Fig. 1b, i.e., the contact surfaces of bodies 1 and 2 are assumed perfectly smooth. The sliding

friction in the system in Fig. 1b is assumed sufficient to ensure rolling without slipping, i.e., the contact surfaces of bodies 1 and 3

and bodies 2 and 3 are absolutely rough [3].

Rolling bodies 3 (Fig. 1b) are assumed inertialess. The model is based on the Lagrange equations of the first kind. It will

be used to numerically analyze the processes in a dynamic system with shock-absorbers of two types subject to seismic

accelerations and to compare the effectiveness of these shock-absorbers.
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1. Kinematic Relations. The features of the system in question suggest that it is most convenient to use the Lagrange

equations of the first kind for the model. In that case, the equations of motion of the shock-mounted body include constraint

equations determined by the design model and contacting surfaces. Naturally, the shock-mounted body rests on several identical

supports (ideally, there are three supports and they form a triangle when viewed from above; with more than three supports,

measures should be taken to make the system statically determinate [1, 5]).

We will address the constraint equation of the system in Fig. 1a. Let the origin of the coordinate system x By2 2 be at the

point B (the upper end of the vertical diameter of jut 3 of body 1). The coordinates x2 and y2 describe the displacements of body

2 relative to body 1. Here is the parametric form of these coordinates:

x R r2 � �( )sin (, (1.1)

y R r R r R r2 1� � � � � � �( ) ( )cos ( )( cos )( ( , (1.2)

where the angle ( is measured counter-clockwise.

Eliminating the parameter ( from (1.1) and (1.2), we obtain the equation of circle

C D
x y R r R r

2

2
2

2 2
� � � � �( ) ( ) . (1.3)

Since the relative positions of bodies 1 and 2 are physically realizable, the constraint equation derived from (1.3)

describes a semicircle of radius ( )R r� below the horizontal diameter (the dashed line in Fig. 1a):

y R r x R r2
2

2

2
� � � � � �( ) , 0 2� � �y R r. (1.4)

The motion of body 2 in the system in Fig. 1b will also be translational because of a similar arrangement of identical

supports. The angle(is also assumed positive when measured counter-clockwise. The displacements of body 2 relative to body 1

are defined by the coordinates x2 and y2 . The equation of geometrical constraint (between bodies 1 and 2) is convenient to set up

in kinematic form, provided that there is no slipping between body 3 and bodies 1 and 2 due to the ideality of the constraints.

The projection of the velocity of the center O3 of body 3 translating relative to body 1 onto the Ox-axis is given by

�x rO
3

3� �� , (1.5)

where �3 is the angular velocity of rotation of body 3 in the plane yOx; r is its radius.

The projection of the relative velocity v2 of body 2 (of any of its points, including A2 ) onto the Ox-axis can be found

from the condition that the point A1 is the instantaneous center of relative velocities of body 2, the velocity vector v2 being

perpendicular to the position vector A A1 2 . Thus, we have

� cos cosx r2 32
2 2

� � �

( (

, (1.6)
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i.e., the absolute angular velocity of rotation of body 3 is

�

(

3

2

1
� �

�

�

( cos )

x

r
. (1.7)

On the other hand, the relative velocity vO
3

of the centerO3 of body 3 can be expressed in terms of the velocity �x2 of the

center O2 of translating body 2 and the velocity � �

� ( )( R r of relative revolution of the point O3 around the pole O2 (compound

motion), which when projected onto the Ox-axis yields

� �

� ( )cosx x R rO
3

2� � �( (, (1.8)

where R is the radius of the contact surface of body 2.

As a result, Eqs. (1.5)–(1.8) yield the constraint equation for the coordinates ( and x2 in kinematic form:

�

�

( )( cos )
(

(

�

� �

x

R r

2

1
. (1.9)

This equation can be integrated. Using (( )u 0 0� as an initial condition (sphere 3 is located symmetrically about the

spherical surface of body 2), we obtain the constraint equation

x R r2 � � �( )( sin )( ( , (1.10)

i.e., the constraint is holonomic.

Naturally, the constraint equation (1.10) can also be obtained by considering the conditions of rolling without slipping

of cylinder 3 over bodies 1 and 2. After the system moves from the starting position (( � 0) into the position shown in Fig. 1b, the

coordinate x2 of body 2 is determined from

x x R rO2
3

� � �( )sin (, (1.11)

where xO
3

is the coordinate of the center O3 relative to the center O2 of body 2, � is the absolute angle of rotation of body 3

rolling over the cylinder of radius R from the point A3 ( )( � 0 to the point A2 . Since there is no slipping during rolling, the arcs

V � � �A A r2 3
*

( )� ( (1.12)

and

V � �A A R2 3 ( (1.13)

are equal, where A3
*

is a point on cylinder 3 initially ( )( � 0 coinciding with the A3 on body 2. Equalities (1.12) and (1.13) yield

� (� �

�

-

.

/

0

1

2

R r

r
. (1.14)

The relative coordinate xO
3

of the center of body 3 is determined, according to Fig. 1b, as

x rO
3
� �� . (1.15)

In view of (1.14) and (1.15), Eq. (1.11) takes the form (1.10) obtained earlier.

According to Fig. 1b, the constraint equation for the coordinates ( and y2 (for body 2) is

y R r2 1� � �( )( cos )( , (1.16)

y2 being reckoned from the upper end of the vertical diameter of cylinder 3.

2. Equations of Motion. In setting up the equations of motion of the systems in Figs. 1a and 1b, it should be born in

mind that body 2 undergoes plane translation, i.e., its kinematics is completely characterized by the motion of one point. Of three

degrees of freedom (for the plane motion of a free body), rigid body 2 maintains one degree of freedom due to the two constraints
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at the contact with two supports. Thus, one equation of motion is enough. It is possible to use the constraint equation y f x� ( )

between the coordinates x and y of a representative point of body 2 and the associated relationship � ( )�y f x x�

� between the

projections of the velocity of the point onto the coordinates axes to derive an equation of motion based on the Lagrange equations

of the second kind. This, however, would involve labor-intensive (in some cases) transformations, and, moreover, the ideal

constraints among the bodies would not be directly defined. Therefore, it appears more expedient to follow another way: use the

Lagrange equations of the first kind and constraint equations and perform matrix transformations employing relevant software

such as MATLAB.

In doing so, we obtain, for the systems in Fig. 1, a differential equation of motion and a formula for the undetermined

Lagrange multiplier that leads directly to the constrain reaction. We will follow this approach here to develop a model.

The acceleration of the compound motion of an arbitrary point C relative to the inertial frame of reference xOy

undergoing plane translation is defined by

�� ��

Z Z WC � � , (2.1)

where Z is the position vector of the point C in the coordinate system x By2 2 ; ZC is the position vector of a point in the absolute

frame xOy; and W is the seismic acceleration of body 1 in the same frame of reference. The equation of motion of a point in the

frame xOy can be written as

mZ P NC

��

� � , (2.2)

where P mg� is the weight of body 2; N is the resultant of the forces exerted by the juts of body 1 or by bodies 3 on body 2 (this

resultant is directed along the normals to the surfaces of bodies 1 and 2 at the contact points for the system in Fig. 1a and at the

angle ( S 2 for the system in Fig. 1b; g is the acceleration of gravity; m is the mass of body 2). Substituting (2.1) into (2.2) and

performing transformations, we obtain

��

Z g
N

m
W� � � . (2.3)

Let us write Eq. (2.3) in matrix form. The elements of the matrix are the projections of the vectors onto the axes of xOy:

��

��

x

y g m

N

N

W

W

x

y

x

y

2

2

0 16

8

9

:

;

<

�

�

6

8

9

:

;

<

�

6

8

9

:

;

<

�

6

8

9

:

;

<

, (2.4)

where Z
x

y
�

6

8

9

:

;

<

2

2

; x2 and y2 are the coordinates of the point C in the frame x By2 2 .

The constraint equation has the parametric (q �(, Fig. 1) form (1.1), (1.2) for the system in Fig. 1a, i.e., x f q2 1� ( )and

y f q2 2� ( ), and the form (1.10), (1.16) for the system in Fig. 1b. Then �

�Z
f

f
q�

�

�

6

8

9

:

;

<

J

1

2

, where �f1 and �f2 are the derivatives of the

constraint equations with respect to the parameter q. Denoting C
f

f
�

�

�

6

8

9

:

;

<

1

2

, we obtain

�

�Z Cq� , (2.5)

�� �

� ��Z Cq Cq� � . (2.6)

Let G
f

f
�

�

�

�

6

8

9

:

;

<

2

1

. Then G C C G
T T

� � 0, i.e., the vectors C and G are perpendicular.

Since the vectors C and �Z are parallel, the vectors G and N are parallel too; therefore, we can write the following

expression [10]:

N G� 
 , (2.7)
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where 
 is a scalar (Lagrangian multiplier). Then (2.3) becomes

Cq Cq S
G

m

��

�

�
� � �




, (2.8)

where S
W

g W

x

y

�

�

� �

6

8

9

:

;

<

and �

�C
f

f
q�

��

��

6

8

9

:

;

<

1

2

.

Multiply (2.8) by the vector C
T

:

C Cq C Cq C S
T T T

��

�

�
� � . (2.9)

Multiply (2.8) by the vector G
T

:

G Cq
G G

m
G S

T
T

T
�

�
� �




. (2.10)

The acceleration ��q can be found from (2.9), and the multiplier 
 from (2.10):

% &
% &

% & % &

��

�

q

f W f g W f f f f q

f f

x y
�

�

�

�

�

� �

� ��

�

� ��

�

�

�

1 2 1 1 2 2
2

1

2

2

2
, (2.11)


 �

�

-

.

/

/

0

1

2

2

G Cq G S

G G

m

T T

T

�

�

. (2.12)

Expand expression (2.12):

% &
% &

% & % &


 �

�

�� �

�

� ��

�

�

�

�

�

�

�

�

6

8

9

9

:

;

f f f f q f W f g W

f f

x y1 2 1 2
2

2 1

1

2

2

2

�

<

<

m. (2.13)

For the system in Fig. 1a, we have

x f q q2 1� �( ) sin	 , y f q q2 2 1� � �( ) ( cos )	 , q �(, (2.14)

where 	 � �R r, R and r are the radii of the contact surfaces of upper (2) and lower (1) bodies in Fig. 1a, respectively.

Substituting (2.14) into (2.11) and (2.13), we obtain an equation of motion of body 2 and an equation to determine the

variable coefficient 
 and, hence, the reaction N:

�� ( cos ( )sin )q W q W g qx y� � � �

1

	

,

C D




	

� � � �

�

�

 

F

G

H

� sin ( )cosq W q W g q mx y
2 1

. (2.15)

Using 
, we can determine the normal reaction N from (2.7).

The equation of motion of the system in Fig. 1b and the multiplier 
 can also be obtained from (2.11) and (2.12) using

the constraint equations (1.10) and (1.16) given in terms of functions of the parameter (. Differentiating these equations with

respect to (, i.e.,

�

�

�

� � �f x R r1 2 1( )( cos )( , ��

� � �f R r1 ( )sin (, (2.16)

�

�

�

� �f y R r2 2 ( )sin (, ��

� �f R r2 ( )cos(, (2.17)

we arrive at the differential equation of motion and multiplier 
 for the determination of N:
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��

��

( )

�

( )
(

( (

(

� �

�

� �

�

x

R r

g

R r

1
2

2 2 2

2

2
tan

tan

, (2.18)




(

(

� �

�

�

�

�

6

8

9

9

9

:

;

<

<

<

m

x

R r

g y

R r

�

�� tan

( )

��

( )

2 1
1

2

2

2 2
, (2.19)

where g is the acceleration of gravity; ��x Wx1 � is the acceleration of body 1.

We need to know the reaction N (2.7) to determine the structure (to describe) the system under consideration: it should

change as soon as the reaction becomes zero, with a tendency toward negative values. After that, the mechanical system will

acquire additional degrees of freedom since constraint reactions will no longer act on it, the unilateral reactions N become zero in

this case. Naturally, this case should be completely excluded by choosing such designs and parameters of shock-absorbers that

no impacts would occur upon restoration of the system after separation.

3. Applicability Limits of Model (2.11), (2.12). Since each of the reactions N is the sum of two reactions from left

“(1)” and right “(2)” supports, i.e.,

N N N� �( ) ( )1 2 , (3.1)

and, moreover, the center of mass C is located above the horizontal line running through the centers O1 of the surfaces of juts

(Fig. 1a) orO3 for bodies 3 (Fig. 1b), there is a need for an additional analysis to ensure the normal operation of the system during

which the reactions N ii( ) , ,�1 2, of both supports cannot become zero and body 2 is in contact with both supports all the time

(there are no impacts). The limiting (critical) angle(C ( )1 at which the reaction of the second support becomes zero corresponds

to the configuration in which the vector of the reaction of the first support runs through the center of mass C (Fig. 2).

With further increase in | |( )(C 1 , the dynamic equilibrium of the systems could be achieved only if N ( )2 0� , which is

impossible because the geometrical constraints between body 2 and both supports are unilateral. The same is true of support 1.

The geometry of the systems in Figs. 1a and 2a suggest that such critical angles are expressed as

(C

a

H
( )1

1
� �arctan , (C

a

H
( )2

2
�arctan , (3.2)

where a1 and a2 are the horizontal distances from the center of massC of body 2 to the centersO2 of the spherical surfaces on this

body; H is the vertical distance from the point C to the same centers. Thus, the angle (must satisfy the inequality

( ( (C C( ) ( )1 2� � . (3.3)

1416

a b

Fig. 2

1

�(C ( )1

O2

a1

2

C

a2

N ( )1

H

G

R

�(C ( )1

O1

r
A

N ( )2

��x1

2

C

G

H
�(C ( )1

2

N ( )1

N ( )2

3

r
R

O2

�(C ( )1

R

a2a1

��x1

�(C ( )1

2



For the system in Figs. 1b and 2b, the critical angles for the left and right supports are given by

(C

a

R H
( )1

1
2� �

�

-

.

/

0

1

2

arctan , (C

a

R H
( )2

2
2�

�

-

.

/

0

1

2

arctan , (3.4)

and the admissible angle ( should also be determined from (3.3).

If the contact at the point A (Fig. 1a) and the points A1 and A2 (Fig. 1b) is not broken, the coordinates x2 and y2 will be

defined by (1.1) and (1.2) and by (1.10) and (1.16), respectively.

4. Numerical Example. Since seismic loads are of short duration, it appears reasonable to follow a deterministic

approach to study the dynamic processes excited in buildings and other structures. For this purpose, use is often made of input

perturbations in the form of sums of products of exponential and harmonic functions.

Figure 3 shows some variables characterizing the behavior of the systems in Fig. 1 and obtained through the numerical

integration of the above dynamic systems. The perturbation along the Ox-axis has the following form [8]:

C D C D
� �

�� exp ( ) sin ( )x A t t t ti i i O i O

i

i i
1

2 2

1

7

� � � �

�

A

, , � , (4.1)

where

Ai [mJsec
–2

]: 0.28, 1, 4, 2, 3, 0.8, 0.3; , i : 1, 0.5, 1.5, 1, 0.4, 1;

tO
i

[sec]: 1, 3, 5, 6.5, 8, 10, 10.5; �i [sec
–1

]: 6, 8, 10, 4, 9, 7, 6.
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Moreover, r � 0.1 m, a1 � 10 m, a2 � 14 m, H � 15 m. The vertical vibrations of body 1 are not considered.

Figures 3–6 present the numerical results for the systems in Fig. 1. Curves 1, 2, and 3 correspond to R – r = 0.5, 1.5, 3 m.

Figure 3 shows the variation in the angle ( between the vertical and the normal at the contact point of the spherical surfaces. It

should be noted that the amplitude of almost steady-state (in () vibrations in the system with rolling supports (Fig. 1b) is far

below that in the system with pure slipping (Fig. 1a), which is true at the frequencies of excited vibrations. Lines 4 and 5 in Fig. 3

represent the critical angles (C ( )1 and (C ( )2 defined by (3.2) and (3.4). It can be seen that when R r� � 0.5 m (curve 1), the

extreme values of the angle ( exceed the maximum permissible critical values (3.2) in the system with pure slipping (Fig. 1a),

whereas there is a considerable margin for the critical angles (3.4) in the system with supports 3 (Fig. 1b), i.e., the constraints

between supports 3 and body 2 are not broken. The pattern for the resultants N (divided by mg) in Fig. 4 is qualitatively similar;

they are much smaller in the system in Fig. 1b. Figure 5 shows the projections of the absolute accelerations of bodies 2 (divided

by the acceleration of gravity, i.e., �� /x gC ) onto the Ox-axis and confirm the undeniable advantage of the system with rolling

supports 3.

Figure 6 shows the vertical accelerations ��yC (divided by g) of body 2, which also demonstrate weaker inertial effects in

the system in Fig. 1b.

The above solutions permit the natural conclusion that the system in Fig. 1b is much more preferable to the system in

Fig. 1a due to the smaller extreme values of the angle (, vertical displacements of body 2, the projections of its absolute

accelerations onto the Ox-and Oy-axes, and the reactions at the contact points between body 2 and the supports (spherical juts or

bodies 3). One more important advantage of the system with supports 3 is the higher (in absolute value) critical angles (C i( ) at

which the constraints at the contact points of the spherical surfaces are broken. Moreover, the vertical displacements y2 are

larger in the system in Fig. 1a than in the system in Fig. 1b. Buildings and engineering structures designed as in Fig. 1b would be

subject to much weaker effects (inertial forces �mxC
�� and �myC

�� and support reactions N), i.e., would possess higher capacity to
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survive earthquakes. Since the vertical components of the absolute acceleration of body 2 occurring during seismic vibrations of

structures with shock-absorbers can be reduced with the help of, for example, a prestressed element introduced between body 1

and body 2.

Conclusions. We have outlined a mathematical model describing the vibrations of buildings and engineering structures

with general-type passive seismic dampers, rigid bodies, and ideal constraints. Two medications of systems with passive seismic

dampers have been considered assuming constancy of their structure. These systems have been studied numerically. The

dynamic processes excited in them have been compared.
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