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The stress–strain state of a shallow shell with rectangular planform and varying thickness is analyzed in

a refined formulation for different boundary conditions. A numerical-and-analytic method is developed

based on the spline-approximation and discrete-orthogonalization methods. The stress–strain state of

shallow shells with thickness varied without change in weight is analyzed
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Introduction. Variable-thickness shells of various shapes are widely used in modern engineering structures of high

strength and reliabillity. The fundamentals of the theory of shallow shells are outlined in [1, 4, 6, 7, 11, 12]. The strength analysis

of such shells involves severe computational difficulties associated with the complexity of the original system of partial

differential equations and the corresponding boundary conditions.

This paper analyzes the stress–strain state of shallow shells with rectangular planform and thickness varying in one or

two coordinate directions. The shells are somehow fixed at their edges and are subjected to uniform normal pressure. The effect

of variation in the thickness at constant weight on the strain–stress state of the shells is examined. The problem is solved in a

nonclassical formulation based on a refined rectilinear-element model [2, 5, 17–19]. Note that the stress–strain state of shallow

shells was studied numerically in [3, 8–10].

Recent trends in computational mathematics, mathematical physics, and mechanics are toward the wide use of spline

functions to solve such problems. This is due to the following advantages of spline-approximations: (i) stability of splines against

local perturbations (the local behavior of a spline at a point does not affect its overall behavior, unlike, for example, polynomial

approximation); (ii) good convergence of spline-interpolation (unlike polynomial interpolation); and (iii) simplicity and

convenience of numerical implementation of spline algorithms. When used in various variational, projective, and other

discrete-continuous methods, spline functions yield much better results than classical polynomials do, simplify the numerical

implementation of these methods, and improve the accuracy of the solution. The spline-collocation method proposed in [13–16]

is developed here to analyze the stress–strain state of shallow shells with rectangular planform, varying thickness, and

complicated boundary conditions.

1. Let us consider shallow shells with rectangular planform and thickness varying in two coordinate directions. We will

use a refined formulation based on the hypothesis of rectilinear element. This hypothesis suggests that an element originally

rectilinear and normal to the coordinate surface remains rectilinear after deformation but not normal, its length remaining the

same.

According to this hypothesis, the displacements of a shell can be represented as

u x y z u x y z x yx x( , , ) ( , ) ( , )� � I , u x y z v x y z x yy y( , , ) ( , ) ( , )� � I ,

u x y z w x yz ( , , ) ( , )� , (1)
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where x, y, and z are the coordinates of points of the shell; ux , u y , and u z are the respective displacements; u, v, and w are the

displacements of the coordinate surface along the x-, y-, and z-axes, respectively; and I x and I y are the complete angles of

rotation of the rectilinear element.

According to (1), the strains are expressed as

e x y z x y z x yx x x( , , ) ( , ) ( , )� �� 9 , e x y z x y z x yy y y( , , ) ( , ) ( , )� �� 9 ,

e x y z x y z x yxy xy xy( , , ) ( , ) ( , )� �� 92 , e x y z x yxz x( , , ) ( , )� & , e x y z x yyz y( , , ) ( , )� & , (2)

where
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where �x , � y , and �xy are the tangential strains of the coordinate surface; 9 x , 9 y , and 9 xy are the flexural strains of the

coordinate surface; k1 and k2 are the curvatures; S x and S y are the angles of rotation of the normal regardless of transverse

shear; and & x and & y are the angles of rotation of the normal due to transverse shear. The equilibrium equations are
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where N x , N y , N xy , and N yx are the tangential forces; Qx and Q y are the shearing forces; and M x , M y , M xy , and M yx are the

bending and twisting moments.

The elastic relations for orthotropic shells symmetric across the thickness about the chosen coordinate surface are

N C Cx x y� �11 12� � , N C Cy x y� �12 22� � ,

N C k Dxy xy xy� �66 2 662� 9 , N C k Dyx xy xy� �66 1 662� 9 ,

M D Dx x y� �11 129 9 , M D Dy x y� �12 229 9 ,

M M Dyx xy xy� � 2 669 , Q Kx � 1&, Q Ky y� 2 & , (5)

where
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where Ex , E y and ,x , , y are the elastic moduli and Poisson’s ratios along the x- and y-axes; Gxy , Gxz , and G yz are the shear

moduli; and h h x y� ( , ) is the thickness of the shell.
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To determine the stresses in orthotropic shallow shells with rectangular planform, we will start with Hooke’s law [1, 2, 4]:

e b bx x y� �11 12� � , e b by x y� �12 22� � ,

e bxy xy� 66� , e bxz xz� 55� , e byz yz� 44� , (7)

where
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Resolving Eqs. (7) for the stresses and using (2), we obtain an expression for stresses in terms of the strains of the

coordinate surface:
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In the general case, the coefficients aij depend on x and y:

a
C

C

x
11

11

111
� �

�

�
, a

C

C

y
12

11

661
� �

�

�
, a

C

C
13

66

11

� � , a
C

C

y
14

11

661
� �

�

�
,

a
C

C

x
15

11

121
� �

�

�
, a

C C

C
16

12 66

11

� �
�

, a
C

C

x
k

C

x
k17

11

11

1

12

2

1
� �

�

�
�
�

�

�

�

�
�

	


 , a
C k C k

C
18

11 1 12 2

11

� �
�

,

a
k

C

D

y
19

1

11

66
� �

�

�
, a

k D

C
1 10

1 66

11

, � � , a
k

C

D

y
1 11

1

11

66

, � �
�

�
, a

k D

C
1 12

1 66

11

, � � ,

a
C

C

y
21

66

121
� �

�

�
, a

C

C

x
22

66

661
� �

�

�
, a

C C

C
23

12 66

66

� �
�

,

a

K k

C
24

2 2

2

66

� , a
C

C

x
25

66

661
� �

�

�
, a

C

C

y
26

66

221
� �

�

�
, a

C

C
27

22

66

� � ,

a

k k

C

D

y

k

C

D

y C

C

y
k

C

28

1

2
2

66

22 2

3

66

22

66

12

1

221
� �

�

�
�

�

�
�

�

�
�
�

�

�

�

�
�

�

	






�

�

�

�

�

	





y
k2 ,

a

k k D

C

k D

C

K k

C

C k C k

C
29

1

2
2 12

66

2

3
22

66

2 2

66

12 1 22 2

66

� � � � �
��

�

�

�

�

	






, a

k

C

D

y
2 10

2

66

12

, �
�

�
,

a
k D

C
2 11

2 12

66

, � , a
K k

C
2 12

2 2

66

, � � , a
k

C

D

y
2 13

2

66

22

, �
�

�
, a

k D

C
2 14

2 22

66

, � ,

a
k

K

K

x
31

1

1

1
�

�

�
, a k

k C

K

k C

K
32 1

1 11

1

2 12

1

� � � , a
k

K

K

y
33

2

1

2
�

�

�
,

a
K k

K

k C

K

k C

K
34

2 2

1

1 12

1

2 22

1

� � � , a

k C

K

k k C

K

k C

K
35

1

2
11

1

1 2 12

1

2

2
22

1

2� � � ,

a
K

K

x
36

1

11
� �

�

�
, a

K

K

y
37

1

21
� �

�

�
, a

K

K
38

2

1

� � , a
K

K

x
39

1

11
� �

�

�
,

a3 10 1, � � , a
K

K

y
3 11

1

21

, � �
�

�
, a

K

K
3 12

2

1

, � � , a
K

3 13

1

1

, � � ,

a
K k

D
41

1 1

11

� � , a

k

D

D

x

k

D

D

x
42

1

2

11

11 2

2

11

12
�

�

�
�

�

�
, a k

D k

D

K

D
43 1

2 12 2

2

11

1

11

� � � , a
K

D
44

1

11

� ,

a
D

D

x
45

11

111
� �

�

�
, a

D

D

y
46

11

661
� �

�

�
, a

D

D
47

66

11

� � , a
D

D

y
48

11

661
� �

�

�
,

a
D

D

x
49

11

121
� �

�

�
, a

D

D

D

D
4 10

12

11

66

11

, � � �
�

�

�
�

�

	






, a
K k

D
51

2 2

66

� � , a

k

D

D

y

k

D

D

y
52

1

2

66

12 2

2

66

22
�

�

�
�

�

�
,

1135



a
D

D
k

D

D
k

K

D
53

12

66
1

2 22

66
2

2 2

66

� � � , a
D

D

y
54

66

121
� �

�

�
, a

D

D

x
55

66

661
� �

�

�
, a

D

D
56

12

66

1� � �
�

�

�
�

�

	






,

a
K

D
57

2

66

� , a
D

D

x
58

66

661
� �

�

�
, a

D

D

y
59

66

221
� �

�

�
, a

D

D
5 10

22

66

, � � . (12)

We will consider the following boundary conditions:

(i) all edges are clamped:

u v w x y� � � � �I I 0 at x x a� �0, , y y b� �0, , (13)

(ii) three edges are clamped and one edge is hinged:
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2. To solve two-dimensional boundary-value problems of the class under consideration, the desired solution is

approximated by spline functions in one coordinate direction, and the resulting one-dimensional boundary-value problem is

solved by the stable discrete-orthogonalization method [2, 13–16].

The system of equations (11) includes no higher than second-order derivatives of unknown functions with respect to the

coordinate y. Therefore, it is sufficient to use cubic spline functions to approximate solutions in y. Then the solution of the

boundary-value problem for the system of equations (11) with appropriate boundary conditions can be represented in the

following form [13–17]:
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where u x v x w x xi i i( ), ( ), ( ), ( )IJ , and I yi x( ) are the required functions of the variable x; $ ji y( ) ( , )j �1 5 are linear

combinations of B-splines on a uniform mesh =:0 0 1� � � � �y y y bN� , satisfying the boundary conditions on y = 0 and y = b.

The system includes no higher than second-order derivatives of unknown functions with respect to the coordinate y; therefore, it

is sufficient to use cubic splines:
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where z = (y – yk)/hy on the interval [yk, yk + 1], k i i� � �2 1, , i N� � �1 1, , hy = yk + 1 – yk = const.

The functions $ ji y( ) are set up as follows:
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(i) if an unknown function is equal to zero, then
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(ii) if the derivative of an unknown function with respect to y is equal to zero, then
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The functions $ j N y, ( )�1 and $ j N y, ( ) are represented similarly.

Substituting solution (16) into the governing system of equations (11) and requiring them to be satisfied at set
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� �

A A A A A A
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1
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1
2 10 40 2 11 41( ) ( , ,a a w a a ) 1I x

� T � T � T
�

A A A A
20

1
2 12 50 2 13 51 2 14 52( ), , ,a a a yI ,
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dx
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~
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� � �

A A A A A A
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1
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A A A A A
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1
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1
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1
3 11( ) ( ) (, ,a a ax xI I A A A50 3 12 51 30

1
3 13� T � T

�
a a qy, ,) ( )I ,
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d

dx
a u a w a
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~

( ) ( ) (
I
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A A A A A A
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1
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1
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1
43 30 ) 1w
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1
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1
45 40( ) ( )a a a axI I x
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1
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1
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d

dx
a v a a w

y

~

( ) ( )
I
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� �

A A A A A A
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1
51 20 50

1
52 30 53 31 50

� �
T � T

1
55 41 50

1
54 40( ) (a axA A AI

� T 1 � T � T � T �
�

a a a ax y56 41 50

1
57 50 59 51 5 10 52 5

A A A A A A) ( ),I I
0

1
58 50

�
T 1( )a yA I , (20)

which can be represented as

dY

dx
AY f� � , (21)

where

Y u u u u v v v v w w wN N N N N�{ , , ,
~

, ,
~

, , , ,
~

, ,
~

, , , ,
~

0 0 0 0 0 0� � � � � , ,
~

,� wN

I I I I I I I Ix xN x xN y yN y yN
T

0 0 0 0, , ,
~

, ,
~

, , , ,
~

, ,
~

}� � � �

is a vector function of x; f is the vector of right-hand sides; A is a square matrix whose elements depend on x.

The boundary conditions for this system read

B Y x b1 1 1( ) � , B Y x b2 2 2( ) � . (22)

The one-dimensional boundary-value problem (21), (22) is solved by the stable discrete-orthogonalization method.

To estimate the accuracy of our method, we will compare the stress states of an isotropic shallow shell with square

planform, constant thickness, and hinged edges obtained by the spline-collocation method followed by the discrete-

orthogonalization method and by the method of double trigonometric series using the expansion

u a
m x

a

n y

b
mn

nm

�

�

�

�

�

## cos sin

, ,..., ,...

3 3

1 31 3

, v b
m x

a

n y

b
mn

nm

�

�

�

�

�

## sin cos

, ,..., ,...

3 3

1 31 3

,

1138

TABLE 1

x a/

Spline-approximation method

Analytic solution

N = 9 N = 13 N = 17 N = 21

0.1 1098.8 1112.7 1117.3 1119.3 1121.0

0.2 2016.7 2043.9 2052.9 2056.6 2060.0

0.3 2679 2717.4 2730 2735.4 2740.0

0.4 3070.9 3117 3132.3 3138.6 3144.3

0.5 3199.8 3248.8 3264.9 3271.7 3277.7



w c
m x

a

n y

b
mn

nm

�

�

�

�

�

## sin sin

, ,..., ,...

3 3

1 31 3

,

I
3 3

x mn

nm

d
m x

a

n y

b
�

�

�

�

�

## cos sin

, ,..., ,... 1 31 3

, I
3 3

y mn

nm

e
m x

a

n y

b
�

�

�

�

�

## sin cos

, ,..., ,... 1 31 3

. (23)

Table 1 presents the results (values of the deflection wE/q0 at some points of the mid-surface for y = a/2) of stress–strain

analysis of the shell under a distributed load q = q0 = const obtained by the spline-collocation method with different number of

collocation points and from the analytic solution (23). The shell is characterized by the following parameters: a = 10, h = 0.4, k1 =

0.05, k2 = 0, , = 0.3. It can be seen that as the number of collocation points increases, the numerical results closely approach the

analytic solution, which may serve as a reliability criterion for our method.

3. Let us analyze, as an example, the stress–strain state a doubly curved isotropic shallow shell with square planform

and varying thickness under uniform normal pressure q q� �0 const.

We will examine three types of boundary conditions: (13), (14), and (15). The thickness of the shell (Fig. 1) varies as

h x
x

a

x

a
h( ) � � �

�

�

�
�

�

	





�

�

�



�

�

�% 6 6 1 1

2

2
0 , (24)

where h0 = const.

With such variation in the thickness, the weight of the shell remains constant. The input data: a b� � 10, k1 � 1/10,

k2 � 0, % � –0.4, –0.2, 0, 0.2, 0.4, , � 0.3, h0 � 1.
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Figure 1 demonstrates the behavior of the thickness h x( ). The values of h x( )are symmetrically distributed about the rise

in the mid-section.

Figures 2–4 show the thickness dependence of the deflection and stresses in the section y a� / 2on the lateral surfaces

of the shell clamped at all edges. As is seen, w, �x
�

, and �x
�

are symmetrically distributed about the rise in the mid-section. It

follows from Fig. 2 that the deflection peaks at the point of the rise, the maximum increasing with%. As the thickness increases in

this zone, its value decreases insignificantly. Figure 3 shows the stresses on the outside surface as a function of the thickness. It

can be seen that �x
�

peaks at the point of the rise, the maximum increasing with %. Figure 4 shows the stress distribution on the

inside surface of the shell. The stress patterns on the inside and outside surfaces are qualitatively close and differ by sign.

Quantitatively, the maximum stresses �x
�

are almost twice as great as �x
�

.

Figures 5–7 show the thickness dependence of the deflection and stresses in the section y a� / 2on the lateral surfaces

of the shell clamped at three edges and hinged at one edge. It can be seen that w, �x
�

, and �x
�

are distributed asymmetrically.

Figure 5 demonstrates that the maximum deflection is slightly shifted from the point of the rise toward the hinged edge, the

maximum increasing with%. As the thickness increases in this zone, the deflection decreases insignificantly. Figure 6 shows how

the stress on the outside surface depends on the thickness. It can be seen that the maximum of �x
�

is shifted from the point of the

rise toward the hinged edge and increases with %. Figure 7 shows the stress distribution on the inside surface. The stress patterns

on the inside and outside surfaces of the shell are qualitatively close and differ by sign. Quantitatively, the maximum stresses �x
�

are almost twice as great as �x
�

.

Figures 8–10 show the thickness dependence of the deflection and stresses in the section y a� / 2on the lateral surfaces

of the shell with two opposite edges clamped and the other two edges hinged. It can be seen that w, �x
�

, and �x
�

are distributed

symmetrically about the rise in the mid-section. It follows from Fig. 8 that the deflection peaks at the point of the rise, the

maximum increasing with %. As the thickness decreases in this zone, the deflection increases insignificantly. Figure 9

demonstrates how the stress on the outside surface of the shell depends on the thickness. It can be seen that the maximum of�x
�

is
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at the point of the rise and increases with %. Figure 10 shows the stress distribution on the inside surface of the shell. The stress

patterns on the inside and outside surfaces are qualitatively close and differ by sign. Quantitatively, the maximum stresses�x
�

are

almost twice as great as �x
�

.

Thus, by varying the thickness of a shell, it is possible to change the distribution of displacements and stresses, keeping

its weight constant. The method oulined here can also be used to analyze the stress–strain state of shallow shells with rectangular

planform and variable thickness in the anisotropic case.
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