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STRESS-STRAIN STATE OF SHALLOW SHELLS WITH RECTANGULAR PLANFORM
AND VARYING THICKNESS: REFINED FORMULATION

A. Ya. Grigorenko and N. P. Yaremchenko UDC 539.3

The stress—strain state of a shallow shell with rectangular planform and varying thickness is analyzed in
a refined formulation for different boundary conditions. A numerical-and-analytic method is developed
based on the spline-approximation and discrete-orthogonalization methods. The stress—strain state of
shallow shells with thickness varied without change in weight is analyzed

Keywords: shallow shell, nonclassical model, spline-approximation, variable thickness

Introduction. Variable-thickness shells of various shapes are widely used in modern engineering structures of high
strength and reliabillity. The fundamentals of the theory of shallow shells are outlined in [1, 4, 6, 7, 11, 12]. The strength analysis
of such shells involves severe computational difficulties associated with the complexity of the original system of partial
differential equations and the corresponding boundary conditions.

This paper analyzes the stress—strain state of shallow shells with rectangular planform and thickness varying in one or
two coordinate directions. The shells are somehow fixed at their edges and are subjected to uniform normal pressure. The effect
of variation in the thickness at constant weight on the strain—stress state of the shells is examined. The problem is solved in a
nonclassical formulation based on a refined rectilinear-element model [2, 5, 17—19]. Note that the stress—strain state of shallow
shells was studied numerically in [3, 8-10].

Recent trends in computational mathematics, mathematical physics, and mechanics are toward the wide use of spline
functions to solve such problems. This is due to the following advantages of spline-approximations: (i) stability of splines against
local perturbations (the local behavior of a spline at a point does not affect its overall behavior, unlike, for example, polynomial
approximation); (ii) good convergence of spline-interpolation (unlike polynomial interpolation); and (iii) simplicity and
convenience of numerical implementation of spline algorithms. When used in various variational, projective, and other
discrete-continuous methods, spline functions yield much better results than classical polynomials do, simplify the numerical
implementation of these methods, and improve the accuracy of the solution. The spline-collocation method proposed in [13—16]
is developed here to analyze the stress—strain state of shallow shells with rectangular planform, varying thickness, and
complicated boundary conditions.

1. Let us consider shallow shells with rectangular planform and thickness varying in two coordinate directions. We will
use a refined formulation based on the hypothesis of rectilinear element. This hypothesis suggests that an element originally
rectilinear and normal to the coordinate surface remains rectilinear after deformation but not normal, its length remaining the
same.

According to this hypothesis, the displacements of a shell can be represented as

ue (X, y, z)=u(x, )+ 2y (x, ), u,(x, p,2)=v(x, y)+zy ,(x, y),

uz(x, ,2)=w(x, ), (1
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where x, y, and z are the coordinates of points of the shell; u ., u o and u, are the respective displacements; u, v, and w are the
displacements of the coordinate surface along the x-, y-, and z-axes, respectively; and vy, and y ,, are the complete angles of
rotation of the rectilinear element.

According to (1), the strains are expressed as

exy(xaysZ):Sxy(x’y)+22K,\y(x7y)’ exz(xsy:Z)ZYx(xay)’ eyz(xayrZ)ZYy(x:y): (2)
where
ou ov ou oOv
ex=—+kw, &e,=—+kw g, =—"+_—,
Ox oy dy Ox
0 0 0 0
X:&_klziw’ Ky :&_kzzw’ 2ny: \Vx _,’_&’
ox oy oy ox
ow ow
Ve=Vy—9 V,=v, -9, 8x=—a+k1u, 8y=—6—y+k2v, 3)
where ¢, € s and ¢ xy are the tangential strains of the coordinate surface; « ., K s and « xy are the flexural strains of the

coordinate surface; ky and k, are the curvatures; 3 , and § , are the angles of rotation of the normal regardless of transverse
shear; and v, and y ,, are the angles of rotation of the normal due to transverse shear. The equilibrium equations are

oN ON, ON 0
%JFJ:O, LYo Oy | 9y ~k\Ny —kyN , +q =0,
ox oy oy Ox ox oy
oM, oM oM, oM
Txx ayyx ~0, =0, ayy + ax)‘y -0,=0 N, —kyM, —N ,, —kM,, =0, 4)

where N, N, Ny,
bending and twisting moments.
The elastic relations for orthotropic shells symmetric across the thickness about the chosen coordinate surface are

and N yx are the tangential forces; O, and Q ) are the shearing forces; and M, M M and M Jx are the

Xy

Nx=C118x+C128y, Ny :C128X+C228y,

ny :C668xy +2k2D66K Nyx :C66sxy +2k1D66K

Xy xy>

Mx =D]1KX+D12Ky, My =D]2KX+D22Ky,

M. :Mxy:2D66ny’ Oy =K1, Qy =K2Yy» ©)
where

E L E h

=7 Y Cpp=v,C. Cp=—>— Cg =Gyh,
—V,v, l=v,v,

Exh3 Eyh3 Gth3
1= s D12 _vyDll’ 22 — 66 — ’
20 -v,v,) 12(1-v,v ) 12
5
K, ==hG,, K, :ghGyza ©

where E,, £, and v, v, are the elastic moduli and Poisson’s ratios along the x- and y-axes; G, G

s Oz, and G yz are the shear
moduli; and % = h(x, y)is the thickness of the shell.
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To determine the stresses in orthotropic shallow shells with rectangular planform, we will start with Hooke’s law [1, 2, 4]:

€x=b110x+b120y, €y=b120x+b22(5y,

€xy :b66‘cxy= ey =bssTy, €yz :b44Tyzv (7
where
% v 1
byy=—, b :_i:_Eiy’ b =5
X X y y
1
(®)

1 1
bog =——> bas G bss =——.
xy vz Xz

Resolving Eqgs. (7) for the stresses and using (2), we obtain an expression for stresses in terms of the strains of the
coordinate surface:
(br1byy =b2 )0, =by (8, + 2K, )=bys (8, +2K ),

(b122 —b11by )0y, =biy (e, + 2K, )=y (8 ) +2K ),

h h
b66rxy :Sxy+2Zny9 bssTyz =7V b44tyz =Ty (_2§232)' )

If
ou ~ oOv -  Ow . Oy, - o,
7:14’ 7:\}’ 7:W, —_—= N —_— N 10
ox ox X ox * ox Yy (10)
then the governing equations for the functions u, u, v, V, w, w, y ., ¥ ., ¥ y» and \ ) are
~ Ou ~ Ov ~ Ow ~ Oy, ~ oy,
Uu=—, V=—, w=—o0, =, = s
ox ox Oox T vy ox

o - ou 0%u - ov v ~
=aputappy —+ap ~ +apvtas —tag —tappwtagw
0 oy y Oy

ox
a\l/x 62\Vx ~ a\le
tayg—>+a +a +dip ——,
19 o 1,10 LVy Tapin Py
a—;—a U+a %+a a—L~I+a V+assV+a @+a —azv+a w
o 21 22 P 23 6)/ 24 25 26 ay 27 ayz 28
~ 5‘!’ 82“/))

B

ow ~ a\Vx y
+ang 87+a2,10\Vx +axn Ty tax VW, taz g3 76)} +as 14 2
vy

ow ~ ov ~
=az|utazxputazzvtazy —tazswtdazgw+dy; —
oy oy

2w - oy
+asg 2 tazoWy Taz oWy +a3,11Vy T43 12 Ty +a3.139
Y

02 oy oy ),

v ~ Yy
T +aggV o, +agg +ay 1o ;
2 o o

o, _ _ - v,
o Saqutapwragwtaga\Yy tassVy +age Y +ayy
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oy

—— =asv+asw+a §Y+a V. +a éyl+a §E£+a Y, +asgVy o, +a iagl+a o
> s1v+asy 53, TSV sy T T A dss T ATV HasgW y sy =m0
In the general case, the coefficients a;; depend on x and y:
ayn =-—= ) 2 =" > 413 =- > A4 =T
Cyp ox Cyp oy Ciy Cip oy
oC Ciy +C oC oC Cii1ki +Cirk
as __ 1 dCp ,ag =—12tC6 :_1( g, 4 %0 kz]» ayg =— 1K C0k
Cll (3x Cll Cll 8x 8x Cll
_ Kk 0ODgg _ KkDgg _ Kk D¢ __kiDgg
ajg = > 4110 = > a1 = > a2 = >
Cyp oy Ciy Cyp oy Cyy
g =L 9Cip _ 1 0Cg ~Cip +Ce
T Cg v Ces Ox Ces
2
s :K2k2 p :_i 6C66 u :_L 6C22 dyr :_Cﬁ
Ces Ces Ox Ces Oy Ces
2 3
- kika 0Dy, Ky @Dy 1 (0Cy g+ 082, |
Ce6 O Ceg 0 Ces\ Oy oy
2 3
- ki k2 Dry +k2D22 L Koky | Ciok +Cooky o= ky 0Dy,
Ces Ces Ces Ces T Cee Oy
kyDyy Kk, ky 0Dy, kyDyy
a1l = > a1 =~ > Ap13 T > A4 T >
Ces Ces Ces Oy Ces
k; OK k,C k,C k, 0K
asy =7171’ asy =k1 +1711+ﬁ, ass =7272,
K] 6x K] K] Kl 0y
2 2
Kyky kCy koC k:C kik,Cp, k5C
ay, ==2f2 it | Kt a35:111+21212+222,
K K K, K, K K
1 0K, 1 0K, K, 1 0K,
aze =—————=_» 43y =—_————, d3g=——, 439 =" ————,
Kl Gx Kl 8y Kl Kl ax
| 0K, K, 1
azjo=-L a3y =———7=, a3p=-—=, da3;3=—"-,
3,10 MU= M2 =T M3 =T
2 2 2
Kk _k opy k5 apy, _,2 Puky K, Ky
ag) = , g = + s agy =k + SIVES )
Dy Dy ox Dy ox Dy Dy Dy
oot P 1, D g =L Des
Dy ox Dy oy Dy Dy oy
1 dDp _ [ D12 Des _ Kyky _ Kk oDy | k5 oDy
g9 = > d410 = + , = > 452 =
Dy ox Dy Dy Dgg D¢s 0y Dgg Oy

(11

1135



D D K oD oD D
“ P12 P g2 R 4 1 Dy I Des ase =_( 12 +1}

asj 5 54 =——— ) 55 =——— _—
Dgg Dgg Deg Dgs 0y Dgg  Ox 66
K 1 oD 1 oD D
asy =D72’ asy == — a§6 ;@59 =T a}fz > ds0 =_D722' (12)
66 66 66 66

We will consider the following boundary conditions:
(1) all edges are clamped:

u=v=w=y, =y, =0 at x=0, x=a, y=0,y=0, (13)
(i1) three edges are clamped and one edge is hinged:

u=v=w=y, =y, =0 at x=0, y=0, y=b

ou oy,
— = =—== =0 at x=q, 14
ox ox Yy 19

(iii) two edges are clamped and two edges are hinged:

u=v=w=y, =y, =0 at y=0,y=b,

%: :%:wyzo at x=0, x=a. (15)

2. To solve two-dimensional boundary-value problems of the class under consideration, the desired solution is
approximated by spline functions in one coordinate direction, and the resulting one-dimensional boundary-value problem is
solved by the stable discrete-orthogonalization method [2, 13-16].

The system of equations (11) includes no higher than second-order derivatives of unknown functions with respect to the
coordinate y. Therefore, it is sufficient to use cubic spline functions to approximate solutions in y. Then the solution of the
boundary-value problem for the system of equations (11) with appropriate boundary conditions can be represented in the
following form [13—17]:

N N N
u(x, )= u; (e () v ) =2 v () () wix, y)= D wi (0)p3; (1),

i=0 i=0 i=0
N N
V()= D2 W (09g (M) W, Y)= D v ()es; () (16)
i=0 i=0

where u; (x),v; (x),w; (x),y¢ (x), and y ,;(x) are the required functions of the variable x; @ ;; (¥) ( j:1,75) are linear

combinations of B-splines on a uniformmesh A:0= y, < y; <..<yy =b, satisfying the boundary conditions ony =0andy =b.
The system includes no higher than second-order derivatives of unknown functions with respect to the coordinate y; therefore, it
is sufficient to use cubic splines:

0, —0 <Y<Y o,
2373 ) Yiea Sy<yi,
. —, . < .
G IV @
(1—2)3, Vis1 SY<DVis2»
0, YVigp Sy <o,

where z = (y — yp)/h, on the interval [y, yg + 1), k=i=2,i+1i=-LN+1 h, =y, + | -y, = const.

The functions ¢ ;; () are set up as follows:
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(1) if an unknown function is equal to zero, then
_ _ 1
9jo(N=-4B5'(N+B3 (1. 0 (1=B3 ()= B3 (1)+B; (1),

(pj,(y)=B§(y) (i:2’3n""N_2);

(i1) if the derivative of an unknown function with respect to y is equal to zero, then
0(N=B( 0,1 (1=B7 (1)L BY(»)+BL ()
(PJOy_3y9 (ley_3y23y 3y

(pﬂ(y)zBé (y) (=23,...,N=2)

The functions ¢ ; y_j(y)and ¢ ; y (y)are represented similarly.
Substituting solution (16) into the governing system of equations (11) and requiring them to be satisfied at set

(18)

(19)

collocation points &; [0, 5], k =0, N, we obtain a system of ordinary differential equations of the 10(N + 1)th order for the

functions u;, u;, v;, Vi, Wi, Wi, We, Y, ¥y, and y y; (1=0,...,N) If
D = (“)(gk)] (,k=0,N), j=L...,5 a=0,12
E:[uo,ul,...,uN]T, ?z[vo,vl,...,vN]T, W:[wo,wl,...,wN]T,
Yy =[We0, Pytoo s Pen 175 Wy =[W 0, W1 n 17, G =10(x,80),q(x, &), s (3 &y )T
andifA=[a,-j](i,j=0,7N)andE=[c0,cl,...,c 1 , then ¢* 4 denotes the matrix [¢;a;; ] Also, ifd =[d,.d,,...

cxd =[cody,cidy,...,cndy 1.

Now the system of ordinary differential equations for u, o, v, v, w, W, W ., W ., W y» and \ ,» becomes

du

E 1o @ x Dy 3% @ Yt + D (@g1% Qg ' + Dy (@y5% Doy Jv+ Dy (a4% Do

% Dy W'+ O (a7 D3g Jw + Dy (@5 P3o W'

1= — _ 1, _ _
+ @ (@19* Pyp +ayjo* Pap W + P (@ 1* Psp +ay 2% Psy ),

v o _ _,
o = D) (A * @y it + Dy (any* Py +ap3 % Dy Ju

17 - = P -
D7 (@gq* Do +ag6* Doy +ap7% Do v+ D7 (ap5* Py )V
1= — _ 1= _

+ @50 (ag* @30 +ane* @3y Jw+ Do (ag 0% Pyg +az11* Pyp Wk

71 —_ —_ —_ —
+@ (ap 1p% Psg +ap 3% Dsy +an 4% Psp W

aw o I _ _
E:(D“% (@31% @y Yt + D3 (@3p % @y ' + D) (@33% Do +a34* Doy ¥

1= _ _ _ 1= _
+ @3 (a3s* D3g +a37* O3y +azg* Dyp Jw + Dy (aze* P3g w'

+ D0 (@30% Dy W + D3 (@310% Dgg W' + D3 (a311% Psg +a310% D5y W, + D) (@313%q),

dy 17, then
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TABLE 1

Spline-approximation method
x/a Analytic solution
N=9 N=13 N=17 N=21
0.1 1098.8 1112.7 1117.3 1119.3 1121.0
0.2 2016.7 2043.9 2052.9 2056.6 2060.0
0.3 2679 2717.4 2730 2735.4 2740.0
0.4 3070.9 3117 31323 3138.6 31443
0.5 3199.8 3248.8 3264.9 3271.7 3277.7
v

o D0 (g @y )i+ D (A * D3g Jw + Dy (dy3* D3 )’

1= — _ _ 1= _
+ @ (Agq* Dy +aye* Pgy +ag7* Pap Wy + Dy (ags* Pag W'y
1= _ 1= _ _
+ @0 (Ago* P51 W o, + @ (agg* Psg +ay10* Psy W'y,

dy ,
dx

=D (asy* Do v+ Dy (asy* D3g +asz* Dyp Jw +Dyg (ass* Py W + P (asg* Dyg

+ase* Dyp W + D5 (as7* Psg +ase* Dy +as 10* Py Wy, + Doy (@sg* Psg W'y, (20
which can be represented as

where

Y ={Ug e s U s UQyseee s AN 5V seee s VN s Vseee s VN s W( seee s WN s W0 seee s W »
o - - & AT
W0 s WaN > W0 W > W 305 s W yn > W 005 Wy}

is a vector function of x; fis the vector of right-hand sides; 4 is a square matrix whose elements depend on x.
The boundary conditions for this system read

BY (x;)=by, ByY(x;)=b,. (22)

The one-dimensional boundary-value problem (21), (22) is solved by the stable discrete-orthogonalization method.

To estimate the accuracy of our method, we will compare the stress states of an isotropic shallow shell with square
planform, constant thickness, and hinged edges obtained by the spline-collocation method followed by the discrete-
orthogonalization method and by the method of double trigonometric series using the expansion

o0 e} o0 o0
MUX . nmy . MUY __ nmy
u= z Z Ay, COS——Sin——, V= z Z bun SIN ——COSs ——,
3 a a b

m=1,3,..n=1,3,... m=1,3,..n=1,3,...
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h(x)
aF—04
12 ]
-0.2
—
0
1.0
0.2
T ——T
0.4
0.8 S~
0.6
0 02 04 0.6 0.8 xla
Fig. 1
N _
wE Ox. s | ~0.4 Sx
90 90 ) 90
150 a=ba 10 04 N
1 o2 7/ \ N
i / N
100 0 akE04
04 10 N 02 7
o S D\
-0.2
-20 -10
0 0.2 04 06 0.8 x/a 0 0.2 04 0.6 0.8 x/a 0 0.2 04 0.6 0.8 x/a
Fig. 2 Fig. 3 Fig. 4
o0 o0
mmx nny
Z z Cpp SIN ——sin —=
m=13,..n=13,. a b
o o mmnx nm Z > mmnx nim
Z Z d,,, c0s ——sin —— y Z Z €, SIn ——Ccos —— ) (23)
m=1,3,..n=13,.. a b m=1,3,.n=13,.. a b

Table 1 presents the results (values of the deflection wE/q at some points of the mid-surface for y = a/2) of stress—strain
analysis of the shell under a distributed load ¢ = g = const obtained by the spline-collocation method with different number of
collocation points and from the analytic solution (23). The shell is characterized by the following parameters: a=10,2=0.4, k; =
0.05, k, =0, v=0.3. It can be seen that as the number of collocation points increases, the numerical results closely approach the
analytic solution, which may serve as a reliability criterion for our method.

3. Let us analyze, as an example, the stress—strain state a doubly curved isotropic shallow shell with square planform
and varying thickness under uniform normal pressure ¢ = g, =const.

We will examine three types of boundary conditions: (13), (14), and (15). The thickness of the shell (Fig. 1) varies as

h(x):{oc(6x2—6x+l)+l} ho. 24)
a? a

where A = const.

With such variation in the thickness, the weight of the shell remains constant. The input data: a =b =10, k; =1/10,
ky =0,00=-0.4,-0.2,0,0.2,04,v=0.3, hy =1.
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Figure 1 demonstrates the behavior of the thickness 4(x). The values of 4(x)are symmetrically distributed about the rise
in the mid-section.

Figures 2—4 show the thickness dependence of the deflection and stresses in the section y =a/ 2 on the lateral surfaces
of the shell clamped at all edges. As is seen, w, 6, and o} are symmetrically distributed about the rise in the mid-section. It
follows from Fig. 2 that the deflection peaks at the point of the rise, the maximum increasing with a.. As the thickness increases in
this zone, its value decreases insignificantly. Figure 3 shows the stresses on the outside surface as a function of the thickness. It
can be seen that o} peaks at the point of the rise, the maximum increasing with o.. Figure 4 shows the stress distribution on the

inside surface of the shell. The stress patterns on the inside and outside surfaces are qualitatively close and differ by sign.
Quantitatively, the maximum stresses 6 are almost twice as great as o .

Figures 5-7 show the thickness dependence of the deflection and stresses in the section y = a/ 2 on the lateral surfaces
of the shell clamped at three edges and hinged at one edge. It can be seen that w, 6} , and o} are distributed asymmetrically.
Figure 5 demonstrates that the maximum deflection is slightly shifted from the point of the rise toward the hinged edge, the
maximum increasing with a.. As the thickness increases in this zone, the deflection decreases insignificantly. Figure 6 shows how
the stress on the outside surface depends on the thickness. It can be seen that the maximum of 6 is shifted from the point of the
rise toward the hinged edge and increases with o.. Figure 7 shows the stress distribution on the inside surface. The stress patterns
on the inside and outside surfaces of the shell are qualitatively close and differ by sign. Quantitatively, the maximum stresses
are almost twice as great as 6 .

Figures 8—10 show the thickness dependence of the deflection and stresses in the section y = a/ 2on the lateral surfaces
of the shell with two opposite edges clamped and the other two edges hinged. It can be seen that w, o, and o are distributed
symmetrically about the rise in the mid-section. It follows from Fig. 8 that the deflection peaks at the point of the rise, the
maximum increasing with a. As the thickness decreases in this zone, the deflection increases insignificantly. Figure 9
demonstrates how the stress on the outside surface of the shell depends on the thickness. It can be seen that the maximum of 6 is
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at the point of the rise and increases with a. Figure 10 shows the stress distribution on the inside surface of the shell. The stress

patterns on the inside and outside surfaces are qualitatively close and differ by sign. Quantitatively, the maximum stresses 6 are

almost twice as great as ¢, .

Thus, by varying the thickness of a shell, it is possible to change the distribution of displacements and stresses, keeping

its weight constant. The method oulined here can also be used to analyze the stress—strain state of shallow shells with rectangular
planform and variable thickness in the anisotropic case.
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