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EFFECT OF ACOUSTIC RADIATION ON A SPHERICAL DROP OF LIQUID

A. P. Zhuk UDC 532.59:534.29

The effect of radiation force on a drop of liquid in an acoustic field is examined. It is established that the
force depends on the ratio of the densities of the liquid and the drop and on their adiabatic elastic moduli
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Introduction. Various issues of motion and interaction of liquid drops, gas bubbles, and cavities were addressed in [2,
3,8, 13, etc.]. The motion of drops in an acoustic field under radiation forces is of certain technological interest. A radiation force
acting on an obstacle in an acoustic field comes about from a change, within some volume, in the time-average momentum
carried by a wave and is determined by the integral of the time-average sound (radiation) pressure over the surface of the
obstacle. Note that the exact values of radiation pressure in Lagrangian and Eulerian coordinate systems are generally different
[1]. In the former case, it is defined as the time-average sound pressure on the surface oscillating in an acoustic field. In the latter
case, it is defined as a convolution of the momentum flux density tensor and the normal unit vector to the surface.

To determine the radiation force (independent of time) acting on an obstacle in an acoustic field, the liquid pressure is
calculated up to the second-order terms, which are due to the nonlinearity of the acoustic field and, hence, do not vanish after
averaging over time. The obstacle changes the acoustic field by generating a reflected wave. Therefore, it is necessary to solve a
diffraction problem. If the obstacle is a gas bubble, the oscillatory processes excited by the incident wave in the bubble may
affect the wave scattering significantly: if the frequency of the wave and the natural frequency of the bubble are close, then the
effective scattering diameter will be many times that of the bubble [4, 7]. As a result, the reflected wave noticeably contributes to
the radiation force.

The radiation force can be determined in several steps. The first step is to identify the wave scattered by the obstacle.
Since the liquid pressure can be determined up to second-order terms in linear approximation [10], the reflected wave can be
identified by solving a linear diffraction problem. The solution of this problem is used at the second step to determine the
resultant force exerted by the liquid on the obstacle. At the third step, this force is averaged over time to filter out the constant
(radiation) force and to study the behavior of the obstacle under the radiation force.

Since the wave reflected from the obstacle is determined by solving the linear diffraction problem, the interaction of the
incident and reflected waves is neglected. In what follows, we will use the above approach to examine the case where the
obstacle in a liquid is a drop of liquid of other kind. The cases of single solid particles and systems of such particles were
discussed in [9].

1. Diffraction Problem. Let us first identify the wave reflected from a liquid drop. If the drop is a sphere of radius R,
then we will solve a linear diffraction problem for a liquid sphere. Assume that the space is filled with a perfect liquid with
density p and speed of sound a(. The liquid of the sphere has density p, and speed of sound a,. Hereafter, overbar will refer to
the liquid sphere.

We choose a Cartesian coordinate system Oxyz so that its origin O is at the center of the liquid sphere. Consider a plane
acoustic wave propagating through the liquid space and described by the potential

O; =Aexpli(kx—wt)], (1.1)
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where 4 is the amplitude, k = o/ ay is the wave number, and o is the angular frequency.

The incident wave causes the liquid sphere to contract and expand periodically. The effect of surface tension is
neglected. Mathematically, the diffraction problem (1.1) is to determine the velocity potential @ of the reflected wave, i.e., to
solve the linear wave equation (its solution decays at infinity)

AD—— T =, (1.2)

with boundary conditions such that the pressure and normal velocity are continuous on the sphere surface. To describe the liquid
sphere, we choose a spherical coordinate system (r,0, @) where the angle 0 is reckoned from the Ox-axis (Fig. 1). Then the
boundary conditions read

(Pi+Ps),_g =P|,_p> (1.3)
(vri+vrs) R
r=

This approach is widely used to solve various problems in hydromechanics [11, 12].

(1.4)

Vel -
ly=R

In(1.3)and (1.4): p; and vri are the pressure and radial velocity in the surrounding liquid induced by the incident wave;
p, and v{ are the analogous quantities for the reflected wave; and p and v, are the pressure and radial velocity in the liquid

sphere. These quantities are determined in terms of the velocity potentials, which are solutions of Eq. (1.2). Given velocity
potential, the pressure and radial velocity can be calculated in a linear approximation:
oD 0D

= — Ve =—o.
pP=""Po r =5

o (1.5)

It is assumed that the sphere surface oscillates with low amplitude and, thus, R =const. This assumption is reasonable
for the liquid sphere.

To solve Eq. (1.2), we will use the method of separating variables in spherical coordinates. Then the velocity potentials
of the reflected wave and for the wave inside the sphere can be expanded into generalized Fourier series in terms of spherical
wave functions:

@, = > 4,hD (kr)P, (cos 0) exp (~ior), (1.6)
n=0

D= A4,j, (lzr) P, (cos 0) exp (—iwr), (1.7)
n=0
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where h,(ll) (w)are spherical Hankel functions of the first kind; j, (w)are spherical Bessel functions; and P, (cos 0)are Legendre

polynomials. The coefficients 4, and 4, are determined from the boundary conditions (1.3) and (1.4) on the sphere surface
(r=R). Expression (1.6) satisfies the conditions at infinity.
Let us expand the potential (1.1) into a series in terms of spherical wave functions:

®; = > A (2n+1)i" j, (kr) P,(cos 6) exp (—icr). (1.8)
n=0

Substituting the velocity potentials (1.6) and (1.8) into (1.5), we obtain the following formulas for the sound pressure
p = p; + ps and radial velocity v, =vi +v$ in the surrounding liquid:

p=iopg Y, [AQu+ )i, (kr)+ 4, h (k)] P, (cos 8) exp(—ior), (1.9)
n=0
> dj, (k dhP (k
=3 4@y J”d( D4, "d( )| b, (cos 0) exp (i), (1.10)
Py r r

Dealing with the potential @ in a similar way, we obtain formulas for the sound pressure and radial velocity in the liquid

sphere:
p=iopg D A,j, (l?r)P,l(cos 0) exp (—ior), (1.11)
n=0
V. =k Y A, dj,,d(kr) P, (cos ) exp (—icr). (1.12)
n=0 r

Conditions (1.3) and (1.4) and expressions (1.9)—(1.12) lead to an infinite system of algebraic equations (n =0, 1, ...):

2D ()4, _Pokag PoXo ; )A, =—A(2n+1)i"j, (o0
pPokag
dh (o) kdi, (@)
n A _r .]}’l
dr " ko dr

A, =—A(2n+1)i"% (o0 =kR, G =kR), (1.13)

whence we obtain formulas for the unknown coefficients 4,, and A n'

ot $@_Pot jn(&)dj’;(a)
A, =A(2n+1) " - (1;30 0 i (1.14)
Podo dh,” (o) dj, (o), (1)
Jn () hy(a )
Podg dr dr
A, =A(2n+1)i"! K (1)1 (1.15)
ka? By dh,” (o) dj, (o), (1)
Jn(®) hy " ()
Podo dr dr

Let us restrict ourselves to the case where the sphere radius is small compared with the wavelength. Then o << 1. It can
be shown that o << 1. Now we can simplify expressions (1.14) and (1.15) using the asymptotic representations of the functions

Jp(w)and h ,(,]) (w)and their derivatives at small values of w [5, 7]:
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Jaw)= ﬁ:1'3-5'~(2n—1), n(0)=1,

W}’l
n(2n+1)°

ﬁ(n + 1)

>

ijn (w)=-D,(w)sind,(w), D,(w)=
dw

Wn+2
2n+1
SH(W)z_ian)—s s
n (2n+1)(n+1)
A (w)=G, (wyexp [ie(w)], G, (w)= "
n n ’ n w1’
W2n+l P d )
ew)yr———,  —h/(w)=iD, (w)exp |[id(w)]. 1.16
()52(2’”1)2 dwn()  (w)exp [i3(w)] (1.16)

Expressions (1.14)~(1.16) yield formulas for the coefficients 4, and 4,, (n=0,1,2,...)when a, & << 1. Here are the

formulas for the first three coefficients 4, and 4,

. N 3K(x—-x
A, —ilak as, k =7(7), (1.17)
3 k(3E—Ka2)
Ay =ApTad, pr=L0PO (1.18)
2p0 +Po
4y =iaptas, pr=PoPO_ (1.19)
9 2pg +3py

where k =pga g and X =p Eg are the adiabatic elastic moduli of the surrounding liquid and liquid sphere.

Since a, o << 1 by assumption, the scattered wave is mainly determined by the first terms in (1.6) because even A4,
(1.19), having the order of o>, differs from 4, (1.17) and 4, (1.18) by a quantity of the order of a.%. Therefore, we will retain the
first three terms in (1.6). Note that the zero term in (1.6) is responsible for the pulsations of the liquid sphere, and the second term
for its oscillations. If the condition K >> « fails, then, according to (1.17), the pulsation amplitude will tend to peak as o tends to
/3% / k, which represents the pulsation resonance of the sphere [7]. The velocity potential ® in the liquid sphere will no longer
be used here; therefore, the expressions for 4, are omitted. The solution of the diffraction problem is complete once the
potentials @ and @ are determined.

2. Radiation Force. The radiation force can be calculated by averaging over time the hydrodynamic force exerted by
the liquid on the sphere in the acoustic field. Since the wave field is axially symmetric about the Ox-axis, the hydrodynamic force
is parallel to this axis and is defined by

T
F, =—2nR? j psin Ocos 0do. 2.1)
0

Since force (2.1) is to be further averaged over the period of the incident wave, the sound pressure p in the liquid can be
determined in a quadratic approximation. To this end, we use the approach from [10], which suggests calculating the pressure p
up to the second power of the Mach number:

2
oD 1 ) 1p0(acpj
=0 L p (VD)2 PO 2 22
P="Po— 290( ) 2ag Py (2.2)
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Here, we can use the potential ® = ®; + @ determined in Sec. 1 by solving the linear diffraction problem [9, 10]. The structure

of (2.2) suggests that the real part of the expression for the potential ®@ should be used to determine the pressure p. In calculating

the radiation force, it is necessary to take into account the change in the position of the oscillating sphere because the associated

terms in (2.2) have the same order as that of the second and third terms. The reason is that the partial derivative 0®/ ¢ in (2.2)

should be evaluated in the same fixed coordinate system that was used to determine the potential ®. In the axisymmetric case, this

derivative can be found in the spherical coordinate system fixed to the moving sphere as follows:
o0 _dd oD sin 6 0D

— V,.cos0—+V, ,
ot dt or r 00

(2.3)

where d®/ dt is the total derivative with respect to time. With the accuracy adopted, relation (2.3) should only be used to
determine the contribution of the first term in (2.2) to the hydrodynamic force (2.1). Moreover, only the second and third terms in
(2.3) should be kept because the subsequent time averaging makes the total derivative of a bounded function vanish.
Since
oD 1 0d
VO=—c¢, +-— ey, 2.4
o " roe "’ @9
in the axisymmetric case (e, and ey are the unit vectors of the spherical coordinate system), it follows from (1.6), (1.8),
(2.1)~(2.4) that when r =R it is sufficient to separate the real parts only in the expressions for ® and 0@/ or.
With (1.6), (1.8), and (1.17)—(1.19), we get

2
Re®(r=R,0,t)= Y (L, sin ot K, cos wt) P, (cos 0), (2.5)
n=0
oD 2
Rea— (r=R.0,t)= > (M, cos ot + N, sin or) P, (cos 0), (2.6)
r n=0

where

K :—A(1+1k*a2), Lo :1Ak*a3,
3 3
_ l * 4 _ *
Kl_—EAB a4, Ll_A(l—B )a,

1 ¥ 2 .
K,=—A(1- a2, Ly=—4p a’,
273 ( 29) 2 =135 P

MO——EAk(Hk )a, Ny =g Ak at,

M, :%Akﬁ*a% Ny =4k (1+287),

1« 4 ,
My ==24k| =+ o, N,=— Akp*ab®. 2.7
2 (3 p j 2 =33 p 2.7

In what follows, we will omit for simplicity the symbol Re in the notation of the real part Re ® of the potential ®and its
derivatives.

Now we can calculate the hydrodynamic force (2.1). Averaging it over the period of the incident wave yields the
radiation force. Let us determine the contribution of each of the terms in (2.2) to (2.1).
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To determine the contribution of the first term in (2.2) to (2.1), it is necessary, as justified above, to use expression (2.3)
for the partial derivative 0@/ 0t, where V. is the velocity of the liquid sphere as a whole along the Ox-axis. This velocity is found
by evaluating 00/ orat r=R and 6 =0or 6 =m From (2.6), (2.7), we get

v, (r=R,0,7) =Ak(1—2po_pojcos Osin o + O(a), (2.8)
2pg +po
whence
- A Po —Po |..
=V (r=R,0=0,1) = Ak| 1-2———" |sin or. (2.9)
2pg +po

Considering relation (2.3) and following the above justification, we obtain a formula for the contribution of the first
term in (2.2) to the hydrodynamic force (2.1):

T
Fx(l) = 2np0R2VxI(—(ZCDcos 9+;}z—c§sin Gj sin O cos 6d0. (2.10)
0

r

Integrating (2.10) in view of (2.5), (2.6), (2.9), and

1 2

[Py )Py (0dn =1 2,517 ™7™ (w=cos ) @2.11)
1 0, m#n,

1 —2(n+1) m=n+1

IPn(u)Pm(u)udu= 2n+1)(2n+3)’ ’ (2.12)
21 0, m#n+1,

and averaging the result over the period of the incident wave, we obtain a formula for the contribution of the first term in (2.2) to
the radiation force:

(FOy = —dnp gkR2| 1-2P0 PO (2N0+4N2j’ (2.13)
2p0 +pPo 3 15

where the terms of the order of o8 are omitted. Substituting (2.7) into (2.13), we get

<F;1)>:3A2np0k*7p70a6 +0(a®). (2.14)
9 (2po +po)

Considering (2.4), we obtain a formula for the contribution of the second term in (2.2) to the hydrodynamic force (2.1):

T 2 2
F® =npoR2| AN L2 i 0os 0db. 2.15)
* s[\or)  R2\ 00
Integrating (2.15) in view of (2.5), (2.6), (2.12), and
1 2n(n+1)(n+2)
dP dP S — =n-+ 1,
| Z,(”) Z(“)(l—uz)udw Qnihn+3y (2.16)
H H 0, m#n+1,

and averaging the result over the period of the incident wave, we obtain a formula for the contribution of the second term in (2.2)
to the radiation force:
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1
F®y-» ’HI[RZ M M, . +N N L NK K. +L L } 2.17
<x > np0£(2n+1)(2n+3) ( My Ny, n+1)+m2n(n+ )( a1 T4y n+1)9 ( )
2 _ a
<F§2)>=EA2n;+p[po ~po —k" (o +200)] @ +0(a® ) (2.18)
0 0

The contribution of the third terms in (2.2) to the hydrodynamic force (2.1) is described by the formula

R? {(om)
Fx(3) :_“POJ‘[&DJ sin B cos 0d0. (2.19)
aé e

Considering (2.5) and (2.12), integration (2.19), and averaging the result over the period of the incident wave, we get

2 2An+1)
F 3y —_TPoR K, K, 1 +L,L,. ). 220
< X > ag §(2n+1)(2n+3)( a1 Ty n+1) ( )

Finally, substituting (2.7) into (2.20), we obtain a formula for the contribution of the third term in (2.2) to the radiation
force:

i —Po_POTPO |64 0oad) 2.21)
(2P0 +Po) 2P0 +Po

2
<Fx(3)> :—EAZTCPO

Summing (2.14), (2.18), and (2.21) and denotingm =p, / p(, we arrive at an expression for the radiation force exerted
by the acoustic wave (1.1) on the liquid sphere:

2 11,
(F,) =EA27tp0 m[k (-10)+4(1-1)] a® +0(a® ) (2.22)

As indicated above, the condition oo =~/ 3k / k corresponds to the pulsation resonance of the sphere [4, 7]. Therefore,
according to (2.22), the radiation force increases as o tends to this resonant value. It should be noted that expression (2.22) has
been derived assuming that a. is different from +/ 3k / k. In this case, oscillations of the liquid sphere are dominant over pulsations
[7].

When the liquid drop is similar in mechanical properties to the surrounding liquid (py =p ,¥ =), the radiation force
(2.22) is zero.

Within the framework of the approximation adopted here, we may conclude that the radiation force (2.22) acting on a
liquid sphere, unlike a solid sphere, can be either in the same or opposite direction as the wave (forp < p ). Itis obvious that the
effect of the radiation pressure on the liquid sphere is of the same nature as that on the interface between two liquids. In this case,
according to [6], the interface always deflects toward the liquid with lower acoustic energy density, no matter in what direction
the acoustic wave propagates.
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