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The structural theory of microdamage of homogeneous and composite materials is generalized. The

theory is based on the equations and methods of the mechanics of microinhomogeneous bodies with

stochastic structure. A single microdamage is modeled by a quasispherical pore empty or filled with

particles of a damaged material. The accumulation of microdamages under increasing loading is

modeled as increasing porosity. The damage within a single microvolume is governed by the

Huber–Mises or Schleicher–Nadai failure criterion. The ultimate strength is assumed to be a random

function of coordinates with power-law or Weibull one-point distribution. The stress–strain state and

effective elastic properties of a composite with microdamaged components are determined using the

stochastic equations of elasticity. The equations of deformation and microdamage and the porosity

balance equation constitute a closed-form system of equations. The solution is found iteratively using

conditional moments. The effect of temperature on the coupled processes of deformation and

microdamage is taken into account. Algorithms for plotting the dependences of microdamage and

macrostresses on macrostrains for composites of different structure are developed. The effect of

temperature and strength of damaged material on the stress–strain and microdamage curves is

examined

Keywords: composite material, stochastic structure, deformation, short-term damage, porosity, temperature,
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Introduction. One of the possible failure mechanisms in materials and structural members is associated with damage

accumulation, which generally leads to the occurrence and development of main cracks. Physically, the damage of a material is

dispersed defects in the form of vacancies, microcracks, microvoids, or destroyed microvolumes, which reduce the effective or

load-bearing portion of the material. Thus, the damaged portion of the material can be considered a component with structural

elements having zero load-bearing capacity, arranged chaotically, and characterized by some volume fraction, dimensions,

orientation, and cohesion.

Damage accumulation is a rather complicated physical process dependent on the stress–strain state, temperature,

chemical and radiation influences, and the structure and mechanical properties of the material. Experimental data on and

observation of the behavior of structural members and structures indicate that damage may be both short-term or instantaneous

(corresponding to the level of stress or strain at the moment of load application) and long-term (increasing after load application).

Damages in the form of dispersed submicrocracks, their dimensions and shape, dependence on types of loading have

been well studied for polymer materials [31]. Damage formation in a number of polymers follows certain patterns. The

dimensions of submicrocracks are practically independent of strain, stress, and time under load. The ratio of the longitudinal
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(relative to the tension direction) to the transverse dimension of a submicrocrack varies from 0.4 to 1.3 in different polymers. A

certain tensile strain corresponds to a certain volume fraction of submicrocracks, which increases with the strain.

Submicrocracks start forming only after a certain strain level. If a tensile stress is applied, a certain number of submicrocracks

form immediately, followed by at first rapid and then more slower accumulation of submicrocracks. The rate of accumulation

and volume fraction of submicrocracks increase with the stress applied. Under small stresses (less than half the breaking stress),

no crack accumulation is observed for a relatively long time.

The above-mentioned experimental patterns can be explained in statistical terms. At the microscopic level, the strength

of a material is inhomogeneous; i.e., the ultimate short-term strength and long-term strength are random functions of coordinates

with certain distribution densities or functions. When a macrospecimen is under constant tensile stress, microvolumes in which

the ultimate strength is less than the stress applied will be destroyed, i.e., microcracks or microcavities will form in their places.

Microvolumes where the stress is less than yet close to the ultimate strength will be destroyed in some time dependent on the

difference between the applied stress and the ultimate microstrength. When there are no more microvolumes with ultimate

strengths close to the applied stress, damages cease to accumulate. As the stress increases, new microvolumes with higher

microstrength are destroyed. The process becomes more intensive as microstresses are redistributed because damaged

microvolumes no longer resist loads.

There are three groups of mathematical models describing the damage of materials. One group is based on certain ideas

of the microstructure of the material and the mechanism of formation of microdamages in the form of damaged structural

elements (microcracks or micropores) [3, 6, 12, 15, 17, 18, 25–32, 38, 46, 47, 51–77]. The governing relations include the

equations of the mechanics of structurally inhomogeneous media and failure criteria for separate structural elements. Another

group of models is based on a formal damage parameter introduced as some measure of discontinuity of the material and on a

postulated evolutionary equation relating the rate of damage accumulation and the stresses [1, 7–9, 13, 14, 23, 24]. The physical

meaning of damage and its mechanism are not always indicated. The third group is based on the assumption that damage is

described by some state variables that together with stresses and strains contribute to the laws of thermodynamics. This makes it

possible to formally write relations among stresses, strains, and damage parameters [2, 5, 16, 21, 22, 48, 49].

The models of the first group, which consider that the microinhomogenity of the material is the cause of dispersed

microdamages, most adequately describe real damage processes. The stochastic inhomogeneity of microstrength inherent in real

materials and described by probability distributions allows us to explain and model the short-term (instantaneous) damage

manifested under high loads. The mathematical theory of short-term damage [51, 52] models destroyed microvolumes by

randomly dispersed micropores (empty or filled with destroyed material) and uses stochastic equations of elasticity to describe

the microdeformation and effective elastic properties of the porous material. The damage within a single microvolume is

governed by the Huber–Mises or Schleicher–Nadai failure criterion where the ultimate strength is a random function of

coordinates with a given statistically homogeneous one-point distribution having the property of ergodicity. Proceeding from the

general property of the one-point distribution function of the ergodic random field of ultimate microstrength, we derived the

microdamage (porosity) balance equation relating porosity and macrostresses or macrostrains. The macrostress–macrostrain

relationship with porosity-dependent effective elastic constants and the porosity balance equation constitute a closed-form

system of equations that describes the coupled processes of deformation and damage, which leads to a nonlinear dependence of

macrostrains on macrostresses. The coupled processes of deformation and damage were investigated for both homogeneous [51,

52, 65] and composite materials [38–43, 46, 47, 51–64, 66–76] with linear and nonlinear elastic components under mechanical

and thermal forces.

The theory of the coupled processes of deformation and short-term damage describes the interaction of mechanical

phenomena at different structural levels: two levels for homogeneous materials (macrodeformation of the porous material and

microdamage in the undamaged material) and three levels for composite materials (macrodeformation of the composite,

deformation of porous portions of its components, and microdamage in the undamaged portions of the components). In view of

the classification and terminology adopted in solid mechanics [50], there is good reason to associate this theory with

mesomechanics, which studies mechanical phenomena at different structural levels.

The present paper systematizes studies on mathematical models that describe the coupled processes of deformation and

short-term microdamage of linear elastic homogeneous and composite materials with stochastic structure. These studies were

completed at the Institute of Mechanics, National Academy of Sciences of Ukraine, over the period from 1998 to 2002.
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1. Short-Term Damage of Materials with Microdamages Modeled by Empty Pores.

1.1. Homogeneous Material. Consider an elementary structural model where dispersed microdamages are represented

by randomly arranged quasispherical empty micropores. Macrostresses and macrostrains in a homogeneous material with

microdamage described by porosity p are related by

� � � � � � � � �� � � 	 � �ij rr ij ijK( / )
* * *

2 3 2 , (1.1)

where the effective bulk, K
*

, and shear, � *
, moduli are defined, according to the theory of porous media [33, 35], by the

formulas

K
K p

K p

K p

K K

* *
( )

( )
,

( ) ( )

(
�

�

� �
�

� �

� �

4 1

4 3 4

9 8 1

9 8 3

2 2�

� �
�

� �

� �4� )p
, (1.2)

where K and � are the bulk and shear moduli of the undamaged portion (skeleton) of the material.

The following formulas will be useful in further derivations:
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where 
*
is the effective Poisson’s ratio and 
 is Poisson’s ratio for the undamaged portion of the material.

A single microdamage occurs in the undamaged material in accordance with the Huber–Von Mises failure criterion [13]

I k
�

� , (1.4)

where I ij ij� � �� � �( )
/1 2

is the second invariant of mean deviatoric stress tensor ��ij in the undamaged material, and k is the

limiting value of the left-hand side of (1.4), which is a random function of coordinates.

The mean stresses � ���ij are related to the macrostresses by
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Therefore, according to (1.1), we have
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The one-point distribution function F k( )of the ultimate strength k in a microvolume of the undamaged material may be

approximated by a power-law function on some interval
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or by the Weibull function
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where k0 is the minimum value of k; k1, m, and n are constants that provide the best fit to experimental strength scatter or

stress–strain curves.

Let the material have some initial porosity p0 prior to loading. We assume that the random field of ultimate strength k is

statistically homogeneous, which is characteristic of real materials, and the size of single microdamages and distances among

them are negligible compared with the macrovolume of the material. Then, since the random field of k is ergodic [35], the

function F k( ) defines the volume fraction of the skeleton in which the ultimate strength is less than k. Therefore, when ��ij , the

function F I( )
�

defines the volume fraction of the destroyed microvolumes of the skeleton, according to (1.4), (1.8), and (1.9).

Since destroyed microvolumes are modeled by pores, we have the following porosity balance equation [51]:

p p p F I� � �0 01( ) ( )
�

. (1.10)

In view of (1.6), (1.7), Eq. (1.10) reduces to the following form when macrostresses � �� ij or macrostrains � �� ij are

given:
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Relations (1.1), (1.2), and (1.11) constitute a closed-form system of equations that describes the coupled processes of

statistically homogeneous deformation and damage of a material with microdamages modeled by empty pores. Specifying the

macrostrains � �� ij , we can find the porosity p from the nonlinear equations (1.2) and (1.11). Then, substituting p into (1.1) and

(1.2), we obtain a nonlinear relation between � �� ij and � �� ij . Since Eqs. (1.2) and (1.11) are nonlinear, their general solution can

be found by iterative methods.

1.2. Particulate Composite. Consider a particulate composite whose inclusions and matrix have porosities p1 and p2 ,

respectively. Denote the bulk and shear moduli of the skeletons of the inclusions and matrix by K1 2,� and K 2 2,� and the

volume fractions of the porous inclusions and porous matrix by c1 and c2 , respectively. If the macrostrains � �� pq are given, then

the macrostresses � �� pq are expressed as
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where the effective bulk, K
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, and shear, � *
, moduli of the composite are defined [10, 34, 35, 37] in terms of the analogous
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if the matrix is stiffer than the inclusions, and
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otherwise.
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According to [33], K1 1
* *

,� and K 2 2
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,� are defined by
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A single microdamage occurs in the undamaged portion of the ith component in accordance with the Huber–Von Mises

failure criterion [13]:
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where ��pq
i

are the mean deviatoric stresses in the undamaged portion of the ith component; ki is the limiting value of the

left-hand side of (1.18) for the ith component, which is a random function of coordinates.

The one-point distribution function of ki may be approximated by a power-law function on a finite interval
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or by the Weibull function
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where k i0 is the minimum value of ki at which damage begins in some volumes of the ith component; k i1 , mi , and � i are

constants chosen from the strength scatter condition for the ith component.

Let the ith component of the composite have initial microdamage characterized by a porosity p i0 . Then the distribution

function F ki i( )defines the volume fraction of the undamaged material in the ith component in which the ultimate strength is less

than ki . Therefore, if the stresses in the undamaged portion of the ith component are equal to �pq
i

, then the function F Ii
i

( )�

defines the volume fraction of destroyed microvolumes of the skeleton of the ith component, according to (1.18)–(1.20). Since

destroyed microvolumes are modeled by pores, we have the following porosity balance equation [51, 53]:
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In view of (1.22), (1.23), Eq. (1.21) reduces to the following form when � �� ij are given:
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where K
p p1 1

,� and K
p p2 2

,� are defined by (1.17).
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Relations (1.13)–(1.19), (1.21)–(1.23) or (1.13)–(1.18), (1.20)–(1.23) can be used as the basis for an iterative algorithm

of determining the volume fraction of microdamages in the components and the elastic characteristics of the composite. To this

end, we will use the secant method [4].

After rearranging the porosity balance equation (1.21) into the form

�
�

�i i i i i i

ip

i

i
p p p p F

p
I( ) ( )� � � �

�




�

�
��

�

�

�
��

�

�

 
 � �0 01

2

1

!

"

#
#
� 0, (1.25)

it can be verified that the root pi falls into the interval [ , ]p i0 1 because

� �i i ip( ) , ( )0 0 1 0� � . (1.26)

Therefore, the zero-order approximation of the root p
i

( )0
is determined by the formula

p
a b b a

b a
i

i i i i i i

i i i i

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) (

0

0 0 0 0

0
�

�

�

� �

� �
( )

)
0

, (1.27)

where a p
i i

( )0

0� and b
i

( )0
� 1. The subsequent approximations are determined in the iterative process

p
a b b a

b a
i

m i

m

i i

m

i

m

i i

m

i i

m

i i

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) (

�
�

�

� �

� �
( )

)
m

, (1.28)

a a b p
i

m

i

m

i

m

i

m( ) ( ) ( ) ( )
,� �

� �1 1
for � �i i

m

i i

m
a p( ) ( )

( ) ( )� �
�

1 1
0,

a p b b
i

m

i

m

i

m

i

m( ) ( ) ( ) ( )
,� �

� �1 1
for � �i i

m

i i

m
a p( ) ( )

( ) ( )� �
�

1 1
0 $ %m �1 2, ,... ,

which proceeds until

& &� �i i

m
p( )

( )
� , (1.29)

where � is the error of computing the root.

We have plotted stress–strain curves for particulate composites with microdamaged matrix for the Weibull distribution

(1.20) and the following macroparameters:

� � ' � � � � � �� � �11 22 330 0, . (1.30)

In this case, according to (1.12), the macrostresses � ��11 and the macrostrains � ��11 are related by
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in the porosity balance equation (1.24), which is equivalent to condition (1.30).

The inclusions are made of aluminoborosilicate glass with the following elastic characteristics [10] and volume

fractions:

E
1

�70 GPa, 
1 � 0.2, c1 � 0, 0.25, 0.5, 0.75, 1.00. (1.33)
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The matrix is made of epoxy resin with the following elastic characteristics of the undamaged portion [20]:

E
2

� 3 GPa, 
2 � 0.35, (1.34)

where E1 and E2 are Young’s moduli and
1 and
2 are Poisson’s ratios of the undamaged portion of the inclusions and matrix,

respectively. Moreover,

p k m02 02 2 20 0 01 1000� � �, / . ,� , n2 22� �, � 0.2, �2 p � 0.007 GPa. (1.35)

Figure 1 shows plots of the macrostress � �� �11 2/ as a function of the macrostrain � ��11 . The curves include a linear

ascending section and a nonlinear descending section (caused by microdamage) for all values of the volume fraction c1 1� .

Figure 2 shows plots of the porosity p2 as a function of the macrostrain � ��11 . Both figures demonstrate significant dependence

on c1.

1.3. Laminated Composite. Consider a laminated material with N isotropic components and dispersed microdamages

characterized by porosity p i Ni ( ,... , )�1 . Denote the bulk and shear moduli of the undamaged portion of the ith component by

K i and� i and the volume fractions of the porous ith component by ci . If the macrostrains � �� jk are given, then the macrostresses

� �� jk are expressed as
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The effective moduli K ip and � ip of the porous ith component are defined by (1.17) ( ,... ,i N�1 ), according to [33].

A single microdamage occurs in the undamaged portion of the ith component in accordance with the Huber–Von Mises

failure criterion (1.18) ( ,... ,i N�1 ). The one-point distribution function of ki may have the form of (1.19) or (1.20).

From the same considerations as in Sec. 1.2, we can write the equation of balance of destroyed microvolumes in (or

porosity of) the ith component [51, 54] in the form (1.21) where �
jk

i
and � ��
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i
are related by
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In view of (1.39), the porosity balance equation (1.21) becomes
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where � ��
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i
and � �� jk are related by the following formulas [10, 34, 35, 37]:
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and the effective moduli K ip , (ip , and � ip are defined by (1.17).

The iterative algorithm (1.25)–(1.29) based on the secant method [4] and on (1.17), (1.37), (1.38), (1.18), (1.19) (or

(1.20)), (1.39)–(1.41) was used to determine the volume fraction of microdamages in the components and the elastic

characteristics of the composite and to plot stress–strain curves for a two-component laminated composite with microdamaged

reinforcement under loading of different types for the Weibull distribution (1.20). The materials of the composite are the same as

in the previous subsection (see (1.33)–(1.35)).
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then, according to (1.36), the macrostress � ��11 and the macrostrain � ��11 are related by
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in the porosity balance equation (1.40).

If

� � ' � � � � � �� � �33 11 220 0, , (1.45)

then, according to (1.36), the macrostress � ��33 and the macrostrain � ��33 are related by
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in the porosity balance equation (1.40).

Figures 3 and 4 show (for (1.42) and (1.45), respectively) the macrostress � �� �11 2/ as a function of the macrostrain

� ��11 and the macrostresses � �� �33 2/ as a function of the macrostrain � ��33 for different volume fractions c1 of the

reinforcement. As is seen, microdamages are responsible for the nonlinearity of the macrostress–macrostrain relationship, which

is most pronounced at small values of c1.

Figures 5 and 6 show (for (1.42) and (1.45), respectively) the porosity p2 of the matrix as a function of the macrostrains

� ��11 and � ��33 for different values of c1. It can be seen that the behavior of the curves of � �� �11 2/ versus � ��11 , � �� �33 2/

versus � ��33 , and p2 versus � ��33 significantly depends on c1, whereas c1 has a weak effect on the curve of p2 versus � ��11 .

1.4. Fibrous Composite. Consider a unidirectional fibrous material of stochastic structure with damages occurring in

the matrix alone and being described by porosity p2 . Fibers are transversely isotropic and normal to the isotropy plane x x1 2 .

Denote the elastic moduli of fibers by ( ( ( (
11

1

12

1

13

1

33

1
, , , , and (

44

1
; the bulk and shear moduli of the undamaged portion of the

matrix by K 2 and� 2 ; and the volume fractions of fibers and porous matrix by c1 and c2 , respectively. If the macrostrains � �� jk

are given, then the macrostresses � �� jk are defined by (1.36), where the effective moduli ( pq
*

are determined from the following

formulas [10, 34, 35, 37]:
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if the matrix is stiffer than the fiber reinforcement and
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if the reinforcement is stiffer than the matrix.

The effective moduli K p2 and � 2 p are defined by (1.17) (i = 2), according to [33].

A single microdamage occurs in the undamaged portion of the matrix in accordance with the Huber–Von Mises failure

criterion (1.18) (i = 2). The one-point distribution function of k2 may have the form of (1.19) or (1.20).

From the same considerations as in Sec. 1.2, we can write the equation of balance of damaged microvolumes in the

matrix or its porosity [51, 55] in the form (1.21), where �
jk

2
and � ��

jk

2
are related by (1.40) (i = 2), which reduces the porosity

balance equation (1.21) to the form (1.41) (i = 2), where � ��
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are related by
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and � ��
ij

2
are expressed in terms of macrostrains as follows [10, 34, 35, 37]:
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and the effective moduli K p2 , (2 p , and � 2 p are defined by (1.17).

The iterative algorithm (1.25)–(1.29) based on the secant method [4] and on (1.17), (1.48)–(1.51), (1.18), (1.19) (or

(1.20)), (1.39), (1.40), (1.52), (1.53) was used to determine the volume fraction of microdamages in the matrix and the elastic

characteristics of the composite and to plot stress–strain curves for a fibrous composite under loading of different types for the

Weibull distribution (1.20). The components of the composite are high-modulus carbon fibers with volume fraction c1 = 0, 0.25,

0.5, 0.75, 1.0 and the following elastic characteristics [20]:

E
1

1 �8 GPa, E
3

1 �226 GPa, 

12

1 � 0.3, 

13

1 � 0.2, G
13

1 �60 GPa, (1.54)

and epoxy matrix with the characteristics (1.34) of the undamaged portion and (1.35); E
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When the macroparameters (1.42) are given, the macrostress � ��11 and the macrostrain � ��11 are related by (1.43),

according to (1.36), and Eq. (1.44) holds for (1.40).

When the macroparameters (1.45) are given, the macrostress � ��33 and the macrostrain � ��33 are related by (1.46),

according to (1.36), and Eq. (1.47) holds for (1.40).

Figures 7 and 8 show (for (1.42) and (1.45), respectively) the macrostress � �� �11 2/ as a function of the macrostrain

� ��11 and the macrostress � �� �33 2/ as a function of the macrostrain � ��33 for different volume fractions c1 of fibers. As is seen,

microdamages are responsible for the nonlinearity of the macrostress–macrostrain relationship, which is especially pronounced

at small values of c1.

Figures 9 and 10 show (for (1.42) and (1.45), respectively) the porosity p2 of the matrix as a function of the macrostrain

� ��11 and macrostrain � ��33 for different values of c1. It can be seen that the behavior of the curves of � �� �11 2/ versus � ��11 ,

� �� �33 2/ versus � ��33 , and p2 versus � ��11 significantly depends on c1, whereas c1 has a weak effect on the curve of p2 versus

� ��33 .

2. Modeling Microdamages by Pores Filled with Particles of a Damaged Material.

2.1. Homogeneous Material. The model outlined in Sec. 1.1 can easily be generalized by assuming that microdamages

are pores filled with particles of a destroyed material that do not resist shear and uniform tension and resist uniform compression

as the undamaged material does. Therefore, the shear modulus of the destroyed material in the pores is equal to zero and the bulk

modulus is equal to zero if � � ��rr
2

0and to K if � � ��rr
2

0, where � ��
ij

2
are the average stresses in the material filling the pores.

When � � ��rr
2

0, the effective moduli K
*

and � *
are defined by (1.2). If � � ��rr

2
0, then, according to [36], we have
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where 
 is Poisson’s ratio of the undamaged portion of the material.

Assuming that a single microdamage occurs in the undamaged portion of the material in accordance with the

Schleicher–Nadai failure criterion [13], which accounts for the difference between the tensile and compressive ultimate loads,
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where a is a deterministic constant, we arrive at the following porosity balance equation [37]:
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Taking (1.5)–(1.7) and (2.5) into account, we reduce Eq. (2.4) to the form (1.11) for �rr
2

0� and to the form
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for �rr
2

0� , where � *
is defined by (2.1).

Equations (1.1), (1.2), (2.1), and (2.6) constitute a closed-form system that describes the coupled processes of

statistically homogeneous deformation and damage of a material with microdamages modeled by pores filled with a destroyed

material. Specifying macrostrains � �� ij , we find the porosity p from the nonlinear equations (2.1) and (2.6). Then, substituting p

into (1.1) and (2.1), we arrive at nonlinear relationships between the macrostresses � ��
ij

and the macrostrains � �� ij . Since Eqs.

(2.1) and (2.6) are nonlinear, their general solution can be found iteratively.

2.2. Particulate Composite. Let us generalize the damage model for particulate composites (Sec. 1.2) by assuming that

microdamages occurring in its components under loading are pores filled with particles of a damaged material. We will consider

the simplest case where these particles resist uniform compression as the undamaged material does and do not resist shear and

uniform tension; i.e., the shear modulus of the damaged material in pores is equal to zero and its bulk modulus is equal to zero for

�rr

ip
� 0(i = 1, 2) and to the bulk modulus of the undamaged material K ii ( , )�1 2 for �rr

ip
� 0(i = 1, 2), where �

jk

ip
are the stresses

in the pores filled with particles of the damaged ith component. Then, according to Sec. 1.2, when �rr

ip
� 0(the average stresses in

filled pores of the ith component are tensile), the effective moduli of damaged inclusions, K p p1 1,� , and matrix, K p p2 2,� , are

defined by formulas (1.17). When �rr

ip
� 0(the stresses are compressive), we have [36]
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Assuming that a microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion [13]
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we arrive at the following porosity balance equation [51, 53]:
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where � ��rr
i

are the average stresses in the ith component.

Given macrostrains � �� jk , we can use relations (2.12) and the following relationship between � ��
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i
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i
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to reduce the conditions � � ��rr
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0 to the following form:
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Considering relations (1.22), (1.23), and
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we reduce the porosity balance equation (2.9) with (2.12) to the form (1.24), where the effective moduli of porous inclusions,

K p p1 1,� , and matrix, K p p2 2,� are defined by (1.17). In view of (2.13), the porosity balance equation (2.9) can be rearranged

into
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where K p p1 1,� and K p p2 2,� are defined by (2.7).

The iterative algorithm (1.25)–(1.29) based on the secant method [12] and on (1.12)–(1.17), (1.19) (or (1.20)), (1.24),

and (2.12) or (1.12)–(1.16), (2.7), (1.19) (or (1.20)), (2.15), and (2.13), which constitute systems of nonlinear algebraic equations

for pi , was used to determine the volume fraction of microdamages in the components and the elastic characteristics of the

composite and to plot stress–strain curves of particulate composites with either empty pores or filled pores in the microdamaged

matrix for the Weibull distribution (1.20) and the macroparameters (1.30). In this case, the macrostress � ��11 and the macrostrain

� ��11 are related by (1.31), according to (1.1), and

I
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K K
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/
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/

(2.16)

in the porosity balance equation in the form (1.24), (2.12) or (2.15), (2.13).

Let

K

K
c

2

1

2

1

1 2 10 1 0 3 0 0 25 0 5 0 75 1 0� � � � �
�

�

 
. , . , , . , . , . , . , (2.17)

where 
1 and 
2 are Poisson’s ratios of the inclusions and the undamaged portion of the matrix, respectively, and
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Figures 11 and 12 show � �� �11 2/ as a function of � ��11 for a2 0� and a2 �0.2, respectively. It is seen that the constant

a2 , which characterizes the difference between the tensile and compressive strengths of the matrix, affects its elastic properties

significantly. As a2 increases, microdamages accumulate more intensively under tension (lower macrostress corresponds to

fixed macrostrain) and more slowly under compression (larger macrostress corresponds to fixed macrostrain).

Figures 13 and 14 show the porosity p2 of the matrix as a function of the macrostrain � ��11 for a2 0� and a2 � 0.2,

respectively. As is seen, the constant a2 has a significant effect too.

2.3. Laminated Composite. Let us generalize the model of damaged laminated material with N components described

in Sec. 1.3 by assuming that microdamages occurring under loading are pores filled with particles of a damaged material that

resist triaxial compression as the undamaged material does and do not resist shear and triaxial tension. Then the shear modulus of

the damaged material in the pores is equal to zero and the bulk modulus is equal to zero for �rr

ip
� 0(i = 1, ..., N) and to the bulk

modulus K i of the undamaged component for �rr

ip
� 0, where �

jk

ip
are the stresses in the pores filled with particles of the damaged

ith component. Then, according to [33], when �rr

ip
� 0(the average stresses in filled pores of the ith component are tensile), the

effective moduli K ip and� ip (i = 1, ..., N) of the damaged component are defined by formulas (1.17). When �rr

ip
� 0(the stresses

are compressive), we have formulas (2.7) [36].

Assuming that a single microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion (2.8), we arrive at the porosity balance equation (2.9). Given macrostrains � �� jk , we can use

relations (1.41) to ascertain whether � � ��rr
i

0or � � ��rr
i

0. Considering (1.10) and
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we reduce the porosity balance equation (1.21) to the form (1.40) if � � ��rr
i

0, where K ip and � ip are given by (1.17). If

� � ��rr
i

0, the porosity balance equation (2.9) is reduced to
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where � ��
jk

i
and � �� jk are related by (1.41), and K ip and � ip are given by (2.7).

The iterative algorithm (1.25)–(1.29) based on the secant method [4] and on (1.36), (1.37), (1.17), (1.19) (or (1.20)),

(1.40), (1.41), and � � ��rr
i

0 or (1.37), (1.38), (2.7), (1.19) (or (1.20)), (2.20), (1.41), and � � ��rr
i

0, which are systems of

nonlinear algebraic equations for pi , was used to determine the volume fraction of microdamages in the components and the

elastic characteristics of the composite and to study the deformation of two-component materials with microdamaged

reinforcement for the Weibull distribution (1.20), two cases of loading (1.42) and (1.45), and the characteristics (2.17) and

p k m01 01 2 10 0 01 1000� � �, / . ,� , �1 12 0 0 2� �, , .a . (2.21)

Given (1.42), the macrostress � ��11 and the macrostrains � ��11 are related by (1.43), according to (1.36), with equality

(1.44) holding for (1.40) if � � ��rr
i

0or for (2.20) if � � ��rr
i

0. Given (1.45), the macrostress � ��33 and the macrostrain � ��33 are

related by (1.46), according to (1.36), with equality (1.47) holding for (1.40) if � � ��rr
i

0 or for (2.20) if � � ��rr
i

0.

A numerical analysis reveals that whether macrostresses and macrostrains are tensile or compressive hardly affects the

behavior of � �� �11 2/ as a function of � ��11 and the behavior of � �� �33 2/ as a function of � ��33 and significantly affects the

behavior of p1 as a function of � ��11 and � ��33 . In the former case, the dependence of the porosity p1 on the macrostrain is

quantitatively similar for any volume fraction c1 of reinforcement because all layers undergo equal strains. In the latter case,

stresses are equal and strains are different in physically dissimilar layers; hence, for different volume fractions c1, the

dependence of p1 on � ��33 behaves differently with changing macrostrain. The analysis also shows that the constant a1, which

characterizes the difference of tensile and compressive strengths, also affects substantially the elastic properties and porosity of

the matrix.

2.4. Fibrous Composite. Let us generalize the model of damaged fibrous material described in Sec 1.4 by assuming that

microdamages occurring in the matrix under loading are pores filled with particles of a damaged material that resist triaxial

compression as the undamaged material does and do not resist shear and triaxial tension. Then the shear modulus of the damaged

material is equal to zero and the bulk modulus is equal to zero if �rr

p2
0� and equal to the bulk modulus K 2 of the undamaged

matrix if �rr

p2
0� , where �

ij

p2
are the stresses in the pores filled with particles of the damaged matrix. Then, according to [33],

when �rr

p2
0� , the effective moduli K p2 , (2 p , and � 2 p of the damaged matrix are defined by (1.17). When �rr

p2
0� , they are

calculated by formulas (2.7) [36].

Assuming that a single microdamage occurs in the undamaged portion of the matrix in accordance with the

Schleicher–Nadai failure criterion (2.8) (i = 2), we arrive at the porosity balance equation (2.9) (i = 2), where I
�
2

is given by

(1.39) (i = 2), and �rr
2

by (2.10) (i = 2). Given the macrostrains � �� ij , we can use relations (1.51)–(1.53) to ascertain whether

�rr

p2
0� or �rr

p2
0� . Considering relations (1.39) and (2.10) (i = 2), we can reduce the porosity balance equation (2.9) to the form

(1.40) (i = 2) if �rr

p2
0� , where K p2 , (2 p , and � 2 p are given by (1.17) (i = 2), and to the form (2.20) (i = 2) if �rr

p2
0� , where

� ��
ij

2
and � �� ij are related by (1.51)–(1.53) and K p2 , (2 p , and � 2 p are defined by (2.7) (i = 2).

The iterative algorithm (1.25)–(1.29) based on the secant method [12] and on (1.48)–(1.50), (1.17), (1.19) (or (1.20)),

(1.40), (1.41), and � � �� rr
2

0 or (1.48)–(1.50), (2.7), (1.19) (or (1.20)), (2.20), (1.41), and � � ��rr
2

0, which are systems of
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nonlinear algebraic equations for p2 , was used to plot stress–strain curves for fibrous materials with microdamaged matrix for

the Weibull distribution (1.20), macroparameters (1.42), (1.45), (2.18), and
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where G2 is the shear modulus of the undamaged portion of the matrix.

Given (1.42), the macrostress � ��11 and the macrostrain � ��11 are related by (1.43), according to (1.36), with equality

(1.44) holding for (1.40) if � � ��rr
i

0or for (2.20) if � � ��rr
i

0. Given (1.45), the macrostress � ��33 and the macrostrain � ��33 are

related by (1.46), according to (1.36), with equality (1.47) holding for (1.40) if � � ��rr
i

0 or for (2.20) if � � ��rr
i

0.

Figure 15 and 16 show � �� �11 2/ and p2 , respectively, as functions of � ��11 for the macroparameters (1.42). Figures 17

and 18 show � �� �33 2/ and p2 , respectively, as functions of � ��33 for the macroparameters (1.45). It can be seen that the

behavior of all the curves depends considerably on whether the macrostresses and macrostrains are tensile or compressive. The

curves of � �� �11 2/ versus � ��11 for c1 1� include two sections: linear ascending and nonlinear descending. Since in this case the

strains in the matrix and fibers are different, the behavior of the curve of p2 versus � ��11 depends on the volume fraction c1 of

fibers. The curves of � �� �33 2/ versus � ��33 for c1 0� are virtually linear and ascending, and the behavior of the curves of p2

versus � ��11 is hardly dependent on c1. The analysis also shows that the constant a2 strongly affects the elastic properties and

porosity of the matrix with growth of macrostrains.

3. Short-Term Damage under Thermal Loading.

3.1. Homogeneous Material. Let us consider the simplest structural model of a damaged homogeneous material with

dispersed microdamages modeled by randomly arranged quasispherical empty micropores. The macrostresses � �� ij ,

macrostrains � �� ij , and temperature . of such a material with damage characterized by porosity p are related by

� � � � � � � � � �� � � 	 � � / .	ij rr ij ij ijK( / )
* * * *

2 3 2 , (3.1)

where the effective bulk and shear moduli K
*

and� *
are defined by formulas (1.2), and the thermal stress and strain coefficients

/*
and �*

are expressed as follows, according to the theory of porous media [10, 34, 35, 37]:

/
� /

� �
�

/ /
�* *

*

*

( )

( )
,�

�

� �
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4 1

4 3 4 3 3

2
p

K p K K
, (3.2)

where K ,� and/, � are the bulk and shear moduli and the thermal stress and strain coefficients of the undamaged portion of the

material (skeleton).

In what follows, it will be convenient to use relations (1.3) and
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where 
 is Poisson’s ratio of the undamaged portion of the material.

Assuming that a single microdamage occurs in the undamaged portion of the material in accordance with the

Schleicher–Nadai failure criterion (2.4) [13], where the average stresses �
ij

in the undamaged material are related to the

macrostresses by

� �
ij ij

p
�

�
� �

1

1
, (3.4)

according to (3.1), we arrive at (1.6) and

� � � / .
ij ij rr

p p
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3

1
( )

* *
. (3.5)

Thus, we can write the equation of balance of damaged microvolumes or porosity in the form (2.4). In view of (1.6) and

(3.5), the porosity balance equation for given � �� ij and . can be rearranged into the form

p p p F
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�
� / .� . (3.6)

Equations (3.1), (1.2), (3.2), and (3.6) constitute a closed-form system describing the coupled processes of statistically

homogeneous deformation and damage of a material under mechanical and thermal loading. Given the macrostrains � �� ij and

temperature ., we can find the porosity p from the nonlinear equations (1.2), (3.2), and (3.6). Then, substituting p into (3.1),

(1.2), and (3.2), we arrive at a nonlinear relationship among � �� ij , � �� ij , and .. Since Eqs. (1.2), (3.2), and (3.6) are nonlinear,

their general solution can be found iteratively.

The above model can be generalized by assuming that microdamages are pores filled with particles of a damaged material

that resist triaxial compression as the undamaged material does and do not resist shear and triaxial tension. Then the shear modulus

of the damaged material filling pores is equal to zero and its bulk modulus is equal to zero when � � ��rr
2

0and is equal to K when

� � ��rr
2

0, where � ��rr
2

are the average stresses in the material filling the pores. For � � ��rr
2

0, the effective moduli K
*

and� *
and

the coefficients /*
and �*

are defined by (1.2) and (3.2). For � � ��rr
2

0, according to [6], we have (2.1) and

/ /* � , � �* � . (3.7)

Assuming that a single microdamage occurs in the undamaged portion in accordance with the Schleicher–Nadai failure

criterion (2.3), we arrive at the porosity balance equation (2.4), where I
�

is defined by (1.6) and � ��rr by (2.5).
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Considering relations (1.6), (2.1), (2.5), (3.5), and (3.7), we reduce the porosity balance equation (2.4) to the form (3.6)

when � � ��rr 0and to the form
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when � � ��rr 0, where � *
is defined by (1.3) and (2.1).

3.2. Particulate Composite. We will model dispersed microdamages in the components of a particulate composite by

randomly arranged quasispherical empty micropores. Denote the porosities and volume fractions of the matrix and inclusions by

p1, c1 and p2 , c2, respectively; and their bulk and shear moduli and thermal stress and strain coefficients by K1,�1,/1, �1 and

K 2 , � 2 , /2 , �2 . The macrostrains � �� jk , macrostresses � �� jk , and temperature . are related by (3.1), where the effective

constants K
*

, � *
, /*

, and �*
are expressed, according to [10, 34, 35, 37], in terms of the analogous constants of porous

inclusions and porous matrix, K p p p p1 1 1 1, , ,� / � and K p p p p2 2 2 2, , ,� / � , by formulas (1.13)–(1.15) and
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. (3.9)

The effective moduli and thermal coefficients of the porous matrix and inclusions are defined by (1.17), according to

[33], and by
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Assuming that a single microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion (2.8), we can write the equation of balance of damaged microvolumes in the ith component or

its porosity in the form (2.9), where equalities (1.22) and (1.23) hold and
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Taking relations (1.13)–(1.15), (1.17), (3.9)–(3.11) into account, we reduce the porosity balance equation (2.9) to the

form
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where the effective moduli and thermal coefficients of the porous inclusions and matrix, K p p p1 1 1, ,� / and K p p p2 2 2, ,� / , are

defined by (1.17) and (3.10).

Let us generalize the model of damaged particulate composite by assuming that microdamages are pores filled with

particles of a damaged material that, in the simplest case, resist triaxial compression as the undamaged material does and do not

resist shear and triaxial tension. Then the shear modulus of the damaged material filling pores is equal to zero and its bulk

modulus is equal to zero when �rr

ip
� 0(i = 1, 2) and is equal to the bulk modulus K i of the undamaged component (i = 1, 2) when

�rr

ip
� 0 (i = 1, 2), where �

jk

ip
are the stresses in filled pores of the ith component. Then, according to Sec. 1, when �rr

ip
� 0 (the

average bulk stresses in the particles filling pores of the ith component are tensile), the effective moduli and thermal coefficients

of the porous inclusions and matrix, K p1 , �1p , /1p and K p p p2 2 2, ,� / , are defined by (1.17). When �rr

ip
� 0 (the stresses are

compressive), we have (2.7) and

/ / � �
ip i ip i i� � �, ( , )1 2 . (3.13)

Assuming that a single microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion (2.8), we arrive at the porosity balance equation (2.9), where I
i

�
is defined by formula (1.22),

(1.23) and �rr
i

by (2.10).
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and relations (3.11) to reduce the conditions � � ��rr
i

0and � � ��rr
i

0 to the form
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In view of (1.22), (1.23), and (2.14), the porosity balance equation (2.9) reduces to the form (3.12) if (3.15) holds, where

K p p p1 1 1, ,� / and K p p p2 2 2, ,� / are defined by (2.17) and (3.10), and to the following form if (3.16) holds:
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where K p p p1 1 1, ,� / and K p p p2 2 2, ,� / are defined by (2.7) and (3.13).

The iterative algorithm (1.25)–(1.29) based on the secant method [12] and on (1.13)–(1.17), (3.9), (3.10), (1.19) (or

(1.20)), (3.12), and (3.15) or (1.13)–(1.16), (3.9), (2.7), (3.13), (1.19) (or (1.20)), (3.17), and (3.16), which are systems of

nonlinear algebraic equations for pi , was used to plot stress–strain curves for particulate composites with microdamaged matrix
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for the Weibull distribution (1.20), macroparameters (1.30), and cases of empty and filled pores. According to (3.8), the

macrostress � ��11 , macrostrain � ��11 , and temperature . are related by

� � �
�

� � ��
�

�
� / .11 11

1 3

3

*

* *

* *

/

( )

K

K . (3.18)

In (3.12), (3.15) and (3.17), (3.16), we have
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,

�1 3/
*�

, (3.19)

which is equivalent to (3.18).

The material of inclusions is aluminoborosilicate glass with the elastic characteristics and volume fraction (1.33) and

the following thermal strain coefficient [10]:

�
1

� 4.93 �
10

6
°C

–1
. (3.20)

The material of the matrix is epoxy resin with the elastic characteristics of the undamaged portion (1.34) and the

following thermal strain coefficient [20]:

�
2

� 453 �
10

6
°C

–1
, (3.21)

and parameter values (1.35).

Figures 19 and 20 show � �� �11 2/ as a function of � ��11 in the cases of tension and compression for � .2 0� and � .2 �

0.0045, respectively. In the case of compression, the solid lines correspond to pores filled with particles of a damaged material

and the dashed lines to empty pores. As can be seen, damage sets in at lower macrostrain when pores are empty. The temperature

has a significant effect on the stress–strain curves: microdamages begin to appear under lower compressive macrostrains and

higher tensile macrostrains.

Figures 21 and 22 show p2 as a function of � ��11 for � .2 0� and � .2 �0.0045, respectively. Comparing these curves

with those that disregard the thermal effect reveals [46, 53, 57] that the temperature . also has a significant influence on the

behavior of the curve of porosity versus � ��11 .

Let us now consider the coupled processes of deformation and microdamage induced by thermal loading alone:

� � � � � � � � �� � �11 22 33 0. (3.22)
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In this case, the bulk macrostrain � ��rr and the temperature . are related linearly by
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/

. � .rr

K

*

*

*
3 . (3.23)

Assuming that no damage occurs under triaxial compression and considering that I � � �� 0 if (3.22), we reduce the

porosity balance equation (3.12) to the form
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According to (3.15) and (3.23), the bulk stresses in the components are defined by
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As can be seen, thermal loading can cause microdamage even in the absence of macrostresses because the coefficients

of linear thermal expansion in the components are different and, thereby, one component is under compression and the other

under tension. As a result, microdamages occur in the latter component.

Figure 23 shows the porosity p2 of the matrix as a function of the thermal strain � .2 for (3.22) (no mechanical load).

3.3. Laminated Composite. Let us consider a laminated material with N isotropic components and dispersed

microdamages modeled by empty pores. The bulk and shear moduli and the thermal stress and strain coefficients of the

undamaged portion of the ith a component are denoted by K i i i i, , ,� / � ; the porosity by p i Ni ( ,... , )�1 ; and the volume

fraction of the porous ith component by ci . Given the macrostrains � �� jk and temperature ., the macrostresses � �� jk are

expressed as

� � � � � � � � � � � � �� ( ( � ( � ( � / . 	jk jk rr( ) ( )
* * * * *
11 12 12 13 33 1 jk ,

� � � � � � � � �� ( � ( � / .33 13 33 33 3
* * *

rr , � � � � �� ( �j j3 44 32
*

( , , , )j k r �1 2 , (3.26)

where the effective elastic moduli ( ( ( (11 12 13 33
* * * *

, , , , and (44
*

are defined by (1.37) and the thermal stress and strain coefficients

/ /1 3
* *

, , and � �1 3
* *

, are determined [10, 34, 35, 37] in terms of the analogous moduli and coefficients of the porous components
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If dispersed microdamages are modeled by randomly arranged quasispherical empty micropores, the effective moduli

and thermal coefficients of the porous ith component, K ip ip ip ip ip, , , ,( � / � ( / )( �ip ip ipK� �2 3 ( ,... , )i N�1 are defined by

(1.17) and (3.10).

Assuming that a single microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion (2.8) (i = 1, ..., N) and reasoning in the same way as in the cases of homogeneous or particulate

composites, we arrive at the porosity balance equation in the form (2.9) (i = 1, ..., N), which in view of (1.39) and
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where � ��
jk

i
, � �� jk , and . are related by the following formulas [10, 34, 35, 37]:
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and K ip ip ip, ,( � , and /ip are defined by (1.17) and (3.10).

Let us generalize the above model by assuming that microdamages are pores filled with particles of a damaged material

resisting deformation. Then, according to Sec. 1, when �rr

ip
� 0(the average bulk stresses in the pores of the ith component are

tensile), the effective moduli and thermal coefficients of the porous components, K ip ip ip ip, , ,( � / ( , , )i N�1� , are defined by

(1.17) and (3.10). When �rr

ip
� 0(the stresses are compressive), according to Sec. 2, these moduli and coefficients are defined by

(2.7) and (3.13).

Assuming that a single microdamage occurs in the undamaged portion of the ith component in accordance with the

Schleicher–Nadai failure criterion (2.8), we arrive at the porosity balance equation in the form (2.9) (i = 1, ..., N), where I
i

�
is

defined by (1.39) and �rr
i

by (2.10).

Given � �� jk and . in (3.30), we can ascertain whether � � ��rr
i

0or � � ��rr
i

0. In view of (1.39) and (2.10), the porosity

balance equation (2.9) reduces to the form (3.30) if � � ��rr
i

0, where K ip ip ip ip, , ,( � / are defined by (1.17) and (3.10), and to

the following form if � � ��rr
i

0:
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where � ��
jk

i
, � �� jk , and . are related by (3.31), and K ip ip ip, ,( � , and /ip are given by (2.7) and (3.13).

The iterative algorithm (1.25)–(1.29) based on the secant method [4] and on (1.37), (1.38), (3.27), (1.17), (3.10), (1.19)

(or (1.20)), (3.30), (3.29), and � � ��rr
i

0 or (1.37), (1.38), (3.27), (2.7), (3.13), (1.19) (or (1.20)), (3.30), (3.31), and � � ��rr
i

0,

which are systems of nonlinear algebraic equations for pi , was used to determine the volume fraction of microdamages in the

components and the elastic characteristics of the composite and to study the deformation of a laminated two-component

composite with microdamages in the reinforcement for the Weibull distribution (1.20), different cases of loading, and the cases

of empty and filled pores. The components are aluminoborosilicate glass with the characteristics and volume fraction (1.33),

(3.20) and epoxy resin with characteristics (1.34), (3.21), (1.35), and � .1 � 0.00094.

Given (1.42), according to (3.26), the macrostress � ��11 , macrostrain � ��11 , and temperature . are related by
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in (3.29) if � � ��rr
i

0or in (3.31) if � � ��rr
i

0.

Given (1.45), according to (3.26), the macrostress � ��33 , macrostrain � ��33 , and temperature . are related by

� � �
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and
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in (3.30) if � � ��rr
i

0or (3.32) if � � ��rr
i

0.

Comparing the numerical results with those disregarding the thermal effect [47, 54, 58] shows that the temperature has a

significant impact on the stress–strain curves. The temperature . also strongly affects the behavior of porosity under increasing

strain. Thermal loading may cause microdamages even in the absence of mechanical strains.

In the case of deformation and damage induced by thermal loading alone (3.22), the macrostrains � � � � � �� � �11 22 33, ,

and the temperature . are linearly related by

� � � � � � � � �� � � .4 � � .11 22 1 33 3
* *

. (3.36)

Using relations (1.17), (3.10), (3.29), (3.30), and (3.36), we obtain a porosity balance equation for the case of thermal

loading, where the stresses � ��
jk

i
are defined by (3.30) and (3.36).

A numerical analysis reveals that thermal loading can cause microdamage even in the absence of macrostresses because

the coefficients of linear thermal expansion in the components are different and, thereby, one component is under compression

and the other under tension. As a result, microdamages occur in the latter component.

3.4. Fibrous Composite. Let us consider a unidirectional fibrous composite with dispersed microdamages in an

isotropic matrix that are modeled by empty pores with porosity p2 . The fibers are transversely isotropic and normal to the

isotropy plane x x1 2 . Denote the elastic moduli and the thermal stress and strain coefficients of fibers by ( ( ( ( (
11

1

12

1

13

1

33

1

44

1
, , , , ,

/ /
1

1

3

1
, , � �

1

1

3

1
, and the bulk and shear moduli and the thermal stress and strain coefficients of the undamaged portion of the

matrix by K 2 2 2 2, , ,� / � , and the volume fractions of fibers and porous matrix by c1 and c2 , respectively. The macrostrains

� �� jk , macrostresses � �� jk , and temperature . are related by (3.26). The effective elasticity moduli ( ( ( (11 12 13 33
* * * *

, , , , and (44
*

of the fibers are defined by (1.48)–(1.50), and the coefficients / /1 3
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, and � �1 3
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, by the following formulas [10, 34, 35, 37]:
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The effective moduli and thermal coefficients of the porous matrix, K p p p p2 2 2 2, , ,� / � , are defined by (1.17) and

(3.10) (i = 2).

Assuming that a single microdamage occurs in the undamaged portion of the matrix in accordance with the

Schleicher–Nadai failure criterion (2.8) (i = 2) and using the same line of reasoning as in the cases of homogeneous, particulate,

and laminated composites, we can write the porosity balance equation in the form (2.9) (i = 2), where � ��
jk

2
, � ��

jk

2
, and . are

related by
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and � ��
jk

2
are related to � ��
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and . by the following formulas [10, 34, 35, 37]:
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where *2 1 2 3, , ,a a a , and a4 are defined by (1.52) and K p p p2 2 2, ,� / , and, �2 p by (1.17) and (3.10) (i = 2).

We generalize the above model of damaged fibrous composite by assuming that microdamages are pores filled with

particles of a damaged material that resist deformation. Then, according to Sec. 1, when �rr

p2
0� (the average bulk stresses in the

pores of the matrix are tensile), the effective moduli and thermal coefficients of the porous filled matrix, K p p p p2 2 2 2, , ,( � / ,

are defined by (1.17) and (3.10) (i = 2). When �rr

p2
0� (the stresses are compressive), according to Sec. 2, the effective moduli

and thermal coefficients have the form (2.7) and (3.13) (i = 2).

Assuming that a single microdamage occurs in the undamaged portion of the matrix in accordance with the

Schleicher–Nadai failure criterion (2.8), we arrive at the porosity balance equation (2.9) (i = 2), where I
�
2

is given by (1.38) and

�rr
2

by (2.10).

Given the macrostrains � �� jk and temperature ., we can use relations (1.53), (3.38), and (3.39) to ascertain whether

�rr

p2
0� or �rr

p2
0� . In view of (1.39) and (2.10), the porosity balance equation (2.9) reduces to the form (3.29) when �rr

p2
0� ,

where K p p p2 2 2, ,( � , and /2 p are defined by (1.17) and (3.10), and to the form (3.31) when �rr

p2
0� , where K p2 , (2 p , � 2 p ,

and /2 p are defined by (2.7) and (3.13).

The iterative algorithm (1.25)–(1.29) based on the secant method [4] and on (1.48)–(1.50), (3.37), (1.17), (3.10), (1.19)

(or (1.20)), (3.38), (3.39), (1.53), (3.29), and � � ��rr
i

0 or (1.48)–(1.50), (3.37), (2.7), (3.13), (1.19) (or (1.20)), (3.38), (3.39),

(1.53), (3.31), and � � ��rr
i

0, which are systems of nonlinear algebraic equations for p2 , was used to determine the volume

fraction of microdamages in the matrix and the elastic characteristics of the composite and to plot stress–strain curves for a

fibrous composite for the Weibull distribution (1.20), different types of loading, and the cases of empty and filled pores. The

reinforcement is high-modulus carbon fibers with the elastic characteristics (1.54), volume fractions c1 = 0, 0.25, 0.5, 0.75, 1.0,

and the following transverse and longitudinal thermal strain coefficients [20]:
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which are related to ( ( ( ( ( /
11

1

12

1

13

1

33

1

44

1

1

1
, , , , , , and /

3

1
by formulas (1.54) and

/ ( ( � ( � / ( � ( �
1

1

11

1

12

1

1

1

13

1

3

1

3

1

13

1

1

1

33

1

3

1
2� � � � �( ) , . (3.41)

The material of the matrix is epoxy resin with the characteristics of (1.34), (3.21), (1.35), and � .2 � 0.0045.

If condition (1.42) is given, then, according to (3.26), the macrostress � ��11 , macrostrain � ��11 , and temperature . are

related by (3.32). In this case, equality (3.33) holds for the porosity balance equation (3.29) if � � ��rr
i

0and for (3.31) if � � ��rr
i

0.

If condition (1.45) is given, then, according to (3.26), the macrostress � ��33 , macrostrain � ��33 , and temperature .are related by

(3.34). In this case, equality (3.35) holds for the porosity balance equation (3.29) if � � ��rr
i

0 and for (3.31) if � � ��rr
i

0.

Figures 24 and 25 show (for (1.41) and (1.44), respectively) � �� �11 2/ as a function of � ��11 and � �� �33 2/ as a

function of � ��33 for different values of c1 in the cases of tension and compression. In the case of compression, the solid lines

correspond to pores filled with particles of a damaged material, and the dashed lines to empty pores. Comparing these curves

with those plotted regardless of the thermal effect [55, 59, 76] reveals that temperature has a significant impact on the

stress–strain curves. Figures 26 and 27 show (for (1.41) and (1.44), respectively) the porosity p2 as a function of � ��11 and � ��33

for different values of c1 in the cases of tension and compression. As can be seen, the temperature .has a significant effect on the

behavior of the curves with increasing strains. Thermal loading may cause microdamages even in the absence of mechanical

strains.

In the case of thermally induced deformation and microdamage (3.23), the macrostrains � ��11 , � ��22 , and � ��33 are

related to the temperature . by (3.38). Using relations (1.17), (3.10), (3.29), (3.38), (3.39), and (1.53), we obtain a porosity

balance equation, where � ��
jk

2
are defined by (1.53), (3.38), and (3.39).
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Figures 28 and 29 show the stress � �� �
33

2
2/ in the matrix and its porosity p2 on the thermal strain � .2 , i.e., in the case

of thermal effect alone (3.22). As is seen, thermal loading can induce microdamage in the absence of mechanical macrostresses

because the coefficients of linear thermal expansion in the components are different and, thereby, one component is under

compression and the other under tension. As a result, microdamages occur in the latter component.
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