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The elastoplastic state of isotropic homogeneous cylindrical shells with elliptic holes and finite

deflections under internal pressure is studied. Problems are formulated and numerically solved taking

into account physical and geometrical nonlinearities. The distribution of stresses (displacements,

strains) along the boundary of the hole and in the zone of their concentration is analyzed. The data

obtained are compared with the numerical solutions of the physically nonlinear, geometrically

nonlinear, and linear problems. The stress–strain state of cylindrical shells in the neighborhood of the

elliptic hole is analyzed with allowance for nonlinear factors
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Introduction. The distribution of stresses (strains, displacements) in isotropic and anisotropic, simply and multiply

connected structural members (shells, plates) has mostly been studied for the elastic range of deformation [1, 3, 5–7, 9, 10]. The

major results have been obtained in solving static linear elastic problems for thin and nonthin shells with curvilinear (circular,

elliptic, etc.) holes (cutouts) under surface and edge loads. The use was made of theories of shells based on hypotheses on

structural members made of traditional metallic and advanced composite materials. To formulate and solve problems of this

class, variational, numerical, and analytic methods were used.

Physically nonlinear problems that deal with nonlinear elastic, plastic, and creep strains in members (isotropic or

orthotropic) of shell structures of positive or zero Gaussian curvature with curvilinear holes are solved in [4, 6, 7, 12, 14, etc.].

The distribution of stress/strain components around an elliptic hole is studied in [3, 5–8, 11, 17] by solving boundary-value

problems and taking into account the physical nonlinearity of materials (metals, composites).

Also of interest are two-dimensional nonlinear problems of stress concentration around elliptic (noncircular) holes in

isotropic cylindrical shells with both physical and geometrical (finite, large deflections) nonlinearities. Such studies are even

more important in connection with calculations for high levels of loads (surface pressure, axial forces, edge forces, moments).

The present paper discusses results, obtained by the method developed in [2] and presented in support of its applications

[14, 16, 18], from a numerical analysis of the elastoplastic stress–strain state around an elliptic hole in a flexible cylindrical shell

under a surface load. We will examine the influence of physical (plastic deformations) and geometrical (finite deflections)

nonlinearities on the distribution of stresses and strains in the zone of their concentration in a shell under internal pressure of

given magnitude.

1. Let us analyze the elastoplastic state of a thin isotropic cylindrical shell (of radius R, thickness h = const) with an

elliptic hole (a and b are the ellipse semiaxes). The shell is subject to a surface load { } { , , }p p p p
T

� 1 2 3 and an edge load

{ } { , , , }m T S Q M
T

� b b b b . Assume that high loads cause plastic strains (structural properties, mechanical characteristics, and

stress–strain curve ( )) �� of the material are known) and deflections (along the normal to the shell near the hole) commensurable

with the thickness of the shell.
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The mid-surface of the shell (Fig. 1) is described in a Cartesian coordinate system (x, y) with the Ox-axis directed along

the semiaxis a (in the longitudinal direction of the cylinder). The boundary of the elliptic hole is described by the parametric

equation

x a y b� �cos , sin� �, (1)

where � is the angle of the elliptic coordinate system.

In the general case [2, 15] of an arbitrary thin shell described in a coordinate system not aligned with the lines of

principal curvature, the geometrical equations are derived from the theory of flexible shells (second-order theory of shells) and

the physical equations from the flow theory with isotropic hardening.

To derive the governing system of equations [2, 15] that describes the elastoplastic state of a shell with an elliptic hole

and finite deflections, the virtual-displacement principle and approximate methods are used. The method for approximate

solution of nonlinear problems used here is based on the incremental loading procedure. The doubly nonlinear problem posed

will be solved by sequentially applying the modified Newton–Kantorovich method (geometrically nonlinear problem), the

method of additional stresses (physically nonlinear problem), and the finite-element method (FEM) and using a matrix notation

for the equations.

After linearization and FEM discretization of the variational equation, we obtain a governing system of algebraic

equations, which can be represented in the following form for the nth step of loading [2]:

[ ]{ } { }M q V* *� ,

[ ] [ ] [ ] [ ]M M M M� � �0 � )
, { } { } { } { }* * * *>V P N� � � , (2)

where [ ]M 0 is the incremental stiffness matrix for linearly elastic shells; [ ]M
�

and[ ]M
)

are the influence matrices for the initial

angles of rotation of the tangents to the coordinate lines and for stresses; {*q} is the global column vector of increments of nodal

degrees of freedom (nodal variables); {*P}, {*N}, and {*>} are the vectors of loads, nonlinearities, and residues of the

equilibrium equations at the end of the previous step of loading. Note that the stiffness matrices are calculated using the matrix

[D] defined by the elastic characteristics of the shell.

To solve specific nonlinear problems for shells, Eqs. (2) with (1) should be supplemented with boundary conditions at

the external and internal edges (boundaries of the domain of interest).

2. The method and algorithm for solving the nonlinear problems formulated have been implemented in a software

package [2], which makes it possible to analyze the inelastic stress–strain state of flexible cylindrical shells with an elliptic hole

under a prescribed load.

The method was validated by comparing the numerical solution of a linear elastic problem [8] and experimental data

[18] for a cylindrical shell with the following characteristics: ? � �r Rh0 / 1.667, r a b0 2� �( ) / , b a� 2 , E � 70 GPa, ;= 0.4.
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It is assumed that the hole is free from forces and that the load (axial tension; P/h = 9.81 MPa) is uniformly distributed

along the edge x = const. The following boundary conditions are prescribed on the boundary of the hole [6]:

~ ~
, ,

~
*

T T M Q
) )+ ) )
� � � �0 0 0. (3)

The stress state is momentless far from the hole ( )x x� b :

~ ~
, ,

~
*

T Q M T P
)+ ) ) )

� � � �0 0 . (4)

Symmetry conditions hold on the boundaries x � 0, y � 0, and y y R� �b / ( / )@ 2 :

u T Q
) ) )+ )

�� � � �0 0 0, ,
~ ~

*
. (5)

The displacements, strains, and stresses at nodes of the mesh and points throughout the thickness calculated in solving

the test problem with conditions (3)–(5) are summarized in tables. The stress distribution ( / )K h P
) �

)� along the elliptic

boundary is shown by plots [8, 18], which are indicative of the efficiency of the numerical method and quite accurate solution of

the problem for a shell of complex geometry.

Note that the complete solution has been obtained in view of the condition

(| | | | /| | | | ) ( )*q qn
i

n
i

$ $
�

� � 10
2

,

where q is the deflection (characteristic quantity) at a given point (node) in the nth approximation; *q is the difference of the

values of this quantity in the nth and (n – 1)th approximations; � is prescribed accuracy.

3. We have solved the following problems for shells under internal pressure q q� (0
5

10 Pa: (i) linear elastic problem

(LP) for q0 = 1 and (ii) nonlinear elastic problems (PNP, GNP, and PGNP) for q0 = 10.

For reasons of geometrical and force symmetry, the problems can be solved in the domain ( )A bounded by the hole

boundary and the lines x � 0, x x� b; y � 0, y y� b (Fig. 2).

The numerical results discussed below have been obtained for a cylindrical shell with the following geometry:

B � � � � �

�R

h
r

r

h
r

a b
400

2
30

2

0

0, ,
*

, a a b
*

/� � 1/2, 2/3, 1.0, 3/2, 2.0 (6)
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TABLE 1

� 1

)
�

*
(LP)

a
*
� 1/2 a

*
� 2/3 a

*
� 1 a

*
� 3/2 a

*
� 2

0
0.5

–0.5

2540

2847

2408

3889

2794

5933

4306

8863

6457

11490

@/14
0.5

–0.5

2646

2744

2573

3739

2974

5661

4189

8268

5610

10380

@/4
0.5

–0.5

3495

1651

3662

1946

3760

2327

3548

2499

3255

2404

3@/7
0.5

–0.5

3985

–85

3493

–1099

2986

–2572

2668

–3812

2459

–4574

@/2
0.5

–0.5

3993

–153

3339

–1563

2808

–3206

2528

–4539

2338

–5340



made of an AMg-6 material (E � 70 GPa, ;= 0.3–0.5, )ï � 140 MPa, �= 0.002, )ò � 165 MPa), and subjected to internal

pressure q = 10
6

Pa.

It is assumed that the hole is closed with a plug that transmits only the shearing forcesQ qrb � 0 2/ to the boundary of the

hole.

At a sufficient distance from the hole, the stress state is momentless:

T qRb � / 2 on the boundary x x� b,

T qRb � on the boundary y y� b. (7)

The process of loading was divided into 10 steps to solve physically nonlinear problems for the shell (6) with (7)

(elastoplastic strains) and into 20 steps if a/b = 3/2; 2.0 and into 10 steps if a/b = 1/2; 2/3; 1.0 to solve geometrically nonlinear

problems (finite deflections).
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TABLE 2

�

w
*

(LP)

a
*
� 1/2 a

*
� 2/3 a

*
� 1 a

*
� 3/2 a

*
� 2

0 2.954 1.120 0.0735 0.662 1.953

@/14 2.994 1.211 0.2047 0.807 2.105

@/4 3.233 1.927 1.3990 2.388 3.988

3@/7 3.245 2.427 2.5940 4.414 6.715

@/2 3.232 2.469 2.7260 4.663 7.063

TABLE 3

NP �

w
*

a
*
� 1/2 a

*
� 2/3 a

*
� 1 a

*
� 3/2 a

*
� 2

PNP

0 3.518 1.599 0.323 1.229 3.643

@/4 4.132 3.368 4.284 9.257 15.980

@/2 4.120 4.083 6.705 15.980 28.590

GNP

0 1.138 0.8742 0.6912 0.7443 0.8987

@/4 1.195 1.076 1.068 1.340 1.652

@/2 1.206 1.261 1.599 2.299 2.958

PGNP

0 1.320 1.106 1.023 1.164 1.385

@/4 1.361 1.310 1.495 1.962 2.456

@/2 1.350 1.473 2.006 2.970 3.890



The domain ( )A is covered with an irregular mesh of curvilinear fragments>i i( , )�1 4 each regularly divided into finite

elements (FEs). The optimal mesh is selected by solving test problems for elastic shells with an elliptic hole and comparing

solutions obtained from different meshes. Five FE meshes have been tested; the optimal mesh for the fragments in Fig. 2 consists

of 245 FEs.

The tables and figures here show some of the values of displacements, strains, and stresses in a cylindrical shell with an

elliptic hole obtained in solving linear and nonlinear problems.

Table 1 collects the values of the maximum stresses ) )
� �
� (

*
10

5
Pa along the hole boundary ( / )0 2$ $� @ on the

outside and inside surfaces ( / . )1 �� � 0h 0 5 for a
*
�1/2, 2/3, 3/2, 2. The dependence of relative deflections ( / )

*
w w h� on the

angle � 1( )� 0 for a shell with a circular hole ( )
*

a �1 is shown in Table 2. The components of the displacement vector ( , , )u v w ,

strain tensor ( )eij , and stress tensor ( )) ij have been calculated at the edge and near the hole by solving PNP, GNP, and PGNP for

q0 = 2.

Table 3 summarizes the values of displacements w
*

calculated at three points ( , / , / )� @ @� 0 4 2 of the hole boundary

for different aspect ratios a
*

. Table 4 gives the maximum (circumferential) stresses )
�

*
on the outside (numerator) and inside

(denominator) surfaces ( . )1 � 00 5 at three points ( , / , / )� @ @� 0 4 2 of the hole boundary.

Figures 3–7 demonstrate how the stress concentration factor K h qR
� �

)� / varies along the hole boundary in the

mid-surface of the shell ( )1 � 0 with an elliptic and circular hole. Curves 1, 2, 3, and 4 correspond to LP, PNP, GNP, and PGNP,

respectively.
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TABLE 4

NP �

)
�

*

a
*
� 1/2 a

*
� 2/3 a

*
� 1 a

*
� 3/2 a

*
� 2

PNP

0
1698

1807

1689

1955

1733

2235

1932

2915

2429

4080

@/4
1848

1492

1907

1373

1957

581

1969

3

1877

97�

@/2
1840

840�

1762

1592�

1802

1905�

1966

2203�

2146

2478�

GNP

0
2377

2181

2665

2647

3461

3721

4960

5491

6627

7270

@/4
2560

1783

2779

1963

2878

2208

2822

2360

2694

2391

@/2
2844

687

2393

81�

2126

904�

2144

1412�

2238

1605�

PGNP

0
1630

1609

1714

1713

1845

1852

2019

2040

2247

2279

@/4
1647

1512

1702

1557

1737

1584

1723

1565

1697

1508

@/2
1699

609

1585

141�

1538

923�

1534

1322�

1529

1328�



An analysis of the results shows that for a
*
%1as well as a

*
� 1 (circular hole), the most critical is the section on the

hole boundary at the point � � 0 on the outside surface where the stresses )
�

peak. As the aspect ratio decreases (a
*
� 1), the

stresses in the section � � 0are redistributed throughout the thickness and their maximum shifts from the point � � 0to the point

� @� /2. Therefore, when a � 1/2, the most critical section is on the hole boundary at the point � @� / 2 on the outside surface.

This effect is due to the fact that internal pressure generates not only a surface load, but also axial tensile forces T qRb � / 2at the

edges x x� b. Maximum stresses occur at the point � � 0 on the hole boundary under surface loading and at the point � @� /2

under axial loading. The contribution of each type of loading to the total stress–strain state depends on the aspect ratio of the

elliptic hole; therefore, as the parameter a
*

changes, the stresses are redistributed throughout the thickness and on the boundary

of the hole.

The maximum deflection is observed at the point� @� /2 of the hole boundary when a
*
�2/3; 3/2; 2 (as well as when the

hole is circular) and shifts from the point � @� /2 to the point � � 0 when a
*
$ 1/2. The cause of this effect is the same as for

stresses.

In the PNP for a
*
� 1/2, 2/3, 1, 3/2, and 2, the maximum stress is less by 54, 50, 62, 67, and 64% and the maximum

deflection is greater by a factor of 1.3, 1.7, 2.5, 3.4, and 4.1, respectively, than in the LP.

In the GNP for the same values of a
*

, the maximum stress is less by 29, 31, 37, 38, and 37% and the maximum

deflection is less by 63, 49, 41, 51, and 58%, respectively, then in the LP.

In the PGNP for a
*

= 1/2, 2/3, 1, 3/2, and 2, the maximum stress is less by 57, 56, 69, 77, and 80%, respectively, than in

the LP, different by 40, 37, 50, 6, and 69% than in the PNP and by 6, 12, 17, 30, and 44% from that in the GNP.

As the aspect ratio (a
*

) increases, the maximum stress concentration factor increases from K
�
� 4.99 at a

*
� 1/2 to

K
�
�14.36 at a

*
� 2in the LP; from K

�
�2.31 at a

*
�1/2 to K

�
�5.1 at a

*
�2 in the PNP; from K

�
�3.56 at a

*
�1/2 to K

�
�

9.09 at a
*
�2 in the GNP; and from K

�
�2.12 at a

*
�1/2 to K

�
�2.85 at a

*
�2 in the PGNP. Thus, nonlinearities greatly affect

the stress–strain state of cylindrical shells with an elliptic hole.
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