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Natural vibrations of shallow cylindrical shells with rectangular plan and varying thickness are studied

using a spline-approximation method developed previously. Computation is carried out for different

types of boundary conditions. The effect of the curvature of the midsurface on the natural frequencies is

examined. The natural frequencies of shells with constant and varying thickness are compared
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Introduction. Shallow shells of various shapes are widely used as structural members in modern engineering and

building structures. The operating conditions for these structures impose certain requirements on their strength and reliability. In

this connection, efficient numerical and experimental methods for the determination of the load-bearing capacity and, in

particular, resonant frequencies of such structures take on special significance.

Of interest are the natural vibrations of rectangular (in plan) shallow shells with varying thickness and different

boundary conditions. For shells of constant thickness with hinged edges, it is possible to find a closed-form solution [5, 6]. If the

edges are clamped, then the variables in the original equations of motion cannot be separated and, therefore, numerical methods

should be applied. There are just a few publications devoted to this class of problems [4, 11–13]. This is because their solution

involves computational difficulties.

Spline functions have recently been used to study the mechanical behavior of plates and shells. Their main advantages are:

– stability against local perturbations; i.e., the local behavior of splines in the neighborhood of a point does not influence

their overall behavior, in contrast to, for example, polynomial approximation;

– better convergence than that of polynomial approximation;

– simple and convenient computer implementation.

This paper proposes an efficient numerical technique for studying the natural frequencies and modes of shallow

rectangular (in plan) shells of varying thickness. The technique is based on spline-approximation in one coordinate direction and

solution of a boundary-value eigenvalue problem for systems of ordinary differential equations of high order with variable

coefficients by the stable discrete-orthogonalization method in combination with step-by-step search. The shell material is

generally anisotropic.

Noteworthy is the series of publications where the spline-approximation was used to analyze the stress–strain state of

shells of different structure and the natural vibrations of plates [1, 7–10].

With such an approach, we can study the natural vibrations of a wide class of isotropic and anisotropic shallow shells

with arbitrarily varying thickness and complex boundary conditions.

The objective of the present paper is to study the natural vibrations of elastic rectangular (in plan) shallow shells with

varying thickness on the basis of spline-approximation.
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1. Original Relations. Consider a shallow and, generally, orthotropic shell with varying thickness h x y( , ) and

rectangular plan (in the plane xOy of a Cartesian coordinate system). The geometry of the plan is approximately identified with

the geometry of the mid-surface, i.e., A +1, B +1, and the principal curvatures satisfy the relation k k1 2 0� + .

According to the Donnell–Mushtari–Vlasov theory of shallow shells [3, 6], the natural transverse vibrations of shallow

shells are described by the equations
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where x and y are the Cartesian coordinates of a point on the mid-surface (0 � �x a, 0 � �y b), t is time, w is the deflection of the

shell, and � is the density of the material.

The normal and shear forces N x , N y , and S and the bending and twisting moments M x , M y , and H satisfy the

following relations:
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where E E G1 2 12, , ,� �1 2, are the elastic and shear moduli and Poisson’s ratios.

The system of equations (1.1)–(1.2) yields three equivalent differential equations for the three displacements u, v, and w

of the mid-surface:
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Boundary conditions for displacements are specified on the boundaries x a� 0, and y b� 0, . If y = const, then:

(i) clamped boundary:

u v w
w

y
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�
� 0 at y � 0, y b� , (1.4)

(ii) hinged boundary:
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(iii) one boundary hinged and the other clamped:
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Similar conditions can also be prescribed on the boundaries x = const (replacing y by x and v by u in Eqs. (1.4)–(1.6)).

2. Solution Technique. The solution of the system of equations (1.3) is sought in the form
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where u xi ( ), v xi ( ), and w xi ( ) (i N� 0,... , ) are the unknown functions; B i y( ) and N i y( ) are functions constructed using cubic

B-splines (N > 4), and * i y( )are functions constructed using quintic B-splines (N > 6). The functions B i y( ), N i y( ), and * i y( )

are selected so as to satisfy the boundary conditions at y = const using linear combinations of cubic and quintic B-splines,

respectively.

We write the system of equations (1.3) in the following form:
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where a a x ym m� ( , ), b b x ym m� ( , ), m �1 8,... , , c c x yn n� ( , ), n �1 9 11 12, ... , , , , c c x y10 10� ( , , )
 .

Substituting (2.1) into Eqs. (2.2), we require that they be satisfied at prescribed collocation points :k b/[ , ]0 ,

k N� 0,... , . If the mesh has an even number of nodes (N n� �2 1, n > 3) and the collocation points are such that
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:2 2 2 1i i iy y/ �[ , ], :2 1 2 2 1i i iy y� �/[ , ] (i n� 0,... , ), then there are two collocation points on the interval [ , ]y yi i2 2 1� and no

collocation points on the neighboring intervals [ , ]y yi i2 1 2 2� � . On each of the intervals [ , ]y yi i2 2 1� , collocation points are

selected as follows: :2 2 1i iy z h� � , :2 1 2 2i iy z h� � � (i n� 0,... , ), where z1 and z2 are the roots of a Legendre polynomial of

the second order on the interval [0, 1], z1

1

2

3

6
� � and z2

1

2

3

6
� � . This choice of collocation points is optimal and enhances

significantly the accuracy of approximation. After all transformations, we obtain a system of N �1linear differential equations

for ui , vi , and wi . With the notation
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and the notation c A� of the matrix[ ]c ai ij , where A aij� [ ](i j N, ,... ,� 0 ) is a matrix and c c cN�{ ,... , }0 is a vector, the system of

differential equations becomes
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This system of ordinary differential equations can be written in a normal form:
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square matrix of dimension 8 1 8 1( ) ( ).N N� ) �
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The boundary conditions (1.4)–(1.6) for the system of equations (2.4) can be written in the form

B Y1 0 0( ) � , B Y a2 0( ) � . (2.5)

The eigenvalue problem for the system of ordinary differential equations (2.4) with the boundary conditions (2.5) has

been solved by the discrete-orthogonalization method in combination with step-by-step search [1, 2].

3. Solution. The technique outlined above was used to analyze the spectrum of natural vibrations of shallow cylindrical

shells square in plan (Fig. 1). The thickness of the shell varies as follows:

� �� �h h� � � �0
2

1 6 6 1� R R , (3.1)

where 0 1� �R , | |� ;1, R � x a/ ; h0 is the thickness of a shell of constant thickness and equivalent mass. For a shallow cylindrical

shell, we have k Rx1 1� / and k R y2 1 0� �/ .

The following boundary conditions were used:

– the entire boundary is clamped (BC1);

– three sides are clamped and the fourth side is hinged (BC2);

– two opposite sides are clamped and the other sides are hinged (BC3);

– two adjacent sides are clamped and the other sides are hinged (BC4).

Expressions for these boundary conditions are presented in Table 1.

The results obtained by the spline-collocation method with different number of collocation points (N = 8, N = 10, N =

12) practically coincide.

We will discuss the results obtained with N = 10.

Tables 2, 3, 4, and 5 collect the dimensionless values of the first four resonant frequencies for shells of variable (| |� C 0)

and constant (� � 0) thickness with the following radii of curvature of the mid-surface: rx � 6.26000, 1.60250, 0.86125

( /r R ax x� is the dimensionless radius of curvature).

Figures 2–4 show the natural frequencies of the shell as a function of the parameter � for BC1 (solid line), BC2 (dotted

line), BC3 (dashed line), and BC4 (dash-and-dot line).

Figure 5 shows the first four natural modes of shells of varying thickness for � = 0.1, BC1, and different values of

curvature.

To test the technique outlined above, we have calculated the natural frequencies of a shallow isotropic cylindrical shell

with square plan and hinged edges (its thickness is constant, i.e., � � 0) using the following formula [6]:
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where D
Eh

M �

�

3

2
12 1( )�

is the cylindrical stiffness of the shell; �
1

m

m

a
� , �

1

n

n

a
� ; and m and n are the number of half-waves

along the OX- and OY-axes, respectively.

Table 5 summarizes the dimensionless frequencies calculated using (3.2) (A) and using (2.3)–(2.5) with N = 10 (B). As

is seen, the maximum difference between the analytic and calculated frequencies is less than 0.3%, which is indicative of good

accuracy of the spline-collocation method.
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Fig. 5

rx = 6.26000 rx = 1.60250 rx = 0.86125

x x x

x x x

x x x

x x x

TABLE 2

BC


 
 � � �
i i
� � S( ) /1

2

i

�

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

1

1 0.1493 0.1509 0.1524 0.1537 0.1550 0.1562 0.1574 0.1585 0.1597 0.1608 0.1619

2 0.1664 0.1702 0.1735 0.1764 0.1790 0.1811 0.1830 0.1846 0.1858 0.1867 0.1874

3 0.2270 0.2258 0.2244 0.2226 0.2208 0.2188 0.2167 0.2146 0.2124 0.2102 0.2079

4 0.2626 0.2654 0.2675 0.2689 0.2696 0.2699 0.2696 0.2688 0.2676 0.2660 0.2640

2

1 0.1411 0.1432 0.1452 0.1470 0.1487 0.1504 0.1520 0.1535 0.1550 0.1566 0.1580

2 0.1590 0.1631 0.1668 0.1699 0.1727 0.1752 0.1773 0.1791 0.1806 0.1818 0.1827

3 0.2039 0.2037 0.2032 0.2025 0.2017 0.2008 0.1998 0.1987 0.1977 0.1965 0.1954

4 0.2440 0.2472 0.2496 0.2514 0.2525 0.2532 0.2534 0.2532 0.2526 0.2516 0.2501

3

1 0.1358 0.1383 0.1406 0.1427 0.1447 0.1466 0.1484 0.1503 0.1520 0.1537 0.1554

2 0.1530 0.1574 0.1612 0.1646 0.1676 0.1704 0.1727 0.1747 0.1764 0.1778 0.1790

3 0.1849 0.1855 0.1859 0.1861 0.1862 0.1862 0.1861 0.1859 0.1857 0.1855 0.1853

4 0.2286 0.2320 0.2347 0.2367 0.2383 0.2393 0.2400 0.2402 0.2400 0.2395 0.2386

4

1 0.1058 0.1075 0.1088 0.1101 0.1112 0.1122 0.1132 0.1141 0.1149 0.1158 0.1166

2 0.1464 0.1488 0.1508 0.1525 0.1539 0.1550 0.1560 0.1567 0.1572 0.1576 0.1579

3 0.1901 0.1903 0.1903 0.1900 0.1896 0.1890 0.1885 0.1878 0.1872 0.1865 0.1858

4 0.2284 0.2304 0.2318 0.2328 0.2333 0.2334 0.2333 0.2328 0.2320 0.2310 0.2296



Conclusions. From Tables 2–4 it follows that the natural frequencies of the shell decrease more quickly with decrease

in the stiffness of fixation than with variation in the parameter �.

From Figs. 2–4 it follows that the frequencies of shells of varying thickness can either increase or decrease with increase

in �, depending on the curvature of the mid-surface and the stiffness of fixation. According to (3.1), the surfaces bounding the

shell are symmetric about the mid-surface, which is likely the cause of such a behavior of the natural frequencies. The more the

curvature of the bounding surfaces differs from the curvature of the mid-surface, the more different the frequencies of shells with

varying and constant thickness. The rate of variation in the natural frequency with variation in � changes too: it is less for low

frequencies.

From Fig. 5 it also follows that the natural modes of the shell are strongly dependent on the curvature of the mid-surface:

when rx �6.2, the vibration modes of the shell are similar to those of a plate with the same plan (the first frequency corresponds to

one half-wave in each coordinate direction, the number of half waves increasing with curvature). Moreover, when the curvature

of the mid-surface is small, the lowest frequencies are almost linearly dependent on the parameter � (Fig. 2). As the curvature

increases, the function 
 �� f ( ) becomes nonlinear, and after a certain value of the curvature, the parameter � no longer has a

significant effect on the lowest frequencies (Figs. 3 and 4). At highest frequencies, the function 
 �� f ( ) is always nonlinear.

According to Fig. 5, the maximum amplitudes shift toward the center of the shell’s plan because, according to (3.1), the

thickness and hence the stiffness of the shell is minimum at the points (a/2; y).
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TABLE 3

BC


 
 � � �
i i
� � S( ) /1

2

i

�

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

1

1 0.2875 0.2930 0.2962 0.2948 0.2932 0.2913 0.2893 0.2871 0.2847 0.2822 0.2794

2 0.2980 0.2973 0.2977 0.3017 0.3051 0.3079 0.3102 0.3119 0.3131 0.3137 0.3138

3 0.4388 0.4399 0.4405 0.4404 0.4398 0.4388 0.4372 0.4352 0.4323 0.4274 0.4220

4 0.4533 0.4530 0.4518 0.4499 0.4474 0.4444 0.4408 0.4367 0.4327 0.4297 0.4263

2

1 0.2748 0.2809 0.2840 0.2830 0.2819 0.2805 0.2789 0.2772 0.2752 0.2731 0.2708

2 0.2850 0.2847 0.2863 0.2909 0.2947 0.2980 0.3006 0.3027 0.3042 0.3052 0.3055

3 0.4199 0.4218 0.4229 0.4235 0.4235 0.4231 0.4221 0.4207 0.4187 0.4156 0.4107

4 0.4368 0.4372 0.4365 0.4352 0.4332 0.4306 0.4276 0.4240 0.4200 0.4163 0.4133

3

1 0.2640 0.2708 0.2725 0.2720 0.2713 0.2703 0.2692 0.2679 0.2664 0.2647 0.2627

2 0.2727 0.2728 0.2766 0.2817 0.2860 0.2896 0.2926 0.2950 0.2968 0.2980 0.2986

3 0.4023 0.4047 0.4064 0.4076 0.4082 0.4083 0.4079 0.4070 0.4055 0.4035 0.4004

4 0.4223 0.4231 0.4230 0.4220 0.4204 0.4182 0.4156 0.4125 0.4089 0.4049 0.4010

4

1 0.2027 0.2050 0.2067 0.2079 0.2087 0.2090 0.2091 0.2089 0.2084 0.2077 0.2067

2 0.2610 0.2653 0.2689 0.2718 0.2742 0.2760 0.2774 0.2782 0.2786 0.2785 0.2779

3 0.3548 0.3598 0.3634 0.3661 0.3680 0.3692 0.3697 0.3697 0.3691 0.3680 0.3664

4 0.3798 0.3862 0.3913 0.3955 0.3990 0.4017 0.4039 0.4054 0.4063 0.4055 0.4025
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TABLE 4

BC


 
 � � �
i i
� � S( ) /1

2

i

�

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

1

1 0.3650 0.3674 0.3693 0.3708 0.3719 0.3726 0.3727 0.3725 0.3718 0.3706 0.3690

2 0.4094 0.4133 0.4156 0.4166 0.4164 0.4152 0.4131 0.4103 0.4069 0.4027 0.3981

3 0.5966 0.5987 0.5957 0.5923 0.5884 0.5841 0.5793 0.5742 0.5685 0.5623 0.5556

4 0.6013 0.5993 0.6004 0.6003 0.5990 0.5967 0.5934 0.5891 0.5839 0.5778 0.5709

2

1 0.3395 0.3428 0.3456 0.3479 0.3496 0.3509 0.3516 0.3519 0.3517 0.3510 0.3497

2 0.3897 0.3940 0.3965 0.3979 0.3980 0.3973 0.3957 0.3934 0.3905 0.3870 0.3829

3 0.5729 0.5761 0.5747 0.5718 0.5683 0.5644 0.5601 0.5554 0.5500 0.5443 0.5379

4 0.5792 0.5772 0.5777 0.5780 0.5772 0.5753 0.5724 0.5686 0.5638 0.5583 0.5518

3

1 0.3174 0.3216 0.3252 0.3281 0.3336 0.3323 0.3336 0.3343 0.3345 0.3341 0.3332

2 0.3718 0.3763 0.3792 0.3807 0.3798 0.3809 0.3798 0.3780 0.3757 0.3727 0.3692

3 0.5502 0.5541 0.5536 0.5511 0.5408 0.5447 0.5408 0.5364 0.5315 0.5261 0.5200

4 0.5572 0.5557 0.5564 0.5575 0.5539 0.5561 0.5539 0.5507 0.5466 0.5416 0.5357

4

1 0.2763 0.2797 0.2822 0.2840 0.2858 0.2856 0.2858 0.2855 0.2848 0.2838 0.2822

2 0.3530 0.3553 0.3569 0.3579 0.3578 0.3583 0.3578 0.3568 0.3554 0.3536 0.3513

3 0.4337 0.4408 0.4465 0.4508 0.4571 0.4560 0.4571 0.4572 0.4564 0.4547 0.4521

4 0.4833 0.4893 0.4937 0.4966 0.4993 0.4993 0.4993 0.4986 0.4971 0.4949 0.4920

TABLE 5

i


 
 � � �
i i
� � S( ) /1

2

rx � 6.26000 rx � 1.60250 rx � 0.86125

À Â Ï, % À Â Ï, % À Â Ï, %

1 0.0888 0.0888 0.00 0.1648 0.1649 0.04 0.2491 0.2492 0.05

2 0.1180 0.1180 0.00 0.2355 0.2356 0.03 0.2534 0.2535 0.02

3 0.1669 0.1670 0.07 0.3011 0.3012 0.02 0.3928 0.3930 0.02

4 0.1976 0.1978 0.09 0.3483 0.3486 0.07 0.4516 0.4528 0.27



The technique presented here allows us to determine the natural frequencies and vibration modes over a wide range of

mechanical and geometrical parameters of shallow shells, which is necessary to ensure the required load-bearing capacity of

structural members.
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