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The elastoplastic state of thin conical shells with a curvilinear (circular) hole is analyzed assuming finite

deflections. The distribution of stresses, strains, and displacements along the hole boundary and in the

zone of their concentration are studied. The stress–strain state around a circular hole in shells subject to

internal pressure of prescribed intensity is analyzed taking into account two nonlinear factors
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Introduction. The stress–strain state of simply connected conical shells made of metals or composites and having

curvilinear and rectangular holes was analyzed only for the elastic stage of their deformation [1, 2, 6–9, etc.].

Some experimental data and a review on dynamic problems for thin-walled shells and plates with holes can be found in

[4]. Experimental data for multiply connected conical shells are given in [6, 16] with reference to static problems of elasticity.

Theoretical results are also reported in the paper [3], which studies the frequencies and circular modes of conical shells with a

circular hole that is not loaded and not reinforced.

In [5], a perforated conical shell under axial compression was analyzed for stability. Axisymmetric buckling was

studied by partitioning the shell into longitudinal strips regarded as compressed rods on an elastic foundation. The critical loads

for a shell with (n) square holes in its middle part were determined. Numerical results were presented for a shell with four holes.

Note that the elastoplastic state of conical shells with curvilinear holes was analyzed in just a few studies [6, 7].

Therefore, it is of importance to solve static and dynamic problems for conical shells with both physical and geometrical

nonlinearities. Note also that a generalized formulation of physically and geometrically nonlinear problems for arbitrary thin

isotropic shells with one or several curvilinear holes was given in the paper [10], which also presents governing equations and a

numerical method for solving static boundary-value problems for thin shells with allowance for several nonlinear factors

(elastoplastic strains and finite deflections). Numerical results for spherical and cylindrical shells with a curvilinear hole under

uniform pressure of prescribed intensity are used in [11–13] to analyze the distribution of stresses (strains, displacements) in

shells and the effect of several nonlinearities on their stress–strain state.

Expanding upon [10–15], we will discuss specific results on the elastoplastic stress–strain state of thin-walled flexible

conical shells with a circular hole under distributed surface and edge loads.

1. Let us analyze the elastoplastic state of a flexible conical shell with a curvilinear (circular, elliptic) hole in the side

wall [6, 10]. The shell is thin-walled, deep, made of an isotropic homogeneous material with known mechanical characteristics,

and subjected to surface and edge static loads.

We assume that large loads cause large deflections in the shell (along the normal to its surface) and elastoplastic

deformation of its material [6].

To derive the governing equations, we will use, in the general case, the geometrical relations of the second-order theory

of thin shells [6, 10] and the physical relations of the theory of flow with isotropic hardening (combined loading). In the case of

simple loading, nonlinear physical relations are usually taken from the theory of small elastoplastic strains.
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Consider a nonlinear elastic thin-walled conical shell with a curvilinear hole of radius r0 (Fig. 1). Introduce three

coordinate systems on its mid-surface: polar ( , )r A and Cartesian ( , )x y frames with the origins at the center of the hole and a polar

frame ( , )l B with the origin at the vertex of the cone and axes coinciding with the lines of principal curvatures of the shell. These

coordinate systems are related by

x r l l� � �cos cosA B 0 ,

y r l� �sin sinA B, (1)

where l0 is the distance from the vertex of the cone to the center of the hole.

The geometry of the mid-surface of the shell is described in a global Cartesian coordinate system ( , , )X Y Z using the

following equalities (Fig. 2):

X l l� �( )cos0 �, Y l� sin sin� �, Z l� sin cos� �, (2)

where 2� is the cone angle and � B �� / sin .

The curvatures and torsion of the shell are defined by

kl � 0, k l R lB � 0 0/ , klB � 0, k kx � B Bsin
2

, k ky � B Bcos
2

, k kxy � � B B Bsin cos ,
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where R0 is the radius of curvature of the normal section coming through the center of the hole. Using Eqs. (1)–(3), we can write

nonlinear geometrical and physical relations in the coordinate system ( , , )r zA :

the geometrical equations
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the physical equations
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where �rr
*

, �AA
*

, and � Ar
*

are nonlinear terms, which are defined as follows in the case of small elastoplastic strains [8]:
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where 
i is the yield function; � i and ei are the stress and strain intensities [6, 10]; G and� are the shear modulus and Poisson’s

ratio; and (K) indicates that the missing formulas can be obtained by cyclic permutation of the indices.

The expressions for internal forces and moments are derived from Eqs. (6) separating linear and nonlinear parts [6, 10].

2. The nonlinear governing equations describing the elastoplastic state of conical shells with a curvilinear hole and

finite deflections are obtained on the basis of the virtual-displacement principle. An approximate method for solving doubly

nonlinear problems is based on the procedure of step-by-step loading and iterative methods (Newton–Kantorovich, additional

stresses) and a numerical method (finite-element) [10] applied in succession.

Using relations (3)–(6) to derive the variational equation and linearizing and discretizing it, we arrive (applying the

stationarity conditions for the linearized total energy of the shell) at a system of algebraic equations, which has the following

matrix form at the nth step of loading:

[ ]{ } { }S q V� ? , (7)

where [ ] [ ] [ ] [ ]S S S S� � �0 � � , [ ]S 0 is the stiffness matrix for linear elastic shells, [ ]S � and [ ]S � are the influence matrices of

the initial angles of rotation Hr and H0 and stresses; {q} is the column vector of nodal displacements;

{ } { } { } { }? ? ? ?
V R N� � � , { }?R , { }?N , and �?
� are the vectors of loads, nonlinearities, and residuals of the equilibrium

equations at the end of the (n – 1)th step of loading.

Note that for conical shells with a circular hole under a surface load (internal pressure of intensity p � p0
5

10� Pa), we

assume that only shearing forces Q prr � 0 2/ act on the boundary of the hole and that the stress state is momentless at a

sufficiently large distance from the hole. In this case, we have the following conditions:

at the edges l l� 1 ( )l l� 2 :

T
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To solve specific problems for the shell under consideration, Eqs. (7) should be supplemented with the appropriate

boundary conditions [6], which can be written for displacements, forces, or in a mixed form.
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3. We have analyzed the elastoplastic state of a flexible conical shell with a circular hole using our method, associated

algorithm, and its implementing software. The following geometrical parameters have been used: I � �r Rh0 / 1.5, l r0 06� ,

� � 66°.

The shell is made of an AMg-6 material with �n �140 MPa, �n �0.002, E �70 GPa, � �0.3–0.5 [6]. Its stress–strain

curve has a smooth transition to the yield plateau.

In solving linear elastic and nonlinear problems with the use of Eqs. (7), it was assumed that conditions (8) and (9) are

satisfied.

We have obtained numerical values (see the tables below) of displacements ( , , )u v w , strains ( , ),eij ij� , and stresses

( , , , )� Aij i j r� at the nodal points of the domain J (Fig. 1) and at three points (: � �z h/ –0.5; 0; 0.5) throughout the thickness

(h = const) for pressure p0 �2. The process of loading was divided into 30 steps to solve the geometrically nonlinear (GNP) and

physically and geometrically nonlinear (PGNP) problems and into 10 steps to solve the physically nonlinear problem (PNP).
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TABLE 1

A, deg

w
*

LP PNP GNP PGNP

0 0.661 1.692 0.834 1.256

45 1.785 5.167 1.141 1.600

81 2.939 7.180 1.580 2.011

90 3.014 7.211 1.630 2.047

99 2.964 7.047 1.626 2.031

135 1.691 4.564 1.137 1.511

180 0.227 0.335 0.640 0.892

TABLE 2

A, deg :

�A
*

LP PNP GNP PGNP

0
0.5

–0.5

3162

5591

1847

2203

3576

3611

1861

1836

45
0.5

–0.5

3973

2834

2032

1330

3058

2492

1752

1667

90
0.5

–0.5

2936

–2915

1831

–1866

2140

–728

1544

–760

135
0.5

–0.5

3396

1495

1833

–334

2596

1716

1685

1400

180
0.5

–0.5

2376

6186

1443

2271

3330

3970

1825

1884
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TABLE 3

A, deg :

� �er 10
2

LP PNP GNP PGNP

0
0.5

–0.5

0.1459

0.2411

0.7011

1.0910

0.1598

0.1575

0.4185

0.3720

45
0.5

–0.5

0.1764

0.1214

0.8785

0.2284

0.1368

0.1094

0.2837

0.1947

81
0.5

–0.5

0.1355

–0.0898

0.4016

0.3026

0.1004

–0.0029

0.1381

–0.0125

90
0.5

–0.5

0.1216

–0.1215

0.3137

–0.3592

0.0955

–0.0259

0.1255

–0.0327

99
0.5

–0.5

0.1137

–0.1301

0.2732

–0.3649

0.0926

–0.0344

0.1183

–0.0402

135
0.5

–0.5

0.1400

0.0670

0.6820

–0.0934

0.1135

0.0769

0.2127

0.0712

180
0.5

–0.5

0.1165

0.2607

0.5028

1.1170

0.1498

0.1692

0.3922

0.3979

TABLE 4

A, deg :

eA �10
2

LP PNP GNP PGNP

0
0.5

–0.5

0.4548

0.7991

1.3520

2.5800

0.5128

0.5167

0.9556

0.8714

45
0.5

–0.5

0.5695

0.4040

2.0230

0.5106

0.4385

0.3668

0.6714

0.4862

81
0.5

–0.5

0.4585

–0.3081

0.9431

–0.7115

0.3205

–0.0231

0.3657

–0.3161

90
0.5

–0.5

0.4182

–0.4154

0.7853

–0.8989

0.3068

–0.1325

0.3438

–0.1086

99
0.5

–0.5

0.3968

–0.4451

0.7070

–0.9360

0.3008

–0.1325

0.3331

–0.1394

135
0.5

–0.5

0.4835

0.2145

1.5020

–0.0817

0.3715

0.2462

0.5240

0.2256

180
0.5

–0.5

0.3438

0.8823

0.7470

2.7940

0.4778

0.5669

0.8789

0.9641



For reasons of geometrical and force symmetry, the problems were solved in the domain J (quarter the shell). It was

partitioned into 378 finite elements (FEs), and the boundary of the hole into 20 FEs.

Some of the numerical data obtained are presented in the figures and tables above.

Tables 1–4 show the distribution of deflections ( / )
*

w w h� , maximum stresses (�AA � ��AA
*

10
5

Pa) and strains

( ,e err AA ) along the hole boundary (0 � �A 1) on different surfaces of the shell ( . ): � @0 5 . These data have been obtained by

solving the linear problem (LP), the geometrically nonlinear problem (GNP), the physically nonlinear problem (PNP), and the

physically and geometrically nonlinear problem (PGNP).

Figure 3 shows how the maximum hoop stress concentration factors (K h pRA AA�� / 0 ) vary along the boundary of the

hole (curves 1, 2, 3, and 4 represent the solutions of the LP, PNP, GNP, and PGNP, respectively).

An analysis of the results indicates that when a conical shell is subjected to internal pressure of prescribed intensity (p =

const), the maximum deflections occur at the point r r� 0 , A �90°, and the maximum strains (eAA ) and stresses (�AA ) at the point

r r� 0 , A � 180° of the hole boundary, on the inside surface (: � –0.5).

Nonlinear factors have a significant effect on the stress and strain fields in the concentration areas. For example,

considering that the shell deforms beyond the elastic limit (PNP) decreases the maximum stresses by 63% and the maximum

deflections and strains by 139 and 217%, respectively, compared with the LP. Additionally allowing for finite deflections

(PGNP) at the elastoplastic stage of deformation decreases the maximum stresses, deflections, and strains by 17, 71, and 65%,

respectively, compared with the PNP and by 70, 32, and 9% compared with the LP.

In summary, it should be pointed out that the method proposed here to solve nonlinear problems was also used to

analyze the stress concentration around circular and elliptic holes in a conical shell subjected to axial forces.
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