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The piecewise-homogeneous body model and the three-dimensional linearized theory of elastic waves in

prestressed bodies are used to solve the axisymmetric time-harmonic Lamb’s problem for a finite

prestrained half-space covered with a finite prestretched layer. It is assumed that the half-space and

layer are incompressible and their deformation is described by the Treloar potential. The normal stress

at the interface is calculated
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1. Introduction. Lamb’s problem, a fundamental problem in the analysis of elastic waves generated by external forces

in solid bodies bounded by plane surfaces, has been studied extensively since Lamb [18]. These studies are referred to in many

papers such as [22, 24, etc.]. However, such investigations have been carried out within the framework of the classical linear

theory of elastic waves for homogeneous, isotropic or anisotropic half-spaces. Interesting and urgent elastodynamic problems,

which cannot be solved by the classical linear theory of elastic waves, are elastodynamic problems for initially stressed bodies.

Up to now, a great number of theoretical and experimental investigations have been carried out in this field. Systematic

consideration and analysis of relevant results obtained before 1986 can be found in the monographs [10, 11]. Recent studies are

reviewed in the papers [1, 4–6, 13, 16, 19, 21, etc.]. It follows from these reviews that almost all these investigations were

performed within the framework of the three-dimensional linearized theory of elastic waves in initially stressed bodies

(TLTEWISB) and many of these studies refer to waves propagating in layered composite materials with homogeneous initial

stresses.

It is evident that studies of the influence of initial strains (or stresses) on the dynamic stress field in homogeneous and

layered materials are also of great theoretical and practical importance. Of fundamental significance for the analysis of such

problems is the solution of Lamb’s problem for a prestrained homogenous and layered (inhomogeneous) half-space. However,

the number of investigations in this field is not enough. Here we briefly consider those of them that are related to the subject of

the present paper.

Lamb’s problem for a homogeneously prestrained half-plane and half-space was investigated in [15, 17]. Lamb’s

problem for a half-plane covered by a prestretched layer under a harmonic linear load perpendicular to the free layer surface was

studied in [2, 3, 9]. Moreover, an attempt was made in [7] to investigate the three-dimensional Lamb’s problem for a half space

covered by a biaxially prestretched layer. Note that in these investigations, the initial strain state was determined using the

classical linear theory of elasticity. But the perturbed state caused by normal linear or concentrated harmonic forces is

determined by the TLTEWISB. Moreover, in [2, 3, 7, 9], the interfacial stresses were calculated for some values of the frequency

of the external force and the influence of the initial stretching of the layer on the stress amplitude was analyzed.

To investigate the influence of initial strains on the interfacial stresses, it is reasonable to consider finite initial strains.

Moreover, the assumption of small initial strains is not generally applicable to rubber-like materials. For these and many other

reasons, the present paper develops the above-cited investigations for a system consisting of an initially finite prestretched layer

and an initially finite prestrained (prestretched or precompressed) half-space. It is assumed that a harmonically varying normal
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concentrated force is applied to the free surface of the layer and the stress state is axisymmetric. We also assume that the layer

and half-space are incompressible and finite prestrained radially and axisymmetricaly and that their stress–strain relations are

expressed in terms of the Treloar potential. The investigations are carried out using the piecewise-homogeneous body model and

the TLTEWISB. The stresses at the interface are calculated. Emphasis is on the dependences between the stresses and the

frequency of the external forces and on the influence of the initial strains on these dependences.

2. Formulation of the Problem. Let us consider a half-space covered with a layer of thickness h. We use a Cartesian

coordinate system Oy y y1 2 3 and a Lagrangian cylindrical coordinate system Or y� 3 to describe the layer and half-space in the

natural state. Before coupling, the layer and half-space are each prestrained in the radial direction, which results in a

homogeneous axisymmetric initial finite strain state. Let the initial state of the layer and half-space be associated with the

Lagrangian cylindrical coordinate system � � � �O r y� 3 and the Cartesian coordinate system � � � �O y y y1 2 3 . Assume that the layer and

half-space are incompressible. We use the superscripts “(1)” and “(2)” to refer to the layer and half-space, respectively, and the

superscript “0” to refer to the initial state. Thus, the initial state in the layer and half-space can be expressed as follows:
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Let us now investigate the stress state of the system subject to a normal harmonic concentrated force on the free surface

of the layer. We will use the coordinates �r and �y3 within the framework of the TLTEWISB.

It follows from (1) that
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Below, the prime refers to the system of coordinates associated with the initial state, i.e., with � � � �O y y y1 2 3 .

Thus, according to [10, 11, 14], we write the basic relations of the TLTEWISB for an incompressible body in an

axisymmetrical state. These relations are satisfied within the layer and half-space separately because we use the

piecewise-homogeneous body model.

The equations of motion are
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The mechanical relations are
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We assume that the elasticity relations for the layer and half-space are expressed in terms of a Neo-Hookean-type

(Treloar) potential. This potential is given by
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, (7)

where C10 is an elastic constant; A1 is the first algebraic invariant of Green’s strain tensor; and rr , 
��

, and 33 are the

components of this tensor. In the axisymmetric case under consideration, the components of Green’s strain tensor are expressed

in terms of the displacement components as follows:
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The components S ij of the Lagrange stress tensor are determined as follows:
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Note that expressions (7)–(9) are written in an arbitrary system of cylindrical coordinates associated with neither natural

nor initial state of the layer and half-space.

In this case, the perturbation of the Kirchhoff stress tensor and the perturbation of the components of the Lagrangian

stress tensor are related as follows:
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Linearizing Eq. (9) and taking (1), (2), and (10) into account, we obtain the following expressions for the constants
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These equations should be supplemented with the incompressibility condition for the layer and half-space. This

condition can be written as follows:

1 2 3

�

�

( )

( ) ( )

( )

( )

( )
k

r

k

r

k

k

k
u

r

u

r

u
5

�

5

�

�

�

�

�

�

�

�

	




�

�

�

5

�

5

� �

�

�

y3

0. (12)

Thus, we use Eqs. (4)–(12) to analyze the stress state of the system under consideration. We assume that the following

boundary and contact conditions are satisfied:
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It should be noted that if �
( )k

�1(k �1, 2), then Eqs. (4)–(6), (10)–(12) and conditions (13) transform into those in the

classical linear theory of elasticity for incompressible body.

3. Solution Method. Substituting (5) into (4), we obtain the following equations of motion in terms of displacements:
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Equations (12) and (14) compose a complete system of equations for the unknown functions �
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satisfies the equation
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According to the problem statement, all the dependent variables become harmonic in time and can be represented as
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T

� � �

Q Q u u p
r r

k k

r

k k k k( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,�

33 3

C D

�

� � � � � �

T

� � �

Q Q u u p e
r r

k k

r

k k k k i( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,�

33 3

,t
, (19)

where the overbar denotes the amplitude of the corresponding quantity. We will omit this overbar below.

With (19), we can replace the operator 5 5

2 2
/ t with �,

2
in (14)–(17) to obtain the same equations and conditions for

the amplitude of the sought quantities. Consequently, introducing the dimensionless coordinates �

4

�r r h/ and �

4

�y y h3 3 / and

the dimensionless frequency

I

2
2 2

10

2
2

�

�( )
( )

( )

, �h

C

, (20)

we obtain the following equation for the potential �

T

( )k
:
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�

T �

k
. (21)

To solve Eq. (21), we apply the Hankel transform to the function �

T

( )k
:
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�

T �

�

�

:

8

( ) ( ) ( )

( )
k k y

F e J sr sds
k

1 0

0

3
�

, (22)

where J sr0 ( )� is the zeroth-order Bessel function.

Substituting (22) into (21), we obtain the following algebraic equation for �
( )k

:

A B C
k k k k k( ) ( ) ( ) ( ) ( )

( ) ( )� �

4 2
0� � � , (23)

where
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. (24)

We obtain from (23) that

( )
( )

( )

( ) ( ) ( ) ( )

( )
�

k

k k k k

k

B B A C

A

2

2
4

2

�

� + �

. (25)

It can be proved by direct verification that

( )
( )

( )

( ) ( ) ( ) ( )

( )
�

k

k k k k

k

B B A C

A

2

2
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0�

� � �

7 . (26)

For ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
�

k k k k k k
B B A C A

2 2
4 2� � � �

�

�
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�
, however, there may be the following two cases:
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� . (28)

In case 1, Eq. (21) has the solution
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, for �: �

�
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�y h3 , (29)

where
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In case 2, this solution is
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where
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( ) ( ) ( ) ( )

( )

( )
k

k k k k
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B B A C
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�

� �

7 . (32)

Using Eqs. (5), (15), (31), and (32), we obtain integral expressions for stresses and displacements, which are similar to

(29) and (31). These expressions are omitted here as very cumbersome.

To find the unknowns F s
k

1

( )
( ), …, F s

k

4

( )
( ), we use the boundary and contact conditions (13). For this purpose, we take

the Hankel transform of the right-hand side of the first condition in (13). Using the equality P r P r
r

0
0

0
2

� �( ) lim ( / )
'

�

�

�

4

, we obtain

P0 2/ � for the Hankel transform P r0�( )� from lim ( ) / ( )




�

4

� � �

8

0
0 0

2

0

P r J sr dr . Thus, we derive the following equations for the

above-listed unknowns:

F s s P
j ij i

( ) ( ) ( )
( ) ( ) / ( ( ) )

1 1

0
1 2 1

2 � � �� , i �1 2, , j �1 2 3 4, , , , �

1

1
1� , �

2

1
0� ,

F s s F s s
j ij n in

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2
0  � � , i � 3 4 5 6, , , , n �1 3, , (33)

where summation is over the repeated indices j and n. The coefficients of the unknowns in (33) are determined from the

expressions for the stresses and displacements. Thus, the unknowns F s
k

1

( )
( ), …, F s

k

4

( )
( )are determined from Eq. (33), and then

the stresses and displacements can be calculated from the corresponding integral expressions. The integrals are evaluated by the

algorithm proposed in [2, 3, 7, 9].

We will now discuss some numerical results obtained using the above solution procedure and related to the influence of

the prestretching of the layer and the prestraining of the half-space on the distribution of the stress �Q33 at the interface between

them.
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4. Numerical Results and Discussion. We introduce the parameter e C C�

10

1

10

2( ) ( )
/ and assume that e � 1. We also

assume that 0 2� �I and C C
10

1 1

10

2 2( ) ( ) ( ) ( )
/ /�

�

�

� � .

To test the algorithm and its software implementation, we set e �1and � �

( ) ( )1 2
1� � . According to the mechanical

considerations, asI 4 0, the values of �Q33 must approach the values obtained by solving the corresponding Boussinesq problem

[23]. Moreover, according to [8, 18, 20, etc.], the behavior of the half-space under forced vibration is similar to the forced

vibration of a system consisting of a mass and parallel-connected spring and dashpot. Consequently, the absolute values of �Q33

must have maximum at certainI, which will be called the resonance value ofI. These two statements are confirmed by the

graph for e �1 in Fig. 1, which shows the dependences of �Q h P33 0/ (at �

�r h/ 0) on I for different values of e and for

� �

( ) ( )1 2
1� � . According to these graphs, as e 41, the values of �Q h P33 0/ approach the corresponding values of �Q h P33 0/

obtained for e �1. Also, Fig. 1 shows that the resonance values ofI and the absolute values of �Q h P33 0/ decrease with e. These

results agree with the well-known mechanical considerations. Consequently, the results given in the Fig. 1 confirm the validity

and reliability of the algorithm and software.

Now we consider the influence of the initial strain of the half-space on the dependence of �Q h P33 0/ onI for �
( )1

1� and

e �1.5. This dependence is shown in Fig. 2. It follows from this figure that when the half-space is precompressed, the absolute

maximum values of �Q h P33 0/ and the resonance values of I increase with decreasing �

( )2
. However, if the half-space is

prestretched, i.e., �
( )2

17 , the values of �Q33 and the resonance values ofI decrease monotonically with �
( )2

.

Figure 3 shows the dependence of �Q h P33 0/ onI for different �
( )1

17 and �
( )2

1� , e � 1.5. It follows from this figure

that when the layer is prestretched, i.e., �
( )1

, the absolute maximum values of �Q h P33 0/ decrease, but the resonance values ofI

increase.

We have examined only the case where the layer is prestretched because the initial strains occur before the layer is

coupled with the half-space. Consequently, initial compression of an infinite layer has no physical meaning due to loss of

stability. Moreover, for a precompressed half-space, it is assumed that � �

( ) ( )2 2
7 cr , where �cr

( )2
corresponds to near-surface

instability. According to [12], we have �cr

( )2
� 0.667.

We have considered the case C C
10

1

10

2 2 1( ) ( ) ( ) ( )
/ /�

� �

� � . Numerical analyses show that the above results are also valid,

in a quantitative sense, for C C
10

1

10

2 2 1
1

( ) ( ) ( ) ( )
/ /�

� �

�� � . However, the resonance values ofI determined for the latter case are

smaller than the values for C C
10

1

10

2 2 1( ) ( ) ( ) ( )
/ /�

� �

� � . This conclusion is confirmed by Fig. 4, where the dashed graphs represent

the caseC C
10

1

10

2 2 1( ) ( ) ( ) ( )
/ /�

� �

� � . A comparison of the graphs in Fig. 4 shows that the absolute maximum values of �Q h P33 0/ at

the resonance values of I for C C
10

1

10

2 2 1
1

( ) ( ) ( ) ( )
/ /�

� �

�� � are greater than those for C C
10

1

10

2 2 1( ) ( ) ( ) ( )
/ /�

� �

� � . Note that the

above results are valid, in a qualitative sense, for the other stresses and displacements.
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We return to the discussion of the numerical result for C C
10

1

10

2 2 1( ) ( ) ( ) ( )
/ /�

� �

� � and consider the distribution of the

stress �Q33 versus �r h/ for selected values ofI and e. Figure 5 shows these distributions for � �

( ) ( )1 2
1� � ,I �1.25 and different

values of e. It follows from this figure that the absolute maximum values for �Q33 are attained at � �r h/ 0and decrease with e. The

influence of the prestretching of the layer on this distribution is illustrated by Fig. 6. It can be seen that the absolute values of �Q33

decrease with �
( )1

.

Figure 7 shows the influence of the initial strain of the half-space on this distribution. It can be seen the character of the

influence of the initial strains on the stress �Q33 established above remains at all interfacial points.

5. Conclusions. The dynamic (time-harmonic) axisymmetric stress field in an initially finite strained half-space

covered with an initially finite stretched layer has been investigated using the piecewise-homogeneous body model and the

TLTEWISB. It was assumed that the layer and the half-space are incompressible and their elastic relations include the Treloar

potential. The dependences of the normal stresses at the interface between the layer and half-space on the frequency of the

external force have been determined numerically. It was assumed that C C
10

1

10

2( ) ( )
7 , where C

10

1( )
and C

10

2( )
are the material

constants for the layer and half-space, respectively, which appear in the expression of the Treloar potential.

The numerical analyses done lead to the following conclusions: the mechanical behavior of the half-space covered with

the layer is similar to the forced vibration of a system consisting of a mass, a spring, and a dashpot; the resonance values of the

frequency of the external force and the absolute maximum values of the interfacial normal stresses decrease withC C
10

1

10

2( ) ( )
/ ; as a

result of the prestretching of the layer, the absolute values of the stress decrease and the resonance values of the frequency

increase; the resonance values of the frequency and the absolute values of the stress increase (decrease) with initial compression

(tension) of the half-space; the influence of the initial strains on the stress distribution and on the resonance values of the

frequency is significant in a quantitative sense and must be taken into account.
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