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The structural theory of short-term damage is generalized to the case where the undamaged isotropic

matrix of a fibrous composite with transversely isotropic reinforcement deforms nonlinearly under

loads that induce a combined stress state, microdamages occurring in the matrix alone. The basis for this

generalization is the stochastic elasticity equations for a fibrous composite with porous matrix whose

skeleton deforms nonlinearly. The Huber–Mises failure criterion is used to describe the damage of

microvolumes in the matrix. The damaged microvolume balance equation is derived for the physically

nonlinear material of the matrix based on the properties of the distribution function for the statistically

homogeneous random field of ultimate microstrength. Together with the macrostress–macrostrain

relationship, they constitute a closed-form system of equations. This system describes the coupled

processes of physically nonlinear deformation and microdamage. Algorithms for calculating the

dependences of macrostresses and microdamages on macrostrains are proposed. Stress–strain curves

for a composite with a linearly hardened matrix under simultaneous normal and tangential loads are

plotted. The effect of the volume fraction of reinforcement and tangential load on the curves is examined

Keywords: fibrous composite, microdamage of matrix, physically nonlinear matrix, coupled processes of

physically nonlinear deformation and microdamage, combined stress state, combined effect of

normal and tangent loads

Introduction. The structural theory of short-term microdamage for homogeneous and composite materials proposed in

[6, 7, 9–26] is based on the mechanics of microinhomogeneous bodies of stochastic structure and on modeling dispersed

microdamages by randomly arranged quasispherical micropores [6]. The accumulation of microdamages during deformation is

modeled as increased porosity.

Here we generalize the structural theory of short-term damage to the case where the undamaged isotropic matrix of a

fibrous composite with transversely isotropic fibers deforms nonlinearly under loads that induce a combined stress state, with

microdamages occurring in the matrix alone. The basis for this generalization is the stochastic elasticity equations for a fibrous

composite with a nonlinear elastic porous matrix. Damage in microvolumes of the matrix is described by the Huber–Mises

failure criterion where the ultimate strength is a random function of coordinates with power or Weibull one-point distribution.

The damaged microvolume balance equation, which is nonlinear with respect to the porosity of the matrix, is derived based on

the properties of the distribution function for the statistically homogeneous random field of ultimate microstrength. Together

with the macrostress–macrostrain relationship, they constitute a closed-form system of equations. This system describes the

coupled processes of physically nonlinear deformation and microdamage. We will outline algorithms for calculating the

dependences of macrostresses and microdamages on macrostrains. Also, we will plot stress–strain curves for a fibrous

composite with linearly hardened matrix and examine the effect of the volume fraction of reinforcement and tangential and

normal loads on the curves.
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1. Consider a fibrous composite material with unidirectional transversely isotropic fibers and isotropic matrix whose

nonlinear deformation is described as a dependence of the bulk, K2, and shear, µ2, moduli on strains and accompanied by

microdamage of the matrix. We will model microdamages of the matrix by randomly dispersed quasispherical micropores

appearing in microvolumes where stresses exceed the ultimate microstrength. The fibers are normal to the plane of isotropy x1x2.
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skeleton of the matrix by K 2 2,� , and p2 , respectively, and the volume fractions of the reinforcement and porous matrix by c1

and c2 , respectively. Then the macrostresses A B� ij and macrostrains A B
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are functions of the porosity p2 and macrostrains A B
 ij .

The effective elastic moduli of a nonlinear elastic fibrous composite with porous matrix are determined by the following

iterative algorithm. At the nth iteration, the effective moduli, � � � �
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otherwise.

According to [6, 7], the effective moduli of the porous matrix are determined at the nth iteration as
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where A B
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are the mean strains in the undamage portion of the matrix determined at the nth iteration. They are related to the

mean strains A B


ij

n2 ( )
in the matrix at the same iteration by

� �

A B �

�




ij

n

p

12

2

1

1

( )

� �

�

� 








2

1

2
12

2 2

1

2
12

1

3

p

n

ij

n
ij

n p

n

ij

K

K

( )

( )

( )

( )

(

� �

A B

A B �

A B

� � � �

n

p

n

ij

n
rr

n
ij

)

( )

( )

( )
�

A B

"

#

'

'

$

%

(

(

A B

-

.

@

/

@

0

1

�

�

� 



 �

2

1

2
12

2 @

2

@

. (1.6)

The strains A B
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are determined in terms of the macrostrains A B
 ij as
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Given the macrostrains A B
 ij , the effective moduli are evaluated as the following limit:
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We use the Huber–Mises failure criterion as a condition whereby a single microdamage appears within an undamaged

microvolume of the matrix:
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where k02 is the minimum value of the ultimate microstrength of the matrix; k12, m2, and n2 are deterministic constants

describing a specific distribution function, which are determined by fitting experimental microstrength scatter curves or

stress–strain curves for the matrix.

Assume that before deformation the matrix had initial microdamage characterized by porosity p02. Then the distribution

function F k2 2( ) determines the relative fraction of the undamaged material in which the ultimate strength is less than k2.

Therefore, if A B�

ij

12
, then the function F I2

12
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, according to (1.10)–(1.12), determines the relative fraction of damaged

microvolumes in the skeleton of the matrix. Since damaged microvolumes are modeled by pores, we can write the balance

equation for the damaged microvolumes in the matrix or, which is the same, for porosity:
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Equations (1.1), (1.7), (1.8), (1.13), and (1.14) constitute a closed-form system describing the coupled processes of

statistically homogeneous, nonlinear deformation and damage of a fibrous composite with unidirectional transversely isotropic
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fibers and physically nonlinear microdamagable isotropic matrix. The physical nonlinearity of the matrix influences its porosity

under load, which is reflected on the stress–strain curve of the composite. Therefore, the resulting stress–strain curve includes the

physical nonlinearity of the matrix and the nonlinearity due to increasing porosity under physically nonlinear deformation.

The coupled processes of physically nonlinear deformation and damage of the fibrous composite at given macrostrains

are described by determining the macrostrain-dependent effective elastic moduli of the fibrous material with porous matrix by

the iterative algorithm (1.2)–(1.9) and by determining the porosity from Eqs. (1.7), (1.8), (1.13), and (1.14), also using a certain

iterative method. Let us represent Eq. (1.13) for the nth step of the iterative process (1.2)–(1.9) in the form
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Then the root p2 of Eq. (1.15), (1.16) at the mth step of some iterative process can be found by the formula
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Relations (1.1)–(1.9), (1.15)–(1.18) give the solution to the problem posed, i.e., they produce macrodeformation curves

(A B� ij versus A B
 pq ) and microdamage curves (p2 versus A B
 pq ) for the fibrous composite with physically nonlinear matrix.

2. Let us analyze, as an example, the coupled processes of nonlinear deformation and microdamage in a fibrous

composite with linearly hardened matrix. Assume that the bulk strains of the matrix are linear and the shear strains are described

by a linear hardening curve, i.e., the following relations hold within a microvolume:
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� 2 are material constants.

We will use the secant method [1] to find the root p2 of Eqs. (1.7), (1.8), (1.15), (1.16). Since the root p2 falls into the

interval [p02, 1], which follows from the inequalities
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the zero approximation p
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is determined, according to the secant method, from the formula
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The subsequent approximations are determined in the iterative process
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where � is the error of computing the root.

Based on the theory stated above, we have studied the coupled processes of nonlinear deformation and microdamage of

a fibrous composite with Weibull-distributed ultimate microstrength of the matrix under loading of various types. The composite

has epoxy matrix described by the linear-hardening diagram (2.1), (2.2) with the following constants [2, 3]:

K 2 � 3.33 GPa, � 02 � 1.11 GPa, �

�� 2 0.331 GPa, (2.8)

and the following elastic limits and minimum tensile microstrength � p k� 3 2 02/ :

�20 � 0.015 GPa, �2 p � 0.003 GPa, (2.9)

and high-modulus carbon fibers with the following characteristics [3]:
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If

A B � A B � A B � A B �� � � �11 13 22 330 0 0, , (2.12)

or

A B � A B � A B � A B �� � � �11 12 22 330 0 0, , , (2.13)
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then, according to (1.1), the macrostress A B�11 is related to the macrostrain A B
11 by
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If

A B � A B � A B � A B �� � � �33 13 11 220 0 0, , (2.16)

or

A B � A B � A B � A B �� � � �33 12 11 220 0 0, , , (2.17)

then, according to (1.1), the macrostress A B�33 is related to the macrostrain A B
33 by

� �
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�
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� �
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33
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and
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11 22

13

11 12

11

*

* *
. (2.19)

Figures 1 and 2 show (for (2.12) and (2.13), respectively) the porosity p2 as a function of the macrostrain A B
11 in a

fibrous composite with different volume fractions c1 of reinforcement and different values of the macrostress A B�12 or A B�13 :

A B ��12 0 or A B ��13 0 (solid line), A B � A B� �12 11 or A B � A B� �13 11 (dashed line), and A B � A B� �12 111 2/ or A B � A B� �13 111 2/

(dotted line). It is seen that as A B�12 or A B�13 increases, microdamages begin to appear earlier and accumulate more intensively

(higher porosity p2 corresponds to fixed values of A B
11 ). Note that the dependence of p2 on A B
11 is highly influenced by what

is specified: A B ��12 0 or A B ��13 0. When A B ��13 0, microdamages begin to appear earlier and accumulate more intensively

than with A B ��12 0.

Figures 3 and 4 show (for (2.12) and (2.13), respectively) the macrostress A B�11 as a function of the macrostrain A B
11

for different volume fractions c1 of reinforcement and different values of the macrostress A B�12 or A B�13 . Note that here the

dependence of A B
11 on A B�11 , like the dependence of p2 on A B
11 , is highly influenced by what is specified: A B ��12 0 or

A B ��13 0. When A B ��13 0, the maximum value of A B�11 is less than that when A B ��12 0.
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Figure 5 shows (for (2.16) and (2.17)) the porosity p2 as a function of the macrostrain A B
33 for different values of c1

and A B�12 or A B�13 . Note that this dependence is independent of what is specified: A B ��12 0or A B ��13 0. It can be seen that as

A B�12 or A B�13 increases, microdamages begin to appear earlier and accumulate more intensively, as with conditions (2.12) and

(2.13).

Figures 6 shows (for (2.16) and (2.17)) the macrostress A B�33 as a function of the macrostrain A B
33 for different values

of c1 and A B�12 or A B�13 . Here, as in Fig. 5, the dependence is independent of what is specified: A B ��12 0or A B ��13 0. It can be

seen that as A B�12 or A B�13 increases, the maximum value of A B�33 decreases and fixed values of A B
33 correspond to smaller

values of A B�33 , as with conditions (2.12) and (2.13).
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