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A problem-solving approach based on discrete Fourier series is used to analyze the stress state of

corrugated orthotropic and transversely isotropic hollow cylinders
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Introduction. One of the main lines of development of modern engineering is the wide use of composites in various

structures. Elements of such structures often have a complex form such as that of noncircular cylinders [1, 4, 15, 16].

It is of interest to study the influence of orthotropy on the stress state of circumferentially corrugated hollow cylinders

subject to internal pressure.

This class of problems is treated in a three-dimensional formulation. To solve them, use is made of the variable

separation method for the longitudinal coordinate, discrete Fourier series approximation for the circumferential coordinate, and

the discrete-orthogonalization method for the thickness coordinate. These analytic methods and stable numerical method

produce a solution with adequate accuracy [2, 7, 9, 12].

1. Consider noncircular cylinders subject to internal pressure. We will use an orthogonal curvilinear coordinate system

s, -, and �, where s is the circumferential coordinate; - is the polar angle in the cross section; and � is the normal coordinate.

The first quadratic form of the cylinder is given by

dS ds A d d
2 2

2

2 2 2
� � �( , )- � - � , (1)

where

A H2 2( , ) ( , ) ( )- � - � � -� , H R2 1( , ) / ( )- � � -� � . (2)

The directrix of the datum surface � �� 0 is specified in the cross-sectional plane using polar coordinates:

: - 
 - - �( ) cos ( )� � 7 7r m0 0 2 , (3)

: is the polar radius, - is the polar angle, r0 is the radius of the mid-circle, 
 is the amplitude, and mis the number of corrugations.

Then the transformation coefficient is
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and the radius of curvature of the datum surface is
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We start with the governing equations of a three-dimensional elasticity for an orthotropic body [4–6, 10].

Let the three stress components �
�

, N
�s , and N

-�

and the three displacement components u
�

, us, and u
-

be unknown

functions, i.e., we choose functions in terms of which boundary conditions on the cylinder’s surfaces � � �1 27 7 are formulated.

After some transformations, we obtain a governing system of partial differential equations of the sixth order with variable

coefficients:
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where for the orthotropic material [5]:
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Es, E
-

, and E
�

are the elastic moduli;G
-�

,Gs� , andGs- are the shear moduli; and4 4 4
-� � -

, ,s s and4 4 4
�- � -

, ,s s are Poisson’s

ratios.

For the transversely isotropic material, we have
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Here E E E E E G G Gs s� � � � � � �

- � � -�

, , , 4 4 4 4 4
- � -�s s� � � �, , where E and �E are the elastic moduli in the coordinate a

directions; �G is the shear modulus; and 4 and �4 are Poisson’s ratios.

2. Consider cylinders with a diaphragm perfectly rigid in its plane and flexible out of it at each of the ends:

�
- �s u u� � � 0 for s s l� �0, . (10)

The following boundary conditions are prescribed on the lateral surfaces:

� N N
� � � -�

� � �

	

q s, ,0 0 for � �� 1,

� N N
� � -�

� � �0 0 0, ,s for � �� 2 . (11)

The end conditions (10) reduce the dimension of the problem, i.e., enable the separation of variables with respect to the

coordinate s by expanding the unknown functions and load components into Fourier series in the longitudinal direction of the

cylinder. After separation of variables, we arrive at a two-dimensional boundary-value problem described by a system of partial

differential equations with variable coefficients. Since the cross section is noncircular, some coefficients of the governing

system of equations will depend on both coordinates - and �. Therefore, to separate variables with respect to the coordinate -,

we substitute additional functions for expressions containing products of these coefficients and unknown functions [2, 3, 10–14].

Then the governing system of differential equations becomes (the index n is omitted for simplicity)
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with the boundary conditions
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Let us expand all the functions in (12), the boundary conditions (14), and expressions (13) into Fourier series in -:
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Substituting series (15) into the governing system of equations (12) and boundary conditions (14) and separating

variables, we arrive at a system of ordinary differential equations for each term k:
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with the boundary conditions

� � � N N
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1 0 0: , ,, , , ,k k s k kq ,

� � � N N
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� � � �2 0 0 0: , ,, , ,k s k k . (17)

3. The boundary-value problem (16), (17) is solved by the stable discrete-orthogonalization method [1]. During the

integration, the additional functions (represented as tables) are approximated by discrete Fourier series to determine their

amplitude values [7, 8]. As the number of points at which the additional functions are calculated increases, the discrete Fourier

series tends to the ordinary Fourier series, which allows reaching the prescribed accuracy [2, 7, 9, 12].

Let us use the approach outlined above to analyze the dependence of the stress state of circumferentially corrugated

hollow orthotropic cylinders subjected to internal pressure q q s l� 	 0 sin( / )� (q0 � const) on the thickness of the wall, the

number and amplitude of corrugations, and the parameters of orthotropy.

4. Input data: the radius of the mid-surface r0 60� , the length of the cylinder L � 40, the thickness of its wall h �3, 4, the

number of corrugations m � 4, 8, the amplitude of corrugation 
 � 2, 4, 6, 8. If the cylinders are orthotropic, then we have the
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following mechanical parameters [5]: E Es � 3 68 0. , E E
-

� 2 68 0. , E E
�

�11 0. , 4
-s � 0.105, 4

�s � 0.405, 4
-�

� 0.431,

G Es- � 0 5 0. , G Es� � 0 45 0. , G E
-�

� 0 41 0. . If the cylinders are transversely isotropic, then these parameters are

E E Es � �
-

1 68 0. , 2 68 0. E , 3 68 0. E , 4 68 0. E , 4
-s � 0.105, 4 4

� -�s � � 0.405, G G Es� -�

� � 0 45 0. .

Table 1 compares the displacements and stresses in orthotropic and transversely isotropic cylinders.

Figure 1 shows the distribution of the normal displacement u
�

for m �4, 
 �4, h �3, 4, and 0 47 7- � / in the section

s L� / 2, � �� 0 for an orthotropic cylinder (solid line) and a transversely isotropic cylinder (dashed lines) with Es = 1.28 (case 1),

Es = 2.28 (case 2), Es = 3.28 (case 3), and Es = 4.28 (case 4).

It can be seen from Fig. 1a that the displacements u
�

at the crest of corrugation are opposite to the acting load. At the

trough of corrugation, the deflection of the orthotropic cylinder is close to that of the transversely isotropic cylinder in case 2, is

less by a factor of 1.5 than in case 1, is 1.39 of the value in case 3, and is 1.79 of the value in case 4.

Figure 1b demonstrates that the deflections in cylinders with thickness h � 4 are almost half that in cylinders with h � 3,

the distribution patterns of displacements u
�

being similar at the crest of corrugation and close at the trough of corrugation.

Figure 2 shows the deflection in cylinders with m � 8for the same parameters and 0 87 7- � / . It is significant (Fig. 2a)

that the deflections of the orthotropic and transversely isotropic (case 2) cylinders practically coincide, and in cases 1, 3, and 4

the deflections are in almost the same ratio as in the cylinders with m = 4. The pattern shown in Fig. 2b is similar.

Figure 3 shows the distribution of stresses �
-

over the outer (II) and inner (I) lateral surfaces of the orthotropic (solid

line) and transversely isotropic (case 2, dashed line) cylinders with m �4, 8, 
 � 4. Curves 1 and 2 correspond to h = 3 and h = 4. It
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can be seen that the stresses �
-

strongly depend, both quantitatively and qualitatively, on the number of corrugations. The

stresses in the transversely isotropic cylinder with m = 4 and m = 8 differ insignificantly from those in the orthotropic cylinder.

Table 1 summarizes the stresses �
-

on the outer and inner surfaces of the orthotropic and transversely isotropic

cylinders, in the section s L� / 2on the interval 0 47 7- � / for m = 4 and on the interval 0 87 7- � / for m = 8 when 
 � 4, h �3,

4. It can be seen that the stresses do not depend significantly on Es for both h = 3 and h = 4 and for m = 4 and m = 8.

Figure 4 shows the distribution of the normal displacement u
�

of the mid-surface of the orthotropic (Fig. 4a) and

transversely isotropic (case 3, Fig. 4b) cylinders for different values of 
 � 2, 4, 6, 8 in the section s L� / 2.

It can be seen from Fig. 4a that for 
 � 2, 4, 6, i.e., as the convexity of corrugation increases, the deflection mainly

increases too, which is indicative of greater resistance to the applied load. For 
 � 8, the pattern changes with distance from the

crest of corrugation, which indicates the influence of the corrugation form on the resistance to load. Figure 4b demonstrates the

influence of the material characteristics on the deflections of the transversely isotropic cylinder.

Figure 5 show how the number of corrugations influences the deflection u
�

and its circumferential distribution. Here

the minimum amplitude (
 � 2) corresponds to the maximum deflection, and the maximum amplitude (
 � 8) to the minimum

deflection. This can apparently be attributed to the fact that a cylinder with more corrugations is more rigid. While the deflections

of the cylinders with m = 4 and m = 8 are almost equal when 
 � 2, the difference in the number of corrugations is noticeable for

other values of the amplitude. There is also some difference between the deflections of orthotropic and transversely isotropic

cylinders (Fig. 5).

1394

a b

Fig. 3

1m = 4

0 1 2 3 16-0� 0 1 2 3 32-0�

�
-

/ q0

–80

–40

0

40

m = 8

0

–20

–10

10

�
-

/ q0

2

21

2

1

I

II

2

1

II

I

a b

Fig. 4

m = 4

0

0 1 2 3 16-0� 0 1 2 3 16-0�

u E q
� 0 0/

–1000

1000

2000

3000

m = 4

0

–500

500

1000

1500

2000

u E q
� 0 0/


 = 6

4
8

2


 = 4 6

8

2



1395

TABLE 1

h �

�
-

/ q
0

m = 4 m = 8

- 0 �/16 �/8 3�/16 �/4 0 �/16 �/8 3�/16 �/4

3

�1

ort 10.14 3.43 –19.20 –53.42 –71.79 10.68 0.45 –9.75 –13.10 –19.55

1 8.44 4.33 –11.79 –38.23 –52.60 10.17 2.09 –6.65 –10.51 –15.84

2 7.78 3.77 –12.23 –38.74 –53.19 9.87 1.79 –7.12 –11.15 –16.56

3 7.12 3.21 –12.66 –39.24 –53.78 9.55 1.48 –7.58 –11.76 –17.23

4 6.47 2.66 –13.08 –39.73 –54.37 9.23 1.16 –8.02 –12.35 –17.88

�2

ort –16.86 0.72 31.99 45.51 44.93 7.04 7.50 8.15 5.14 –8.57

1 –10.15 2.43 23.14 29.06 26.74 7.30 6.72 5.50 1.95 –8.44

2 –10.24 2.50 23.37 29.20 26.77 7.52 6.99 5.68 1.99 –8.54

3 –10.33 2.56 23.60 29.34 26.80 7.72 7.24 5.83 2.01 –8.65

4 –10.43 2.62 23.83 29.48 26.83 7.89 7.46 5.96 2.03 –8.77

4

�1

ort 4.94 0.31 –13.31 –31.55 –40.86 5.96 –1.11 –7.25 –9.78 –14.40

1 4.54 1.42 –8.49 –22.50 –29.72 6.01 0.49 –4.80 –7.59 –11.38

2 3.96 0.92 –8.90 –22.98 –30.26 5.66 0.12 –5.30 –8.16 –11.99

3 3.40 0.42 –9.31 –23.44 –30.80 5.31 –0.25 –5.77 –8.71 –12.56

4 2.83 –0.07 –9.71 –23.90 –31.33 4.96 –0.60 –6.21 –9.22 –13.10

�2

ort –16.86 0.72 31.99 45.51 44.93 5.38 5.22 5.73 4.86 –3.70

1 –10.15 2.43 23.14 29.06 26.74 5.35 4.58 3.79 2.34 –4.08

2 –10.24 2.50 23.37 29.20 26.77 5.54 4.83 3.97 2.38 –4.20

3 –10.33 2.56 23.60 29.34 26.80 5.71 5.05 4.13 2.40 –4.32

4 –10.43 2.62 23.83 29.48 26.83 5.86 5.24 4.26 2.43 –4.43
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Figure 6 shows the distribution of the stresses �
-

on the outer (dashed line) and inner (solid line) surfaces of the

orthotropic (Fig. 6a) and transversely isotropic (Fig. 6b) cylinders for 
 � 2, 4, 6, 8, and m � 4. The stresses in the transversely

isotropic cylinder are less by a factor of approximately 1.5 than in the orthotropic cylinder. The stress distribution over the inner

surface is more smooth for 
 � 2than for 
 �4, 6, 8. The stress distribution over the outer surface of the cylinder is more smooth

when 
 �2, 4. Similar curves for the stress �
-

in cylinders with m = 8 are shown in Fig. 7. It can well be seen how the corrugation

amplitude 
 affects the stress distribution pattern (the stresses decrease because of the increasing stiffness of the cylinders).
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