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A Duffing oscillator frictionally interacting with a moving belt under a quasiperiodic load is studied. The

multiple-scales method is used to derive a system of two nonautonomous equations with small

parameters, which describes the modulation of vibrations. It is shown that the system of modulation

equations has a heteroclinic structure. Melnikov functions are used to analyze the domain of heteroclinic

chaos
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Introduction. Much effort went into research of nonlinear vibrations in the presence of dry friction. Some of the

publications on the subject are noteworthy. Den-Hartog [6] studied the vibrations of a string excited by a moving bow.

Andronov, Vitt, Khaikin [4] and Kauderer [7] were one of the first to study self-excited frictional vibrations. In [4], the

descending branch of the kinetic characteristics of friction is considered to be the cause of self-excited vibrations. A frictional

self-oscillation model is used in [7] to explain acoustic phenomena. The frictional self-excited vibrations of a mass on a moving

belt are detailed in [3, 8] using the averaging method and considering that the belt is moved by an energy source of limited power.

Many examples of using frictional self-excited vibrations in engineering are given in the book [9], which also reports on results

from extensive experiments to determine the kinetic characteristic of friction. The paper [1] addresses the bifurcations in the

steady-state motion of a Duffing oscillator on a moving belt. Results from studies on nonlinear frictional vibrations are reviewed

in [14]. Compound vibrations and nonlinear vibrations due to dry friction are addressed in [15, 17], and the dynamic processes

associated with vibration damping are examined in [13, 18].

The present paper is concerned with a quasiperiodically excited Duffing oscillator frictionally interacting with a

moving belt. We will use the multiple-scales method to derive a system of nonautonomous equations to describe modulation of

oscillations. We will show that the system of modulation equations has a heteroclinic structure that causes chaotic vibrations.

The heteroclinic Melnikov function will be used to identify the domain of chaotic modulation of vibrations. Analytic and

numerical results will be compared.

A great many publications use heteroclinic Melnikov functions to analyze domains of chaotic vobrations. Such studies

are reviewed in [5, 12]. The previous publications used homoclinic Melnikov functions to analyze Lagrange equations of the

second kind. The novelty of the present paper is in applying homoclinic Melnikov functions to the modulation equations. This

makes it possible to identify the domain of chaotic modulation in a Duffing oscillator subjected to quasiperiodic excitation and

interacting with a moving belt.

1. Problem Formulation. Consider a one-degree-of-freedom system (Fig. 1). The vibrations of the mass are described

by a generalized coordinate x. The belt moves with a constant velocity v* and interacts with the oscillator through dry friction

(force f vR( ), where vR is the relative velocity of the rubbing surfaces). The nonlinear spring is described by a restoring force

R cx c x= + 3
3 . The vibrations of the system are excited by a quasiperiodic load p t t t( ) cos cos= +Γ Γ1 1 2 2ω ω .

The differential equation of motion of this system is given by
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where µ and ε are two independent small parameters ( )0 1< << <<ε µ . The mechanical system (1) can now be rearranged into a

dimensionless form:

[ ]{ }′′+ = − + + − ′−ξ ξ ε λξ γ τ µ γ τ θ ξ3
1 1 2 2cos cos

~
( )Ω Ω P vB ,

P v v v vB B B B( ) ( ) ( ) ( )′ − = ′− − ′− + ′−ξ ξ α ξ β ξsign 3 . (4)

The second small parameter µ indicates that the force of friction is much less than the nonlinear component of the

restoring force and that the amplitude γ 1 is much greater than the amplitude µγ 2 . Let us examine the near-resonant vibrations

Ω1 1= +εσ, Ω Ω ∆2 1= +ε , (5)

whereσ and ∆ are two independent mismatch parameters. Note that the load remains quasiperiodic at resonance (5). Using the

standard procedure of the multiple-scales method [2, 11], we obtain a system of modulation equations:
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where ( )
( )

⋅ ′ =
⋅d

dT1

, T1 =ετ, and µ is a small parameter.

The coordinate ξ in (4) and the modulation variables ( , )ρ θ are related by

ξ ρ τ θ ε= − +2 1cos( ) ( )Ω O . (8)
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2. Analysis of the Generating System of Modulation Equations. The generating system of equations (6), (7) with

µ = 0 is conservative and has the following Hamiltonian:

H =− + −2
2

3

8

1 2ρ
γ

θ
λ
ρ σρcos . (9)

The generating system of equations has two groups of fixed points ( , )θ ρ1 1 and ( , )θ ρ2 2 that satisfy the cubic equation

σ
λ
ρ

γ
ρ

θ θ π− ± = = =±
3

4 2 2
0 01 2

1

1 2
1 2,

,

, , . (10)

These fixed points are shown in Fig. 2. They are stable fixed points (centers) and unstable fixed points (saddles). The

saddles are connected by heteroclinic orbits (separatrices) denoted asΓ− −( ( )ρ T1 ,θ− ( ))T1 andΓ+ +( ( )ρ T1 ,θ+ ( ))T1 (Fig. 2). The

saddles and separatrices correspond to one constant value of the Hamiltonian and can easily be obtained from (9). The

trajectoriesΓ− andΓ+ are the upper and the lower heteroclinic orbits, respectively. With µ = 0, Eq. (7) yields
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Substituting it into Eq. (6) and assuming that µ = 0, we get
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Replacing variables ρ ρ( ) ( )
( )

T r T1 2
1

1= + and using the initial conditionsθ± =( )0 0, ρ ρ± ±= +( ) ~( )
0 2
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, we integrate Eq. (11) to obtain
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where ~ ~ ~a r r= − − +
3

8

λ
, ρ2

1( )
is the coordinate ρ of a saddle point.

3. Analytic Study of the Beginning of Chaos. There are intersections of invariant manifolds (heteroclinic structure) in

the perturbed system (6), (7). A theory of such intersections is outlined in the monograph [5]. The heteroclinic structure gives rise

to Smale horseshoes, which are an elementary mathematical model of chaotic vibrations. To determine the domain of

heteroclinic structure, Melnikov functions are used [10]. A method for treating these functions is outlined in [5]. We will use this

approach to determine the domain of existence of a heteroclinic structure in the system of modulation equations (6), (7). The

heteroclinic Melnikov function of the dynamic system (6), (7) is defined by
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vB . The integrals in (13) are defined along the heteroclinic trajectories of system

(6), (7) at µ = 0. Therefore, the integration involves the following relations: ρ ρ( ) ( )T T1 1= − and θ θ( ) ( )T T1 1=− − . After

transformations, the Melnikov function takes the form
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are omitted for brevity, and A ± is defined by
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The values of these integrals satisfy the relations

L K K L0 1 2 1

2
=− =−∆

∆
, . (18)

The following values of the integrals have been determined with the help of residue theory:
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It was shown in [5] that the intersections of invariant manifolds are described by the simple roots of the equation
~

( )M t± =0 0. A homoclinic structure is observed in the following domain:

| |D A± ±
− ±<1

20 5.
( )γ . (20)

The domain of chaotic vibrations (20) has been analyzed numerically for the following parameters of the mechanical

system (1), (2) taken from [8]: m= 0.981 kg, c= 9.81⋅103 N/m, c3 = 1.67⋅103 N/m3, Γ1 = 100 N, θ0 = 4.9 N, A = 0.2 kg/sec,

B = 3⋅10–6 (kg⋅sec)/m2.

Then the dimensionless parameters (3) have the following values: ε = 0.01, µ = 0.1, λ = 17,
~
θ = 0.5, γ 1 = 1.02,α = 4.08,

β = 0.61,σ= 10, νB = 4.

The calculated boundaries γ 2
( )

( )
+ ∆ and γ 2

( )
( )

− ∆ of the domain of chaotic vibrations are shown in Fig. 3a, b. The

heteroclinic structure of (6), (7) is observed above these curves.

4. Numerical Modeling of Steady-State Vibrations. Here, we will discuss the numerical results on steady states in the

system of modulation equations (6), (7) and compare them with the analytic results. The steady states have been determined by varying

γ 2 stepwise at fixed ∆ = 1.944. For each values of γ 2 , the integrals were evaluated by the fourth-order Runge–Kutta method.
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The analysis has revealed the following behavior of the dynamic system (6), (7). Periodic vibrations with period

T2
12= −π∆ are observed forγ 2 ∈[10; 43]. As an example, periodic vibrations atγ 2 43= are shown in Fig. 4a on the plane ( , )ρ θ .

A period-doubling bifurcation occurs in the interval γ 2 ∈ [43; 44]. Periodic motions with double period are observed for

γ 2 ∈ [46; 74]. Another period-doubling bifurcation occurs in the interval γ 2 ∈ [74; 75.5]. This bifurcation gives rise to a

fourth-order limit cycle. As the parameter γ 2 increases, chaotic vibrations occur. Chaos at γ 2 = 77.3 is shown in Fig. 4b as an

example.

Thus, the chaotic behavior predicted based on the homoclinic Melnikov function has been confirmed by numerical

modeling.
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