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STRESS ANALYSIS OF NONTHIN ELLIPTIC CYLINDRICAL SHELLS IN REFINED
AND SPATIAL FORMULATIONS

Ya. M. Grigorenko, G. P. Urusova, and L. S. Rozhok UDC 539.3

A spatial model and a refined model based on the straight-line hypothesis are used to analyze the stress
state of nonthin elliptic cylindrical shells with certain end conditions for different thicknesses and aspect
ratios. The results obtained are compared, and the validity range of the refined model is established
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Introduction. Many modern structural members have the form of circular and noncircular cylindrical shells. Of special
interest is the stress analysis of nonthin noncircular cylindrical shells [13] because the classical theory of shells does not work
alone here.

The stress analysis of nonthin shells is usually based on one refined theory of shells or another [1-3, 12]. One of such
widely used theories is based on the straight-line hypothesis [2, 3]. Refined theories of shells are usually validated against
solutions of three-dimensional problems. Some comparisons for nonthin circular cylindrical shells were made in [1, 2] to
validate the refined theory for certain geometrical and material parameters and loading and end conditions. In the case of nonthin
noncircular cylindrical shells, it is also necessary to take into account the variation in the cross-sectional curvature because the
error of an applied theory increases with the ratio of thickness to radius of curvature. Therefore, it is of interest to compare
solutions for nonthin noncircular cylindrical shells produced by refined and spatial theories.

1. Let us consider nonthin isotropic cylindrical shells whose cross section is everywhere elliptical. The cross section of
the reference surface is parametrically defined as

x=bcosO, z=asin® (0<0<2m), (1)

where b and a are the major and minor semiaxes of an ellipse with a perimeter equal to that of a circle of radius R, i.e.,

(a+b) f=21nR =1 72 74 f6 A—_b . 2
mla+b) f , f +4+64+256+"" bia” )
[hen
=—0-A), b=—00+A) fb——il 3
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The refined formulation based on the straight-line hypothesis [2, 3, 10, 11] assumes that the displacements vary across
the thickness in the following manner:

us(S,ta’Y )Z u(s,t)+Y\|Is (S,Z),

ut (SataY): V(S7t)+Wt (S’t)>
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Uy (5,1, )=w(s,1), “4)

where s, #, and v are the longitudinal, circumferential, and normal (to the midsurfacey =const) coordinates; u , u,, and uy are the
corresponding displacements; u, v, and w are the displacements of the midsurface in the directions s, ¢, and y; and y and y, are
the angular displacements of a rectilinear element.

According to (4), the strains are expressed as

e (s,t,y)=€,(s,t)+yK(s,1) e;(s,t,y)=¢€,(s,t)+yK; (s,1),

eSl(S’t’Y):SSt(S’t)+Y2KSt(s’t)ﬂ eS'\{ (S9t3Y):YS(Sat)9 et'\{ (S,I,Y)ZY[(S,t). (5)

Equations (5) relate the strain components at an arbitrary point of the shell with the strain components of the coordinate
surface, which are in turn related to the displacements u, v, w and the angular displacements y, y, by

_ou P, _u_ v 0y v, {av . }

SS_aS’ St_a[+ (t)W, eSl_at-'-aS’ Ky = as 5 Ky = at - (t at+ (t)w 5
b s OV du RPN cuo el )
st = o + s - (t)ata Ys=Vs Vs Ye=We Uy s—_as, t__8t+ (Z)V, ()

wheree g, €,,€, and K, K,, K, are the tangential and flexural strains of the midsurface; k(¢ )is the curvature of the directrix; U
and ¥, are the angles of rotation of the normal without regard to transverse shear; and y ¢ and v, are the shear strains, i.e.,
additional angles of rotation of the normal due to transverse shear.

The system of equilibrium equations is given by

a]vit aNst _0 aNS NtS k _0
5 oy TU=0 T k00, +a, =0,
99, 90: oM, oM,
s " ot _k(Z)NS+qY _O’ ot + Js _Qt—o,
oM, oM,
% o -0,=0, N, —Ng—k(t)M,, =0, -

where N and N, are the normal forces; N, N, O, and O, are the shearing forces; M and M, are the bending moments; M ,
and M ;; are the twisting moments; g, ¢, and g, are load terms defined in terms of the components qt,q7,and q% of the surface

load acting of the inside and outside surfaces of the shell,
45=4q5 +45» 9/=9{+q7, 4y =4y *qy.  Me=d{Y,—~q5Yo> M =q;¥n—qYo-
The elastic relations for orthotropic shells can be written in the following general form:
Ny =Cp g, +Cpes,  Ny=Cipg +Cpy, Ny =CoeE g +h(1)Dgg 2Ky,
Ny =Cee€s5» M, =DyiK, +D1p%, Mg =DypK, +DgpK,
Mg=Mg =Dee 25, Qi =K1Yy, Os=KoYs, (®)

where C;; and D; are stiffness characteristics defined in terms of the elastic constants and thicknesses of the shell, and K’y and
K, are the shear stiffnesses [2].
Using Egs. (5)—(8), we arrive at a governing system of partial differential equations of the tenth order, which can be
represented in vector form:
oN _ 0N ON?
¥=BoN+Blg+Bz asiz-i-f(s,t), 9)
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N={Nt N, Qs My, Mg u, v, W\, sWs} >

B, =lbii™ @) (n=0,1,2  i,j=12..,10),  f={fi,fre0 fio} (10)

where B,, are square matrices whose elements are defined in [3], and f(s,#)is the vector of the right-hand side.
Using the Fourier series expansion in Egs. (9) to separate variables in s, we obtain a system of ordinary differential
equations of the tenth order for the nth harmonic (for simplicity, the index # in the notation of unknown functions is omitted):

dN

dtt anNts _Knk(t)Mts_qta
dN 3 ) )
~E = iV, M KO +dg AT (DK 5 +13ds k(DK 29, 4.,
dM,
dt =0, +7“th§»
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du dw 1
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dy, ay,
d =d22Mt +7»nk(t)d24v+k(t)—k2 (f)d24w—7\.nd24\|13, dl‘v =d42MtS+7\'nk(t)u_7\’nWtﬁ (11)
where A, =nm /{(n=0,N), and
4 Dy _ CpDyy 4 O _ CuDbyy P _ Dgs
n="x, djz=- , dyp=——, dy=- , 3= ,
A A A A A,
k(1)Dgg Ces
dyp == AL 2= de1 =Ciadyy,  dg3 =Cp+Cipdy3,
| |
d7y =Dypdyy,  d74 =Dy +Dipdys, A=CyDyy, Ay =CeDegs- (12)

The other stress and strain components can be found in terms of the unknown functions (10) from the formulas
Sz:dlth +d138s, € Z—an‘l‘k(l‘)W, Ktzdzth+d24KS,

Ky =_7“n\vs_k(t}:s’ € =d31N+d3nM, 2 =d g My,
1
Y[ZEQI’ ’Yszws(l"'}\'n )_k(t)va Qs:KZ'Yy

T _ T T T
6F =Byie, +Bae+y T (Bik, +B1oK, ), OF =Bipe, +Bye +7 7 (Biok, +ByK, ),

1f =(e s +2r7 k) Bes. (13)

E

E
here By =By =—, B, =vB dBgs =711
WRETE B11 =822 =7 7 2> P12 11, and b6 2(1+v)
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In the isotropic case, C; and Dj; become

Eh Eh
Cn=Cu=1707> C=Veun, Ce =50
Dy =D Eh Dy, =vD D R (14)
= :7’ :V N = .
Then the governing system of differential equations (11) becomes
dN,
dt =Ay Ny =Ay k(M (s —q;,
dNts _ 7\’ }\’ 2 7\’2
g = VN Ak (OLKy +ERw+ [k (0K +A5 ER)v=k(1)K W5 =45
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dt =Qt+7"ths’
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aQt 2 2
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T g M A k(OVVHRZ (VWA W, = M o +X k(O u=h,y,, (15)

where £ is Young’s modulus; vis Poisson’s ratio; / is the shell thickness; K’y and K, are the shear stiffnesses; and Gy =G =G
are the shear moduli in the directions s and ¢.

Since the elliptic cross section of shells under consideration is described in terms of the parameter 6 in (1) and the basic
variable in Egs. (15) is the arc length 7, these parameters are related by

dF 1 dF dx\? (dz )
@ "w@) e 0©= (dej +(de] -

We have developed an algorithm based on a stable numerical method for solving one-dimensional boundary-value
problems [2]. This algorithm has been implemented in a software system to solve static boundary-value problems for noncircular
cylindrical shells in a refined formulation that accounts for transverse shear strains.

2. Let us address the three-dimensional formulation of the same problem for a hollow cylinder with elliptic cross
section. The midsurface of the cylinder is referred to the coordinate system s, 8, and the cylinder itself to the coordinate system s,

0, v. We start with the governing equations of the three-dimensional theory of isotropic elasticity [5, 6]. After some
transformations, the governing system of partial differential equations for a noncircular cylindrical shell becomes

Jo _ - — T
g_A(S:ea’Y) G+f(saeay)’ G:{G ’TSY ,TG,Y au’y ,Ms,ue} > (16)
where CysTyys andtey are the stress components; Uy, U, and ug are the displacement components; and 4 is a square matrix with

elements defined in [4].
Suppose that the shell is hinged at the ends:
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Oy=ug=u, =0 at s=0,1 17
A surface load is prescribed on the outside surface of the shell. The boundary conditions (17) allow separation of
variables in 5. To this end, we expand the unknown functions and load components into Fourier series in s.

Substituting these series into the governing system of equations and the boundary conditions on the lateral surfaces and
separating variables, we arrive at a two-dimensional boundary-value problem for the amplitudes of the series:
oG, 1 1
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(0<6<2m; v,<ys<y,) (1=0N)

dx\* (dz \? ; o3 . . .
where ® (0)= 7o + 7 =\/ b2 sin? 0+a2 cos? 0, and R(G)ZE is the radius of curvature in the cross section of the

(18)

reference surface.

The boundary conditions on the lateral surfaces are

Gy,n =0’ TSY,n =0’ Te“{,n =O for ’Y=’Yp>

Oy n=qyn©) Tg,=0, rey’nzo for Y=Yq- (19)

The radius of curvature R(0) appearing in Eqs. (18) does not allow us to separate variables in 6. To overcome this
difficulty, we replace the products of unknown functions and the coefficients containing R(6) with auxiliary functions:

i L i} (=14 s (1 vy
1=y /RO) R@) WO Tsvstpius s U=L 01 =707 o Ry | M

¢
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1 1 J ,
¢7=@71+Y/R(9)£<P4~ (20)
Formally, the resulting governing system of differential equations does not depend on the coordinate 6 [8, 9]; however,
the auxiliary functions depend on bothy and 6. Next, expending the unknown and auxiliary functions and load components into
Fourier series in 0 and separating variables, we arrive at a one-dimensional boundary-value problem for the following system of
ordinary differential equations (for simplicity, the index » in the notation of unknown and auxiliary functions is omitted):

doy
dy =An Ty k+(1 J‘Puc (P4k V2 M(Puc -2 ((P4Jc+(Pl,k)ﬂ

Pk v E Ev E Ev E
v 2 2 3
dy 7\’ nOy, k+1 v2 }\‘nus,k Pk~ 1—v2 +2(1+V) }\‘ﬂ(p4,k_1_V2 7"n(pl,/’c_z(l_i_v) De.k>

ATy k E Ev E 3
dy 2(1+v) ik~ 2(p2k oty) An @3k~ -2 ((P7k 05 k) (Ps k>
du _y_2y2
vk 1=v=2v Y ) 3
dy = T (_yE Ovk +E (M”s,k P4k =P )
dugr  2A1+v) dug . A1+v)
7dfy :4E Tg"{,k _knufy,ka d’Y = E Te,y k (p3 k+(p2 k (21)

with the boundary conditions

Y=Yp: Oy k=0, Ty =0, Tg, ;=0

Y:Yq: G’\{,k :quk’ TSY,k =0, Te,\{’k =0 (k:()aK) (22)

In addition to the amplitudes of the unknown functions, the governing equations (21) include the amplitudes of the
auxiliary functions, which are to be calculated separately during the integration of (21) by discrete orthogonalization for all
harmonics simultaneously. To this end, at each step, we fix the coordinatey and calculate the values of the auxiliary functions at
some points of the interval 0<6 < 2rr using the current values of the unknown functions. Next, we expand the functions given on a
discrete set of points into Fourier series [7]. The more points there are at which the auxiliary functions are evaluated, the less the
discrete Fourier series differs from the exact Fourier series. Thus, it is possible to achieve a very accurate solution. Using, for
example, Runge’s method, we find the coefficients of these series, substitute them into Egs. (21), and continue the integration,
satisfying the boundary conditions at the ends of the interval y , <y <y .

We used the refined and spatial models to examine the influence of the cross-sectional ellipticity on the stress state of
nonthin elliptic cylindrical shells under load applied to the outside surface for different values of thickness.
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TABLE 1

03/90

S / 99

I
(=]

0=m/2

0=mn/2

0=mn/2

11

11

11

1I

11

11

411.0

392.5

411.0

392.5

8.00

7.42

8.00

7.42

59

5.67

5.9

5.67

0.05

301.6

284.8

531.9

512.5

6.64

6.05

9.27

8.74

6.53

6.17

5.39

5.20

0.10

204.3

188.9

665.1

644.8

5.28

4.65

10.52

10.00

7.21

6.74

4.85

4.74

0.15

118.3

104.4

809.9

788.9

3.88

3.19

11.71

11.21

8.05

7.43

431

4.25

0.20

433

30.9

965.1

943.8

2.44

1.66

12.82

12.33

9.08

8.26

3.72

3.71

10

311.2

294.4

311.2

294.4

6.25

5.69

6.25

5.69

4.33

4.12

4.33

4.12

0.05

241.4

2253

387.0

369.7

5.33

4.74

7.12

6.58

4.96

4.65

3.75

3.62

0.10

178.1

162.9

468.0

450.4

4.36

3.73

7.91

7.40

5.66

5.22

3.19

3.12

0.15

121.6

107.5

553.2

535.7

3.36

2.67

8.63

8.14

6.46

5.86

2.63

2.62

0.20

72.0

59.1

641.3

624.2

2.32

1.54

9.27

8.79

7.41

6.59

2.06

2.10

12

2443

228.9

2443

228.9

5.07

4.51

5.07

4.51

3.28

3.11

3.28

3.11

0.05

197.9

182.8

293.5

278.0

4.42

3.84

5.66

5.13

3.87

3.60

2.73

2.64

0.10

155.1

140.5

344.9

329.6

3.73

3.10

6.18

5.67

4.52

4.12

2.20

2.18

0.15

116.3

102.3

397.4

382.7

3.00

2.31

6.63

6.14

5.23

4.69

1.70

1.73

0.20

81.8

68.8

450.1

436.2

2.24

1.47

7.00

6.53

6.09

5.30

1.19

1.28

14

196.6

182.6

196.6

182.6

4.21

3.66

4.21

3.66

2.55

2.43

2.55

243

0.05

164.8

150.8

229.7

216.0

3.76

3.17

4.62

4.09

3.09

2.86

2.06

2.01

0.10

134.9

121.0

263.5

250.3

3.25

2.62

4.97

4.46

3.67

3.32

1.59

1.60

0.15

107.3

93.9

297.5

284.8

2.71

2.03

5.25

4.77

4.32

3.80

1.14

1.21

0.20

82.3

69.5

330.3

318.9

2.15

1.39

5.48

5.01

5.07

4.32

0.72

0.82

16

161.2

148.8

161.2

148.8

3.57

3.02

3.57

3.02

2.03

1.94

2.03

1.94

0.05

139.1

126.1

184.5

172.2

3.24

2.65

3.86

3.33

2.50

2.32

1.59

1.58

0.10

117.5

104.5

207.4

195.9

2.87

2.41

4.09

3.59

3.02

2.72

1.18

1.23

0.15

97.2

84.4

229.9

2193

2.47

1.79

4.28

3.80

3.61

3.13

0.81

0.89

0.20

78.6

66.2

251.5

242.1

2.04

1.29

4.41

3.95

4.27

3.57

0.45

0.56

18

134.9

123.4

134.9

123.4

3.08

2.52

3.08

2.52

1.65

1.60

1.65

1.60

0.05

118.6

106.7

151.3

140.4

2.84

2.25

3.29

2.76

2.06

1.92

1.26

1.27

0.10

102.7

90.6

167.4

157.3

2.56

1.93

3.45

2.94

2.53

2.26

0.91

0.97

0.15

87.5

75.4

182.9

173.8

2.26

1.58

3.57

3.08

3.05

2.62

0.59

0.68

0.20

73.2

61.3

197.5

189.6

1.93

1.18

3.65

3.18

3.64

2.99

0.28

0.41

20

114.4

103.4

114.4

103.4

2.69

2.14

2.69

2.14

1.36

1.33

1.36

1.33

0.05

102.3

91.3

126.4

116.6

2.52

1.92

2.85

2.31

1.73

1.61

1.03

1.05

0.10

90.3

78.9

137.9

1293

2.31

1.68

2.96

2.45

2.14

1.92

0.72

0.79

0.15

78.5

67.1

148.9

141.3

2.08

1.39

3.04

2.55

2.61

2.22

0.44

0.55

0.20

67.4

56.1

159.2

152.4

1.82

1.08

3.07

2.62

3.14

2.54

0.18

0.31




Table 1 presents solutions obtained with the following parameter values: /=60, R =60,v=10.3, A =0, 0.05, 0.10, 0.15,
0.20, =8, 10, 12, 14, 16, 18, 20, and s=1/2.

Table 1 summarizes the values of the deflection w (i, ) in the midsection of the shell for two values of 8 and series of
values of ellipticity A and thickness / obtained in the spatial (I) and refined (II) formulations.

It can be seen that as the thickness of the circular shell (A = 0) increases from 8 to 20, the difference between the refined
and exact solutions changes from 5 to 9%. For the elliptic shell with A increasing from 0.05 to 0.20, this difference calculated at
the major vertex (8 = 0) changes as follows: from 5 to 29% for 2 =§; from 7 to 18% for 2= 10; from 7 to 16% for &= 12; from 8 to
14% for h = 14; from 9 to 16% for & = 16; from 10 to 16% for ~ = 18; and from 10 to 17% for 4 = 20. Hence, with nonzero
ellipticity A, the difference between the two theories for smaller thicknesses (4 = 8) is greater than for larger thicknesses (4 = 20).
The following pattern is observed at the vertex of the softer region (0= / 2): the greater the ellipticity, the less the difference
between the deflections by two theories.

Thus, Table 1 suggests that the magnitude of the deflection at the major vertex of the elliptic cross section of nonthin
cylindrical shells, unlike circular cylindrical shells, is determined by the degree of increase in the curvature of the shell.

If R = 60(A = 0), then while the ellipticity changes as A =0.05; 0.10; 0.15; 0.20 at © = 0, the radius of curvature changes
as 51.5,44.1,37.5,31.1. The associated ratios of thickness to radius of curvature 2/ Ry are: 0.13,0.16, 0.18, 0.21, 0.25 for 1 = 8;
0.23,0.27,0.31,0.37,0.44 for h=14; and 0.33, 0.39, 0.45, 0.55, 0.63 for 1 =20. While 1/ Rq <0.05is assumed for thin shells, the
ratio 1/ Ry increases with the ellipticity and thickness, which is the cause of the difference between the deflections predicted by
the refined and spatial models.

Thus, for R =60 and 8 =0, the deflections by the two theories differ by no greater than 10% for A = 0.05; 0.10 when the
thickness /4 changes from 8 to 12 and only for A = 0.05 when the thickness / changes from 14 to 20. For@ = / 2, these deflections
differ by no greater than 8%.

Noteworthy is the following feature of the refined theory of shells based on the straight-line hypothesis: the difference
between the deflections predicted by the refined and spatial theories is greater for thinner shells (4 = 8) than for thicker shells
(107 <20) (see Table 1). This feature can apparently be attributed to the fact that the system of differential equations of the
refined theory becomes stiffer, i.e., ill-conditioned, with decreasing thickness. These equations do not go over, by passing to the
limit, into the classical equations of shells and their numerical solution is an unstable process.

Table 1 also collects the values of the stresses G and 6 (on the outside and inside surfaces) for6=0,0=mn/2; A =0,

0.05, 0.10, 0.15, 0.20; and /2 = 8, 10, 12, 14, 16, 18, 20. It can be seen that the stress 6‘6 in the stiffer region (0= 0) decreases
considerably with increase in A for fixed 4. The stress 6§ also somewhat decreases with increase in 4. The difference between the
values of 6 predicted by the refined and spatial models increases significantly with the ellipticity A and insignificantly with the
thickness 4. When 6=m / 2, the stress Gg increases a little with increase in A and decreases with increase in 4. The difference

between the two theories is less than 10% for 4 < 18.
Table 1 shows that when 0= 0,6 increases almost twofold with increase in A and decreases a little with increase in /.

The difference between the stresses predicted by the two models increases with the ellipticity A and reaches 19% for # = 20. For
0=m /2 the difference between the two values of G is slightly less than that between the values of 6.

Since the stresses o= are less than the stresses G;f, the difference between the values of the former predicted by the two

theories is greater than the difference between the values of the latter.

We have analyzed the stress state of nonthin cylindrical shells with elliptic cross section and may conclude that the
stress—strain analysis of nonthin shells with a coordinate surface of varying curvature should account for the increase in the
thickness and the value of the ratio 2/ Ry in different regions of the coordinate surface and should involve assessment of the
resulting error.
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