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A spatial model and a refined model based on the straight-line hypothesis are used to analyze the stress

state of nonthin elliptic cylindrical shells with certain end conditions for different thicknesses and aspect

ratios. The results obtained are compared, and the validity range of the refined model is established
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Introduction. Many modern structural members have the form of circular and noncircular cylindrical shells. Of special

interest is the stress analysis of nonthin noncircular cylindrical shells [13] because the classical theory of shells does not work

alone here.

The stress analysis of nonthin shells is usually based on one refined theory of shells or another [1–3, 12]. One of such

widely used theories is based on the straight-line hypothesis [2, 3]. Refined theories of shells are usually validated against

solutions of three-dimensional problems. Some comparisons for nonthin circular cylindrical shells were made in [1, 2] to

validate the refined theory for certain geometrical and material parameters and loading and end conditions. In the case of nonthin

noncircular cylindrical shells, it is also necessary to take into account the variation in the cross-sectional curvature because the

error of an applied theory increases with the ratio of thickness to radius of curvature. Therefore, it is of interest to compare

solutions for nonthin noncircular cylindrical shells produced by refined and spatial theories.

1. Let us consider nonthin isotropic cylindrical shells whose cross section is everywhere elliptical. The cross section of

the reference surface is parametrically defined as

x b z a= = ≤ ≤cos , sin ( )θ θ θ π0 2 , (1)

where b and a are the major and minor semiaxes of an ellipse with a perimeter equal to that of a circle of radius R, i.e.,
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The refined formulation based on the straight-line hypothesis [2, 3, 10, 11] assumes that the displacements vary across

the thickness in the following manner:

u s t u s t s ts s( , , ) ( , ) ( , )γ γψ= + ,

u s t v s t s tt t( , , ) ( , ) ( , )γ γψ= + ,
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u s t w s tγ γ( , , ) ( , )= , (4)

where s, t, andγ are the longitudinal, circumferential, and normal (to the midsurfaceγ =const) coordinates; us, ut , and uγ are the

corresponding displacements; u, v, and w are the displacements of the midsurface in the directions s, t, and γ ; and ψs and ψt are

the angular displacements of a rectilinear element.

According to (4), the strains are expressed as

e s t s t s ts s s( , , ) ( , ) ( , )γ ε γκ= + , e s t s t s tt t t( , , ) ( , ) ( , )γ ε γκ= + ,

e s t s t s tst st st( , , ) ( , ) ( , )γ ε γ κ= + 2 , e s t s ts sγ γ γ( , , ) ( , )= , e s t s tt tγ γ γ( , , ) ( , )= . (5)

Equations (5) relate the strain components at an arbitrary point of the shell with the strain components of the coordinate

surface, which are in turn related to the displacements u v w, , and the angular displacements ψs, ψt by
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where ε s, ε t , ε st and κs, κt , κst are the tangential and flexural strains of the midsurface; k t( ) is the curvature of the directrix; ϑ s

and ϑ t are the angles of rotation of the normal without regard to transverse shear; and γ s and γ t are the shear strains, i.e.,

additional angles of rotation of the normal due to transverse shear.

The system of equilibrium equations is given by
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where N s and N t are the normal forces; N st , N ts, Qs, and Qt are the shearing forces; M s and M t are the bending moments; M st

and M ts are the twisting moments; qs, qt , and qγ are load terms defined in terms of the components qs
± , qt

± , and qγ
± of the surface

load acting of the inside and outside surfaces of the shell,

q q q q q q q q qs s s t t t= + = + = ++ − + − + −, , γ γ γ , m q q m q qs s n s t t n t= − = −+ − + −γ γ γ γ0 0, .

The elastic relations for orthotropic shells can be written in the following general form:

N C Ct t s= +11 12ε ε , N C Cs t s= +12 22ε ε , N C k t Dts ts ts= +66 66 2ε κ( ) ,

N Cst ts= 66ε , M D Dt t s= +11 12κ κ , M D Ds t s= +12 22κ κ ,

M M Dts st ts= = 66 2κ , Q K Q Kt t s s= =1 2γ γ, , (8)

where Cij and Dij are stiffness characteristics defined in terms of the elastic constants and thicknesses of the shell, and K1 and

K 2 are the shear stiffnesses [2].

Using Eqs. (5)–(8), we arrive at a governing system of partial differential equations of the tenth order, which can be

represented in vector form:
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{ }N N N Q M M u v wt ts t t ts t s
T= , , , , , , , , ,ψ ψ ,

B bij tn
n= | | ( )| |( ) ( )n i j= =0 1 2 1 2 10, , ; , , , ,� , f f f f T={ , , , }1 2 10� , (10)

where Bn are square matrices whose elements are defined in [3], and f s t( , ) is the vector of the right-hand side.

Using the Fourier series expansion in Eqs. (9) to separate variables in s, we obtain a system of ordinary differential

equations of the tenth order for the nth harmonic (for simplicity, the index n in the notation of unknown functions is omitted):

dN

dt
N k t M q

t
n ts n ts t= − −λ λ ( ) ,

dN

dt
d N k t K d w k t K d v

ts
n t n n=− − + + + −λ λ λ61 2 63

2
2

2
63( )[ ] [ ( ) ] k t K qs s( ) 2ψ − ,

dM

dt
Q M

t
t n ts= +λ ,

dM

dt
d M k t K k t d v K k t d

ts
n t n n=− − + + +λ λ λ72 2

2
74 2 7[ ( ) ( ) )] [ ( ) ( )4 2

2
74]w K dn s+ +λ ψ ,

∂
∂

= − + + + +
Q

t
k t d N k t K d v K k t d k

t
t n n( ) ( )[ ] [ ( )(61 2 63 1

2
63

2λ λ ( )]t w K qn s+ −λ ψ γ2 ,

du

dt
d N d v k t d wt n= − +11 13 13λ ( ) ,

dv

dt
d N d M uts ts n= + −31 32 λ ,

dw

dt K
Qt t= −

1

1

ψ ,

d

dt
d M k t d v k t k t d w d

t
t n n s

ψ
λ λ ψ= + + − −22 24

2
24 24( ) ( ) ( ) ,

d

dt
d M k t u

s
ts n n t

ψ
λ λ ψ= + −42 ( ) , (11)
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The other stress and strain components can be found in terms of the unknown functions (10) from the formulas

ε εt t sd N d= +11 13 , ε λs n v k t w=− + ( ) , κ κt t sd M d= +22 24 ,
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In the isotropic case, Cij and Dij become
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Then the governing system of differential equations (11) becomes
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where E is Young’s modulus;ν is Poisson’s ratio; h is the shell thickness; K1 and K 2 are the shear stiffnesses; andG G Gs tγ γ= =
are the shear moduli in the directions s and t.

Since the elliptic cross section of shells under consideration is described in terms of the parameter θ in (1) and the basic

variable in Eqs. (15) is the arc length t, these parameters are related by
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We have developed an algorithm based on a stable numerical method for solving one-dimensional boundary-value

problems [2]. This algorithm has been implemented in a software system to solve static boundary-value problems for noncircular

cylindrical shells in a refined formulation that accounts for transverse shear strains.

2. Let us address the three-dimensional formulation of the same problem for a hollow cylinder with elliptic cross

section. The midsurface of the cylinder is referred to the coordinate system s, θ, and the cylinder itself to the coordinate system s,

θ, γ . We start with the governing equations of the three-dimensional theory of isotropic elasticity [5, 6]. After some

transformations, the governing system of partial differential equations for a noncircular cylindrical shell becomes

( ) ( )∂
∂

= +
σ
γ

θ γ σ θ γA s f s, , , , , σ σ τ τγ γ θγ γ θ={ , , , , , }s s
Tu u u , (16)

whereσγ ,τ γs , andτθγ are the stress components; uγ , us, and uθ are the displacement components; and A is a square matrix with

elements defined in [4].

Suppose that the shell is hinged at the ends:
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σ θ γs u u= = = 0 at s = 0, l. (17)

A surface load is prescribed on the outside surface of the shell. The boundary conditions (17) allow separation of

variables in s. To this end, we expand the unknown functions and load components into Fourier series in s.

Substituting these series into the governing system of equations and the boundary conditions on the lateral surfaces and

separating variables, we arrive at a two-dimensional boundary-value problem for the amplitudes of the series:
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reference surface.

The boundary conditions on the lateral surfaces are

σ τ τγ γ θγ, , ,, ,n s n n= = =0 0 0 for γ γ= p ,

σ θ τ τγ γ γ θγ, , , ,( ), ,n n s n nq= = =0 0 for γ γ= q . (19)

The radius of curvature R( )θ appearing in Eqs. (18) does not allow us to separate variables in θ. To overcome this

difficulty, we replace the products of unknown functions and the coefficients containing R( )θ with auxiliary functions:

{ }ϕ
γ θ θ

σ τγ γ γ1

1

1

1j
s sR R

u u=
+ / ( ) ( )

; ; ; ( , )j =1 4 , ϕ
γ θ θ γ1

5
2

1

1

1
=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟/ ( ) ( )R R

u ,

890



{ }ϕ
γ θ θ

τθγ θ2

1

1

1
1 2

j

R R
u j=

+
=

/ ( ) ( )
; ( , ),

ϕ
ω θ γ θ

σ
θ θ θ
γ γ

3

1 1

1
1 3

j s

R

u u
j=

+
∂
∂

∂
∂

∂
∂

⎧
⎨
⎩

⎫
⎬
⎭

=
( ) / ( )

; ; ( , ),

( )ϕ
ω θ γ θ

τ

θ θ θ θ
θγ θ θ

4

1 1

1

1
1

j

R

u

R

u
j=

+

∂

∂
∂
∂

∂
∂

⎧
⎨
⎩

⎫
⎬
⎭

=
( ) / ( )

; ; ( , 3),

ϕ
ω θ γ θ θ

ϕ5 1
31 1

1
=

+
∂
∂( ) / ( )R

, ϕ
ω θ γ θ θ

ϕ6 3
31 1

1
=

+
∂
∂( ) / ( )R

,

ϕ
ω θ γ θ θ

ϕ7 4
21 1

1
=

+
∂
∂( ) / ( )R

. (20)

Formally, the resulting governing system of differential equations does not depend on the coordinate θ [8, 9]; however,

the auxiliary functions depend on both γ and θ. Next, expending the unknown and auxiliary functions and load components into

Fourier series in θ and separating variables, we arrive at a one-dimensional boundary-value problem for the following system of

ordinary differential equations (for simplicity, the index n in the notation of unknown and auxiliary functions is omitted):
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with the boundary conditions

γ γ σ τ τγ γ θγ= = = =p k s k k: , ,, , ,0 0 0,

γ γ σ τ τγ γ γ θγ= = = =q k k s k kq: , ,, , , ,0 0 ( , )k K= 0 . (22)

In addition to the amplitudes of the unknown functions, the governing equations (21) include the amplitudes of the

auxiliary functions, which are to be calculated separately during the integration of (21) by discrete orthogonalization for all

harmonics simultaneously. To this end, at each step, we fix the coordinate γ and calculate the values of the auxiliary functions at

some points of the interval 0 2≤ ≤θ π using the current values of the unknown functions. Next, we expand the functions given on a

discrete set of points into Fourier series [7]. The more points there are at which the auxiliary functions are evaluated, the less the

discrete Fourier series differs from the exact Fourier series. Thus, it is possible to achieve a very accurate solution. Using, for

example, Runge’s method, we find the coefficients of these series, substitute them into Eqs. (21), and continue the integration,

satisfying the boundary conditions at the ends of the interval γ γ γp q≤ ≤ .

We used the refined and spatial models to examine the influence of the cross-sectional ellipticity on the stress state of

nonthin elliptic cylindrical shells under load applied to the outside surface for different values of thickness.
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TABLE 1

h ∆

∆ σθ
+ / q0 σθ

− / q0

θ = 0 θ = π/2 θ = 0 θ = π/2 θ = 0 θ = π/2

² ²² ² ²² ² ²² ² ²² ² ²² ² ²²

8

0 411.0 392.5 411.0 392.5 8.00 7.42 8.00 7.42 5.9 5.67 5.9 5.67

0.05 301.6 284.8 531.9 512.5 6.64 6.05 9.27 8.74 6.53 6.17 5.39 5.20

0.10 204.3 188.9 665.1 644.8 5.28 4.65 10.52 10.00 7.21 6.74 4.85 4.74

0.15 118.3 104.4 809.9 788.9 3.88 3.19 11.71 11.21 8.05 7.43 4.31 4.25

0.20 43.3 30.9 965.1 943.8 2.44 1.66 12.82 12.33 9.08 8.26 3.72 3.71

10

0 311.2 294.4 311.2 294.4 6.25 5.69 6.25 5.69 4.33 4.12 4.33 4.12

0.05 241.4 225.3 387.0 369.7 5.33 4.74 7.12 6.58 4.96 4.65 3.75 3.62

0.10 178.1 162.9 468.0 450.4 4.36 3.73 7.91 7.40 5.66 5.22 3.19 3.12

0.15 121.6 107.5 553.2 535.7 3.36 2.67 8.63 8.14 6.46 5.86 2.63 2.62

0.20 72.0 59.1 641.3 624.2 2.32 1.54 9.27 8.79 7.41 6.59 2.06 2.10

12

0 244.3 228.9 244.3 228.9 5.07 4.51 5.07 4.51 3.28 3.11 3.28 3.11

0.05 197.9 182.8 293.5 278.0 4.42 3.84 5.66 5.13 3.87 3.60 2.73 2.64

0.10 155.1 140.5 344.9 329.6 3.73 3.10 6.18 5.67 4.52 4.12 2.20 2.18

0.15 116.3 102.3 397.4 382.7 3.00 2.31 6.63 6.14 5.23 4.69 1.70 1.73

0.20 81.8 68.8 450.1 436.2 2.24 1.47 7.00 6.53 6.09 5.30 1.19 1.28

14

0 196.6 182.6 196.6 182.6 4.21 3.66 4.21 3.66 2.55 2.43 2.55 2.43

0.05 164.8 150.8 229.7 216.0 3.76 3.17 4.62 4.09 3.09 2.86 2.06 2.01

0.10 134.9 121.0 263.5 250.3 3.25 2.62 4.97 4.46 3.67 3.32 1.59 1.60

0.15 107.3 93.9 297.5 284.8 2.71 2.03 5.25 4.77 4.32 3.80 1.14 1.21

0.20 82.3 69.5 330.3 318.9 2.15 1.39 5.48 5.01 5.07 4.32 0.72 0.82

16

0 161.2 148.8 161.2 148.8 3.57 3.02 3.57 3.02 2.03 1.94 2.03 1.94

0.05 139.1 126.1 184.5 172.2 3.24 2.65 3.86 3.33 2.50 2.32 1.59 1.58

0.10 117.5 104.5 207.4 195.9 2.87 2.41 4.09 3.59 3.02 2.72 1.18 1.23

0.15 97.2 84.4 229.9 219.3 2.47 1.79 4.28 3.80 3.61 3.13 0.81 0.89

0.20 78.6 66.2 251.5 242.1 2.04 1.29 4.41 3.95 4.27 3.57 0.45 0.56

18

0 134.9 123.4 134.9 123.4 3.08 2.52 3.08 2.52 1.65 1.60 1.65 1.60

0.05 118.6 106.7 151.3 140.4 2.84 2.25 3.29 2.76 2.06 1.92 1.26 1.27

0.10 102.7 90.6 167.4 157.3 2.56 1.93 3.45 2.94 2.53 2.26 0.91 0.97

0.15 87.5 75.4 182.9 173.8 2.26 1.58 3.57 3.08 3.05 2.62 0.59 0.68

0.20 73.2 61.3 197.5 189.6 1.93 1.18 3.65 3.18 3.64 2.99 0.28 0.41

20

0 114.4 103.4 114.4 103.4 2.69 2.14 2.69 2.14 1.36 1.33 1.36 1.33

0.05 102.3 91.3 126.4 116.6 2.52 1.92 2.85 2.31 1.73 1.61 1.03 1.05

0.10 90.3 78.9 137.9 129.3 2.31 1.68 2.96 2.45 2.14 1.92 0.72 0.79

0.15 78.5 67.1 148.9 141.3 2.08 1.39 3.04 2.55 2.61 2.22 0.44 0.55

0.20 67.4 56.1 159.2 152.4 1.82 1.08 3.07 2.62 3.14 2.54 0.18 0.31



Table 1 presents solutions obtained with the following parameter values: l = 60, R = 60, ν = 0.3, ∆ = 0, 0.05, 0.10, 0.15,

0.20, h = 8, 10, 12, 14, 16, 18, 20, and s l= /2.

Table 1 summarizes the values of the deflection w (uγ ) in the midsection of the shell for two values of θ and series of

values of ellipticity ∆ and thickness h obtained in the spatial (I) and refined (II) formulations.

It can be seen that as the thickness of the circular shell (∆ = 0) increases from 8 to 20, the difference between the refined

and exact solutions changes from 5 to 9%. For the elliptic shell with ∆ increasing from 0.05 to 0.20, this difference calculated at

the major vertex (θ = 0) changes as follows: from 5 to 29% for h = 8; from 7 to 18% for h = 10; from 7 to 16% for h = 12; from 8 to

14% for h = 14; from 9 to 16% for h = 16; from 10 to 16% for h = 18; and from 10 to 17% for h = 20. Hence, with nonzero

ellipticity ∆, the difference between the two theories for smaller thicknesses (h = 8) is greater than for larger thicknesses (h = 20).

The following pattern is observed at the vertex of the softer region (θ π= / 2): the greater the ellipticity, the less the difference

between the deflections by two theories.

Thus, Table 1 suggests that the magnitude of the deflection at the major vertex of the elliptic cross section of nonthin

cylindrical shells, unlike circular cylindrical shells, is determined by the degree of increase in the curvature of the shell.

If R = 60(∆ = 0), then while the ellipticity changes as ∆ = 0.05; 0.10; 0.15; 0.20 at θ = 0, the radius of curvature changes

as 51.5, 44.1, 37.5, 31.1. The associated ratios of thickness to radius of curvature h R/ θ are: 0.13, 0.16, 0.18, 0.21, 0.25 for h = 8;

0.23, 0.27, 0.31, 0.37, 0.44 for h = 14; and 0.33, 0.39, 0.45, 0.55, 0.63 for h = 20. While h R/ .θ ≤ 0 05is assumed for thin shells, the

ratio h R/ θ increases with the ellipticity and thickness, which is the cause of the difference between the deflections predicted by

the refined and spatial models.

Thus, for R =60 and θ =0, the deflections by the two theories differ by no greater than 10% for ∆ = 0.05; 0.10 when the

thickness h changes from 8 to 12 and only for ∆ = 0.05 when the thickness h changes from 14 to 20. Forθ π= / 2, these deflections

differ by no greater than 8%.

Noteworthy is the following feature of the refined theory of shells based on the straight-line hypothesis: the difference

between the deflections predicted by the refined and spatial theories is greater for thinner shells (h = 8) than for thicker shells

(10 20≤ ≤h ) (see Table 1). This feature can apparently be attributed to the fact that the system of differential equations of the

refined theory becomes stiffer, i.e., ill-conditioned, with decreasing thickness. These equations do not go over, by passing to the

limit, into the classical equations of shells and their numerical solution is an unstable process.

Table 1 also collects the values of the stresses σθ
+ and σθ

− (on the outside and inside surfaces) for θ = 0, θ π= /2; ∆ = 0,

0.05, 0.10, 0.15, 0.20; and h = 8, 10, 12, 14, 16, 18, 20. It can be seen that the stress σθ
+ in the stiffer region (θ = 0) decreases

considerably with increase in ∆ for fixed h. The stressσθ
+ also somewhat decreases with increase in h. The difference between the

values ofσθ
+ predicted by the refined and spatial models increases significantly with the ellipticity ∆ and insignificantly with the

thickness h. When θ π= / 2, the stress σθ
+ increases a little with increase in ∆ and decreases with increase in h. The difference

between the two theories is less than 10% for h < 18.

Table 1 shows that when θ = 0, σθ
− increases almost twofold with increase in ∆ and decreases a little with increase in h.

The difference between the stresses predicted by the two models increases with the ellipticity ∆ and reaches 19% for h = 20. For

θ π= / 2, the difference between the two values of σθ
− is slightly less than that between the values of σθ

+ .

Since the stresses σs
± are less than the stresses σθ

± , the difference between the values of the former predicted by the two

theories is greater than the difference between the values of the latter.

We have analyzed the stress state of nonthin cylindrical shells with elliptic cross section and may conclude that the

stress–strain analysis of nonthin shells with a coordinate surface of varying curvature should account for the increase in the

thickness and the value of the ratio h R/ θ in different regions of the coordinate surface and should involve assessment of the

resulting error.
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