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STRESS SOLUTIONS TO THE THREE-DIMENSIONAL PROBLEM OF ELASTICITY
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New representations of the stress tensor in the linear theory of elasticity and thermoelasticity are

proposed. These representations satisfy the equilibrium equations and the strain compatibility equation.

The stress tensor is expressed in terms of a harmonic tensor or a harmonic vector. The second

boundary-value problem for an elastic half-space and an elastic layer is solved as an example
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It is preferred to solve the three-dimensional problem of elasticity in terms of stresses rather than displacements,

especially if stresses are prescribed on the surface (second boundary-value problem). For a review of general solutions to the

three-dimensional problem of elasticity, see [1, 17, 21, 23, 30, 32].

In this paper, we briefly summarize stress solutions to the three-dimensional problem of elasticity obtained in [5–12, 36, 37].

1. Classical Formulation of the Stress Problem in Elasticity. Consider an isotropic, homogeneous elastic material

occupying a volume V in three-dimensional Euclidean space R3. Points of the space R3 are denoted by õ = (õ1, õ2, õ3). Body

forces are absent.

Stress boundary-value solutions in the linear theory of elasticity require that the stress tensor �T satisfy, in V, the equation

of statics

div �T = 0 (1.1)

and the Beltrami compatibility equation

∆ �T
v

+
+

∇∇ =
1

1
0σ , (1.2)

where v is Poisson’s ratio; ∇ is the inverted delta in R3; ∆ = ∇⋅∇ is the Laplacian in R3; and σ= I T1 ( � ) is the first invariant of the

stress tensor.

The well-known representations of the stress tensor in terms of the Maxwell and Morera functions satisfying Eq. (1.1)

are not invariant. An invariant representation for �T was independently obtained by Finci, Krutkov, and Blokh [3]:

� � * �T = =rot * (rot ) InkΦ Φ, (1.3)

where �Φ is a symmetric tensor of the second rank.

Representation (1.3) satisfies Eq. (1.1). Substituting (1.3) into (1.2), Krutkov has derived a rather complicated

differential equation for the tensor �Φ [18].
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Two methods may be used to find general stress solutions. One method, followed by Krutkov, is to find a representation

for the stress tensor that would satisfy Eq. (1.1) and to substitute it into (1.2). One may proceed in reverse: find a representation

for �T that would satisfy Eq. (1.2) and then substitute it into (1.1). The other method seeks to represent the stress tensor in terms of

simpler functions (harmonic, for one), with a representation for �T being not postulated beforehand but rather found in the process

of solution. We will follow the latter method to derive a new general stress solution.

Obviously,

2∇ = −ϕ ϕ ϕ∆ ∆( )R R , (1.4)

where ϕ is a scalar and R = ³s õs is the position vector.

Applying (1.4) to σ yields

2∇ =σ σ∆ ( )R , (1.5)

where σ is assumed to be a harmonic function (∆σ = 0) in the absence of body forces.

Substituting (1.5) into (1.2), we obtain

∆ �
( )

( )T
v

+
+

∇
⎡

⎣
⎢

⎤

⎦
⎥ =

1

2 1
0Rσ . (1.6)

Expression (1.6) is a new form of the Beltrami compatibility equation.

It can be shown that

∇ = ∇ +( ) ( ) �R Rσ σ σE, (1.7)

where �E is a unit tensor of the second rank.

With (1.7), Eq. (1.6) becomes

∆ �
( ) �

( )
T

E

v
+

∇ +
+

⎡

⎣
⎢

⎤

⎦
⎥ =

σ σR

2 1
0. (1.8)

If

� �
( ) �

( )
G T

E

v
= +

∇ +
+

σ σR

2 1
, (1.9)

then Eq. (1.8) yields

∆ �G = 0, (1.10)
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i.e., �G is a harmonic tensor. The properties of harmonic tensors are detailed in [3]. Formula (1.9) expresses the harmonic tensor �G

in terms of the stress tensor �T and its first invariant σ.

Formula (1.9) yields

� �
( ) �

( )
T G

E

v
= −

∇ +
+

σ σR

2 1
. (1.11)

Representation (1.11) satisfies the strain compatibility equation (1.2). Let the components of the stress tensor also

satisfy the equilibrium equation

∇⋅ =�T 0. (1.12)

Taking the divergence of (1.11), we obtain

∇⋅ = ∇⋅ −
+

� �
( )

( )T G
v

1

2 1
∆ Rσ .

Substituting Eqs. (1.5) and (1.12) into this relation, we get

∇⋅ =
+

∇�G
v

1

1
σ, (1.13)

where σ is assumed known.

Thus, if the components of the tensor �G satisfy Eq. (1.13), then the components of the stress tensor �T satisfy the

equilibrium equation (1.12).

Expressed in terms of Cartesian coordinates, Eq. (1.13) takes the form

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

b

x

b

x

b

x x

11

1

21

2

31

3 1

2α
σ

,
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

b

x

b

x

b

x x

12

1

22

2

32

3 2

2α
σ

,

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

b

x

b

x

b

x x

13

1

23

2

33

3 3

2α
σ

, (1.14)

where bij are the components of the harmonic tensor �G; α = 1/2(1 + v).

Thus, the components bij are related by (1.14).

By the reciprocity of tangential stresses (σij = σji, i ≠ j), Eq. (1.11) leads to

b b x
x

x
x21 12 1

2
2

1

= +
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α

σ σ
, b b x

x
x

x31 13 1
3

3
1

= +
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α

σ σ
,
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b b x
x

x
x32 23 2

3
3

2

= +
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α

σ σ
. (1.15)

The nine components bij of the asymmetric harmonic tensor can be determined by satisfying three boundary conditions

and the six relations (1.14), (1.15).

Relation (1.11) yields

σ α σ
σ

ii ii i
i

b x
x

= − +
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , σ α

σ
ij ji i

j

b x
x

= −
∂
∂

(i ≠ j). (1.16)

Let us determine σ appearing in (1.14)–(1.16).

If there are no body forces, then

σ µθ=
+

−
2 1

1 2

( )v

v
,

where µ is the shear modulus, and θ is dilatation.

Betti and Cerruti [22, 30] proposed a method to find θ when either surface displacements or surface loads are known.

However, finding θ is as difficult as solving the original problem. We will demonstrate below that there is no need for the

preliminary determination of σ—it can be found while solving the boundary-value problem to determine σij.

The idea of the method of determining σ is as follows. If, for example, we are solving the second (static) boundary-value

problem with the plane õ3 = 0 as a boundary, then the following stresses are prescribed on it: σ31, σ32, and σ33. Formulas (1.16)

yield

σ α
σ

31 = −
∂
∂

b x
x13 3
1

, σ α
σ

32 23 3
2

= −
∂
∂

b x
x

, ( )σ ασ α
σ

33 33 3
3

= − −
∂
∂

b x
x

. (1.17)

The theory of harmonic functions and formulas (1.17) allow us to determine the components b13, b23, and b33 from the

known boundary stresses. Substituting then these components into the third relation in (1.14), we find σ. Let us exemplify the

rest of the procedure.

1.1. Given an elastic isotropic half-space õ3 ≥ 0, solve the second (static) boundary-value problem. The following

stresses act on the boundary õ3 = 0 of the half-space:

σ3
1 2 1 2

1 20i
i t

t

f x x x x

x x
=

− ∈
∉

⎧
⎨
⎩

( , ) ( , ) ,

( , ) ,

if

if

Ω
Ω (1.18)

where i = 1, 2, 3, and Ωi are the loaded regions in the plane õ3 = 0.

Introduce the functions

Ni (õ1, õ2, õ3) =
1

2 1 2 3 1 2π Ω i

f y y x r dy dyi∫∫ +( , ) ln( ) (³ = 1, 2, 3), (1.19)

r x y x y x2
1 1

2
2 2

2
3
2= − + − +( ) ( ) ,

∂
∂

+ =
x

x r
r3

3

1
ln( ) . (1.20)

The functions Ni are harmonic in the half-space õ3 > 0, and

lim lim ( , )
x

i

x
i

N

x x
f y y r y

i
3 30

2

3
2

0 3
1 2

1
1

2→+ →+
−∂

∂
=

∂
∂

∂∫∫π Ω
1 2∂y =

− ∈
∉

⎧
⎨
⎩

f x x x x

x x

i i

i

( , ), ( , ) ,

, ( , )

1 2 1 2

1 20

Ω
Ω (1.21)

on the plane õ3 = 0.

With (1.17)–(1.21), the harmonic functions b13, b23, and b33 can be expressed as
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b
N

x
13

2
1

3
2

=
∂

∂
, b

N

x
23

2
2

3
2

=
∂

∂
, b

N

x
33

2
3

3
2

=
∂

∂
+ασ. (1.22)

Thus expressed, the components bi3 (i = 1, 2, 3) satisfy the boundary conditions (1.18).

Substituting (1.22) into the last relation in (1.14), we get

( )σ ν
ϕ

= +
∂
∂

2 1
3x

, ϕ =
∂
∂

+
∂
∂

+
∂
∂

N

x

N

x

N

x

1

1

2

2

3

3

. (1.23)

Formula (1.23) yields σ, which is the first invariant of the stress tensor.

Thus, we have found σ during the problem solving process and, hence, there is no need to use the Betti–Cerruti method

to determine it preliminarily.

Substituting (1.22) into (1.17) yields

σ α
σ

31

2
1

3
2 3

1

=
∂

∂
−

∂
∂

N

x
x

x
, σ α

σ
32

2
2

3
2 3

2

=
∂

∂
−

∂
∂

N

x
x

x
, σ α

σ
33

2
3

3
2 3

3

=
∂

∂
−

∂
∂

N

x
x

x
, (1.24)

where Ni (i = 1, 2, 3) and σ are defined by (1.19) and (1.23), respectively. Expressions (1.24) allow us to determine the stresses on

the area elements perpendicular to the x3-axis.

To determine the other stress components σ11, σ22, and σ12, it is first necessary to find the harmonic functions b11, b22,

b12, b21, b31, and b32. To this end, we use Eqs. (1.14) and (1.15).

Doing this gives

b
N

x x

N

x x

N

x x x x12

2
1

2 3

2
2

1 3

2
3

1 2

2

1 2

2=
∂

∂ ∂
+

∂
∂ ∂

−
∂
∂ ∂

+
∂

∂ ∂
+

∂
ν

Φ
∂

∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟õ

õ
õ

õ
õ1

2
3

3
2

ϕ ϕ
,

b
N

x x

N

x x

N

x õ x
11

2
1

1 3

2
2

2 3

2
3

2
2

3

2

2
2

2=
∂
∂ ∂

−
∂
∂ ∂

+
∂

∂
+

∂
∂

−
∂
∂

ϕ
ν

Φ
+

∂
∂

∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟õ

õ
õ

õ
õ1

1
3

3
1

ϕ ϕ
,

b
N

x x

N

x x

N

x õ x
22

2
1

1 3

2
2

2 3

2
3

1
2

3

2

1

2=−
∂
∂ ∂

+
∂
∂ ∂

+
∂

∂
+

∂
∂

−
∂
∂

ϕ
ν

Φ
2

2
2

3
3

2

+
∂

∂
∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟õ

õ
õ

õ
õ

ϕ ϕ
. (1.25)

Thus, (1.15), (1.22), and (1.25) define all the nine components bij of the harmonic asymmetric tensor. Formulas (1.25)

include a function Φ(x1, x2, x3) related to ϕ(x1, x2, x3) by ϕ =∂ ∂Φ / õ3 .

After determining all the harmonic functions, we substitute them into (1.16) to obtain formulas for the stress

components:

σ
ϕ ϕ

11

2
1

1 3

2
2

2 3

2
3

2
2

3
3

2

1
2

=
∂
∂ ∂

−
∂
∂ ∂

+
∂

∂
+

∂
∂

−
∂
∂

N

x x

N

x x

N

x õ
x

õ
−

∂
∂

2
2

2
2

ν
Φ

x
,

σ
ϕ ϕ

22

2
1

1 3

2
2

2 3

2
3

1
2

3
3

2

2

=−
∂
∂ ∂

+
∂
∂ ∂

+
∂

∂
+

∂
∂

−
∂
∂

N

x x

N

x x

N

x õ
x

x2

2

1
2

2−
∂
∂

ν
Φ

x
,

σ
ϕ

33

2
3

3
2 3

2

3
2

=
∂

∂
−

∂
∂

N

x
x

x
, σ

ϕ
12

2
1

2 3

2
2

1 3

2
3

1 2
3

2

1 2

2=
∂

∂ ∂
+

∂
∂ ∂

−
∂
∂ ∂

−
∂

∂ ∂
+

N

x x

N

x x

N

x x
x

x x
ν

∂
∂ ∂

2

1 2

Φ
x x

,

σ
ϕ

23

2
2

3
2 3

2

2 3

=
∂

∂
−

∂
∂ ∂

N

x
x

x x
, σ

ϕ
31

2
1

3
2 3

2

1 3

=
∂

∂
−

∂
∂ ∂

N

x
x

x x
. (1.26)
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Thus, the method being discussed helped us to find a general solution to the second boundary-value problem for an

elastic half-space. Special solutions to this problem may be found in monographs on elasticity theory (see, e.g., [21, 27, 34]).

To test the formulas, let us examine special cases of distributed load and concentrated normal force. The results

obtained in [27, 34] for these cases follow from (1.26).

1.2. Consider an isotropic elastic layer (0 ≤ x3 ≤ h). Three-dimensional problems for an elastic layer were addressed in

[14, 21, 33, 35, 39, 43, 44]. We will use a rectangular coordinate frame x1, x2, x3, with the x3-axis being perpendicular to the

boundary surfaces of the layer. Impose the following boundary conditions for stresses:

σ3

0
1 2 3

1 2 3

0
j

j

j
h

f x x x

f x x x h
=

=
=

⎧
⎨
⎪

⎩⎪

( , ) ,

( , ) ,

on

on
j = 1, 2, 3, (1.27)

where σ33 is the normal stress, and σ31 and σ32 are the tangential stresses. Let the functions f j
0 and f j

h be such that all the six

equations of statics hold.

The stress tensor �T must satisfy the equilibrium equation (1.1) and the Beltrami compatibility equation (1.2).

For simplicity, we assume that body forces are absent.

It was shown in [8] that Eq. (1.2) holds if

� �
( ) �

( )
T G

E

v
= −

∇ +
+

σ σR

2 1
, (1.28)

where �G is a harmonic tensor, i.e., ∆ �G = 0; �E is a unit tensor of the second rank; and R = ij xj is the position vector.

The harmonic tensor �G is asymmetric; therefore, it has nine components gmn.

The stress tensor �T defined by (1.28) will satisfy the equilibrium equation (1.1) if

∇⋅ =
+

∇�G
1

1 ν
σ. (1.29)

By the reciprocity of tangential stresses (σmn = σnm, m ≠ n), formula (1.28) leads to

g g x
x

x
xnm mn m

n
n

m

= +
+

∂
∂

−
∂

∂
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

2 1( )ν
σ σ

(m ≠ n). (1.30)

Relations (1.29) and (1.30) are equivalent to the six equations for the components gmn. The other three components of

the harmonic tensor can be found by satisfying the boundary conditions (1.27).

Each component gmn of the harmonic tensor �G satisfies the Laplace equation

∆gmn = 0, m, n = 1, 2, 3. (1.31)

Let us use the Fourier transformation. The two-dimensional Fourier transform of some function f (x1, x2, x3) is given by

the following formula [29, 38]:

f x f x x x e dx dxi x x( , , ) ( , , ) ( )ξ ξ
π

ξ ξ
1 2 3 1 2 3 1 2

1

2
1 1 2 2=

−∞

∞
+

−
∫

∞

∞

∫ .

Taking the two-dimensional Fourier transform of Eq. (1.31) and solving the resulting ordinary differential equation, we get

g x A kx B kmn mn mn( , , ) ( , ) ( ) ( , )ξ ξ ξ ξ ξ ξ1 2 3 1 2 3 1 2= +sinh cosh( x3 ), (1.32)

where k 2
1
2

2
2= +ξ ξ and m, n = 1, 2, 3.

The same is true of the function σ(x1, x2, x3):

σ ξ ξ ξ ξ ξ ξ( , , ) ( , ) ( , )1 2 3 0 1 2 3 0 1 2 3x A kx B kx= +sinh( ) cosh( ). (1.33)
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The stresses σ31, σ32, and σ33 are prescribed on the layer boundaries x3 = 0 and x3 = h. Equations (1.28) and (1.30) yield

σ α
σ

31 13 3
1

= −
∂
∂

g x
x

, σ α
σ

32 23 3
2

= −
∂
∂

g x
x

, σ ασ α
σ

33 33 3
3

= − −
∂
∂

( )g x
x

, α
ν

=
+
1

2 1( )
. (1.34)

Taking the two-dimensional Fourier transform of formulas (1.34) and considering that the stresses decay at infinity, we

obtain

σ ξ α σ31 13 1 3= +g i x , σ ξ α σ32 23 2 3= +g i x , σ ασ α
σ

33 33 3
3

= − −
∂
∂

( )g x
x

. (1.35)

Taking the Fourier transform of the boundary conditions (1.27), we obtain

σ
ξ ξ
ξ ξ3

0
1 2 3

1 2 3

0
m

m

m
h

f x

f x h
=

=
=

⎧
⎨
⎩

( , ) ,

( , ) ,

on

on
m = 1, 2, 3. (1.36)

Satisfying conditions (1.36) and using formulas (1.32), (1.33), and (1.35), we obtain the system of equations

B f13 1
0= , B f23 2

0= , B B f33 0 3
0− =α ,

[ ]A kh B kh i h A kh B kh13 13 1 0 0sinh( ) cosh( ) sinh( ) cosh( )+ + +ξ α = f h
1 ,

[ ]A kh B kh i h A kh B kh23 23 2 0 0sinh( ) cosh( ) sinh( ) cosh( )+ + +ξ α = f h
2 ,

[ ]A kh B kh A kh kh kh B33 33 0 0sinh( ) cosh( ) sinh( ) cosh( )+ − + −α α [ ]cosh( ) sinh( )kh kh kh f h+ = 3 ,

i A i A êB kBξ ξ α1 13 2 23 33 02 0+ − + = , i B i B êA kAξ ξ α1 13 2 23 33 02 0+ − + = , (1.37)

where fm
0 and fm

h (m = 1, 2, 3) are assumed known. The last two equations in (1.37) have been derived using the

Fourier-transform of relation (1.29). Solving Eqs. (1.37) yields À13, Â13, À23, Â23, À33, Â33, À0, and Â0. Then, we can use

formulas (1.32) and (1.33) to find g g g13 23 33, , , and σ.

The system of equations (1.37) can be solved symbolically using Cramer’s rule. For example, the determinant D of

(1.37) is given by

[ ]D k kh kh kh= −2 2 2sinh( ) ( ) ( )sinh . (1.38)

The general-form expressions for À13, Â13, À23, Â23, À33, Â33, À0, and Â0 are omitted as awkward. Let us consider an

example to detail the procedure of determining these coefficients.

Solving the system of equations (1.37), we find g g g13 23 33, , , and σ. Now we can find the other Fourier-transformed

harmonic functions g g g g g11 22 12 21 31, , , , , and g 32 :

g g21 12 2
1

1
2

= + −
∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α ξ

σ
ξ

ξ
σ

ξ
, g g i

x
i x31 13

2

1 3
1 3= + −

∂
∂ ∂

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α

σ
ξ

ξ σ , (1.39)

g g i
x

i x32 23

2

2 3
2 3= + −

∂
∂ ∂

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α

σ
ξ

ξ σ , k g i
g

x
i

g

x
g2

12 2
13

3
1

32

3
1 2 33 1 22=−

∂
∂

−
∂
∂

+ −ξ ξ ξ ξ ναξ ξ σ,

( )k g i
g

x
i

g

x
g k2

11 1
31

3
2

23

3
2
2

33
2

2
22=−

∂
∂

+
∂
∂

− + +ξ ξ ξ α νξ σ,

( )k g i
g

x
i

g

x
g k2

22 1
13

3
2

32

3
1
2

33
2

1
22=

∂
∂

−
∂
∂

− + +ξ ξ ξ α νξ σ. (1.40)
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Thus, g g g13 23 33, , , and σ follow from the system of equations (1.37), and the other harmonic functions from (1.39)

and (1.40).

After finding g mn , we recover the harmonic functions gmn using the inverse Fourier transform:

g x x x g x e dmn mn
i x x( , , ) ( , , ) ( )

1 2 3 1 2 3

1

2
1 1 2 2=

−∞

∞
− +∫π

ξ ξ ξξ ξ
1 2dξ

−∞

∞

∫ .

The components of the stress tensor are determined from formula (1.28).

Example. Consider an elastic layer (of thickness h) compressed by normal forces uniformly distributed over squares

with side length 2à located in the planes x3 = 0 and x3 = h (Fig. 1).

Put

f f f fh h
1
0

2
0

1 2 0= = = = , f f
p x a x a

x a x a
h

3
0

3

1 2

1 20
= =

− ≤ ≤
≥ ≥

⎧
⎨
⎩

, | | , | | ,

, | | , | |

in the boundary conditions (1.27).

Hence,

f f f fh h
1
0

2
0

1 2 0= = = = ,

f f
p

e dx dx
p a ah i x x

3
0

3 1 2
1 2

12 2
1 1 2 2= =− =−+

π π
ξ ξ
ξ

ξ ξ( )
sin sin

ξ2−−
∫∫
a

a

a

a

(1.41)

in (1.37).

We have solved the system of equations (1.37) with (1.41) symbolically using Cramer’s rule and obtained the

following:

A f
i k

D
B13 3

1
13 0= − =

ξ β
β β βsinh sinh( ), , A f

i k

D
B23 3

2
23 0= − =

ξ β
β β βsinh sinh( ), ,

A f
k

D33 3

22
= − −sinh cosh 1 sinhβ β β β( )( ), B f

k

D33 3

2
2= − −sinh 2sinh sinh2β β β β β( ),

α β β β βA f
k

D0 3

2

= − −sinh cosh 1 sinh( )( ), α β β βB f
k

D0 3

2

= −sinh sinh2 ( ), (1.42)

where β = kh, f f f h
3 3

0
3= = , and D is defined by (1.38).

Next, we have

g A kx13 13 3= sinh( ), g A kx23 23 3= sinh( ), g A kx B kx33 33 3 33 3= +sinh( ) cosh( ),

σ = +A kx B kx0 3 0 3sinh( ) cosh( ). (1.43)

The other Fourier-transformed harmonic functions can be found from (1.39) and (1.40).

Now we will determine stresses on the area elements perpendicular to the õ3-axis. Substituting (1.42) and (1.43) into

(1.35), we obtain

( )σ ξ ξ
ξ

β β
β31 1 2 3

1 3
3 3 3( , , )x

i f
h x kx x=−

+
− + −

sinh
sinh( ) sinh([ ]kx3 ) ,

( )σ ξ ξ
ξ

β β
β32 1 2 3

2 3
3 3 3( , , )x

i f
h x kx x=−

+
− + −

sinh
sinh( ) sinh([ ]kx3 ) ,
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( )σ ξ ξ
β β

β33 1 2 3
3

3 3 3( , , )x
f

kx kx kx=
+

+ − +
sinh

sinh( ) cosh( ) si[ ]nh( ) cosh( )β β− + −kx kx kx3 3 3 , (1.44)

where f3 is defined by (1.41). Taking the inverse Fourier transform of (1.44) yields the stresses σ31(õ1, õ2, õ3), σ32(õ1, õ2, õ3),

and σ33(õ1, õ2, õ3).

Let us demonstrate the rest of the procedure by determining the normal stress σ33. We have

σ
π

ξ ξξ ξ
33 1 2 3 2

1
1 1 2 2( , , )

sin( )sin(
( )x x x

p
e

a a
i x x=− − +

−∞

∞

∫ [ ]
2

1 2

)

( )ξ ξ kh kh+−∞

∞

∫
sinh( )

× + − + − +sinh( ) sinh( ) cosh( ) cosh(kx kh kx k h x kx kx k3 3 3 3 3( )[ ]h kx d d− 3 1 2) ξ ξ , (1.45)

which can be rearranged as

σ
π

γ γ γ γ
γ γ33 1 2 3 2

1 2 1 1 2 2

1

4
( , , )

sin sin cos( )cos( )
y y y

p y y
=−

20

3 1 2

0
( )

( , )
εγ εγ

γ γ γ
+

∞∞

∫∫ sinh
F y d d , (1.46)

where ε = h a/ , γ ξ1 1= a , γ ξ2 2= a , γ γ γ= +( ) /
1
2

2
2 1 2 , y x aj j= / , j = 1, 2, 3, −∞ < ó1, ó2 < ∞, 0 ≤ ó3 ≤ ε, and

F y y y y y y( , ) ( )3 3 3 3 3 3γ γ εγ γ γ ε γ= + − + − +sinh( ) sinh( ) cosh( ) γ εγ γcosh( )− y3 .

We evaluated the double integral in (1.46) numerically using quadrature formulas and replacing the upper limit ∞ with

50. Increasing the upper limit to 100 does not affect the result up to the fifth decimal place.

Next we used formula (1.46) to determine the stress σ33 at the point C with coordinates 0, 0, h/2 (Fig. 1) for different

values of ε. Doing this gives σ33(Ñ) = – ðϕ(ε). The function ϕ(ε) is plotted in Fig. 2.

1.3. Let us discuss another general solution to Eqs. (1.1) and (1.2).

Consider an isotropic homogeneous elastic material occupying a volume V in three-dimensional space R3. Body forces

are absent.

The solution of Eq. (1.2) is sought in the form

� �
( )

| |
( )T G dV

V

= + ∇∇
−∫

1

4π
ϕ y

x y
y , (1.47)

where �G is a harmonic symmetric tensor of the second rank; and ϕ(õ) is a scalar.

Representation (1.47) gives

σ = +I G f1 ( � ) ∆ , f x dV

V

( )
( )

| |
( )=

−∫
1

4π
ϕ y

x y
y , (1.48)

where I G g g g1 11 22 33( � )= + + is the first invariant of the harmonic tensor �G.

Taking the Laplacian of Eq. (1.47) yields

∆ ∆� ( )T f= ∇∇ , (1.49)

where ∆ �G = 0.

Next, we use a well-known formula from Newtonian potential theory (potential for distributed masses)

1

4π
ϕ

ϕ∆
( )

| |
( ) ( )

y

x y
y x

−
=−∫ dV

V

, õ ∈ V. (1.50)

Formula (1.50) is valid if ϕ(õ) is piecewise-continuously differentiable. The functions ϕ(õ) to be used below are

precisely such.
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Formulas (1.48) and (1.50) yield

∆f ( ) ( )x x=−ϕ . (1.51)

With (1.51), Eqs. (1.48) and (1.49) become

σ ϕ= −I G1 ( � ) , ∆ �T =−∇∇ϕ . (1.52)

Substituting (1.52) into Eq. (1.2), we get

ϕ
ν

=
+

I G1

2

( � )
. (1.53)

With (1.53), formula (1.47) becomes

� �
( )

( � )

| |
( )T G

I G
dV

V

= +
+

∇∇
−∫

1

4 2

1

π ν x y
y . (1.54)

Since the tensors �T and ∇∇f are symmetric, the tensor �G must be such. Hence, the harmonic tensor �G has six independent

components gij (i, j = 1, 2, 3).

Thus, formula (1.54) represents the stress tensor �T in terms of the symmetric harmonic tensor �G and its first invariant

I G1 ( � ). In the Cartesian frame Ox1õ2õ3, the components gij of the tensor �G satisfy the Laplace equation

∆gij = 0 i, j = 1, 2, 3.

It is easy to verify that representation (1.54) satisfies the Beltrami compatibility equation (1.2). Using (1.52) and (1.53),

we obtain

∆ � ( � )T I G=−
+

∇∇
1

2 1ν
, σ

ν
ν

=
+
+

1

2 1I G( � ). (1.55)

These expressions satisfy Eq. (1.2), which can be checked by direct substitution.

The displacement solution to the problem of elasticity is frequently based on the so-called Naghdi–Hsu transformation [45]

( )u x B x
B y

x y
y( ) ( )

( )

| |
( )= +

−
∇

∇⋅
−∫

1

8 1π ν
dV

V

,

( )B x u x
u y

x y
y( ) ( )

( )

| |
( )= −

−
∇

∇⋅
−∫

1

4 1 2π ν
dV

V

, (1.56)

where u(x) is the displacement vector, and B(x) is a harmonic vector. The first formula in (1.56) defines u in terms of Â, and the

second formula in (1.56), vice versa, expresses the harmonic vector in terms of the displacement vector.

Let us show that the stress solution to the three-dimensional problem of elasticity is also based on a transformation

similar to (1.56). The second relation (1.55) yields

I G1

2

1
( � )=

+
+

ν
ν

σ. (1.57)

Substituting (1.57) into (1.54), we obtain

( )
� �

( )

| |
( )G T dV

V

= −
+

∇∇
−∫

1

4 1π ν
σ y

x y
y , (1.58)

where the harmonic symmetric tensor �G is expressed in terms of the stress tensor �T and its first invariant σ = I1( �T).

Expressions (1.54) and (1.58) constitute a transformation for the three-dimensional stress problem of elasticity.
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Representation (1.54) of the stress tensor �T in terms of the symmetric harmonic tensor �G, i.e., six harmonic functions gij,

satisfies the Beltrami equation (1.2).

Let (1.54) also satisfy the equilibrium equation (1.1). Taking the divergence of (1.54) yields

( )∇⋅ = ∇⋅ +
+

∇⋅∇ ∇
−∫� �
( � )

| |
( )T G

I G
dV

V

1

4 2

1

π ν x y
y .

Considering the fact that ∇⋅∇ = ∆ and formula (1.50), we get

( )∇⋅ = ∇⋅ −
+

∇� � ( � )T G I G
1

2 1ν
. (1.59)

In order that ∇⋅ =�T 0, it is necessary to substitute the following equality into (1.59):

∇⋅ =
+

∇�
( )

( � )G I G
1

2 1ν
. (1.60)

Thus, for representation (1.54) to satisfy the equilibrium equation (1.1) and the compatibility equation (1.2), it is

necessary that the harmonic tensor �G appearing in (1.54) be symmetric and satisfy Eq. (1.60).

In Cartesian coordinates, (1.60) consists of three equations. Hence, the six components of the tensor �G are related by

three additional constraints that follow from (1.60), i.e., the tensor �G has only three independent components gij.

2. Second Formulation of the Stress Problem in Elasticity. The stress tensor �T must satisfy the equation of statics

div �T = 0 (2.1)

and the strain compatibility equation

Ink � � �ε
µ

ν
ν

σ= −
+

⎛
⎝
⎜ ⎞

⎠
⎟ =

1

2 1
0Ink T E , (2.2)

where Ink � �Q Q= rot(rot )* ; �E is a unit tensor; ν is Poisson’s ratio; µ is the shear modulus; σ = I T1 ( � ) is the first invariant of the

stress tensor; and �ε is the linear strain tensor. Assume that body forces are absent.

Let us now address the compatibility equation (2.2). If the Ink operation on a symmetric tensor gives zero, then this

tensor is deformation of some vector. Hence,

� �T E−
+

=
ν
ν

σ
1

def c, (2.3)

where c is a vector,

def c c c= ∇ +∇[( ) ] /* 2.

Equating the tensor traces on the left- and right-hand sides of (2.3), we find

1 2

1

−
+

=
ν
ν

σ div c, (2.4)

where I1 ( )def divc c= and I E1 3( � )= .

With (2.4), expression (2.3) becomes

� �T E=
−

+
ν

ν1 2
div defc c. (2.5)

This stress tensor �T identically satisfies the compatibility condition (2.2). Denote c c= 2 0µ . Then (2.5) becomes
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� �T E=
−

+
⎛
⎝
⎜ ⎞

⎠
⎟2

1 2 0 0µ
ν

ν
div defc c . (2.6)

Let us now express the vector ñ0 in terms of a harmonic vector Â ( )∇ =2 0B and some scalar ϕ:

c B0 3= − ∇x ϕ , (2.7)

where õ1, õ2, and õ3 are rectangular coordinates. The scalar function ϕ will be related below to the harmonic vector Â.

Substituting (2.7) into (2.6) yields

( ) ( )� �T E x x=
−

− ∇ + − ∇
⎧
⎨
⎩

⎫
⎬
⎭

2
1 2 3 3µ

ν
ν

ϕ ϕdiv defB B . (2.8)

Representation (2.8) satisfies the compatibility condition (2.2). For (2.8) to satisfy also the differential equilibrium

equation (2.1), it is necessary that

∇ =2 0ϕ ,
∂
∂

=
−

∇⋅
ϕ

νx3

1

3 4
B. (2.9)

Thus, (2.8) represents the stress tensor �T in terms of the harmonic vector B and the harmonic scalar ϕ related by (2.9). If

∇ =2 0B in addition to (2.9), then (2.8) satisfies Eqs. (2.1) and (2.2).

Expression (2.8) can be simplified. Since

( )div x
x

x3
3

3
2∇ =

∂
∂

+ ∇ϕ
ϕ

ϕ ,

we have

( ) ( )div B− ∇ = −
∂
∂

x
x3

3

2 1 2ϕ ν
ϕ

,

where (2.9) has been taken into account.

Hence, representation (2.8) takes the final form

( )� �T E
x

x=
∂
∂

+ − ∇
⎡

⎣
⎢

⎤

⎦
⎥2 2

3
3µ ν

ϕ
ϕdef B . (2.10)

Expression (2.10) can be written component-wise:

σ µ νδ
ϕ ϕ

st st
s

t

t

s t sx

B

x

B

x x
x

x
=

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

∂
∂

∂
∂

⎛
4

3
3⎝

⎜⎜
⎞

⎠
⎟⎟ −

∂
∂

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢

⎤

⎦
⎥

x
x

xs t
3

ϕ
, s, t = 1, 2, 3, (2.11)

where δ st is the Kronecker delta.

Representation (2.10) satisfies the equation of statics (2.1) and the compatibility equations (2.2). Expression (2.11)

allows us to determine the components Â1, Â2, and Â3 of the harmonic vector B from known boundary stresses, and the harmonic

scalar ϕ from (2.9).

This is how we can derive the final expression for the stress tensor �T in a specific boundary-value problem.

2.1. Let us test expression (2.10) against the second boundary-value problem for an elastic half-space in the static case.

The following stresses are prescribed on the boundary õ3 = 0 of the half-space:

σ3
1 2 1 2

1 20t
t t

t

f x x x x

x x
=

− ∈
∉

⎧
⎨
⎩

( , ) ( , ) ,

( , ) ,

if

if

Ω
Ω (2.12)

where Ωt are the loaded regions in the plane õ3 = 0 (t = 1, 2, 3).

860



Formula (2.11) yields expressions for the stresses σ31, σ32, and σ33 on õ3 = 0.

Then

σ µ
ϕ

31
3

1

1

3 1

=
∂
∂

+
∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

x

B

x x
, σ µ

ϕ
32

3

2

2

3 2

=
∂
∂

+
∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

x

B

x x
, ( )σ µ ν

ϕ
33

3

3 3

2 1 2=
∂
∂

− −
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

x x
. (2.13)

Introduce functions Nt harmonic in the half-space õ3 > 0:

Nt (õ1, õ2, õ3) =
1

2 1 2 3 1 2π Ω t

f y y x r dy dyt∫∫ +( , ) ln( ) , t = 1, 2, 3. (2.14)

Then

lim
( , ) ( , ) ,

( , )x c

t t tN

x

f x x x x

x x
3

2

3
2

1 2 1 2

1 20→+

∂

∂
=

− ∈if

if

Ω
∉

⎧
⎨
⎩ Ωt .

(2.15)

Using (2.12)–(2.15), we arrive at a system of equations whose solution is

B
N

x

N

x x1
1

3

3

1 1

1

2
2 2=

∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

∂
∂µ

ν
Ψ

, B
N

x

N

x x2
2

3

3

2 2

1

2
2 2=

∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

∂
∂µ

ν
Ψ

,

( )B
N

x3
3

3

1

2
1 2=

∂
∂

+ −
µ

ν ϕ , ϕ =
∂
∂

Ψ
x3

. (2.16)

It follows from (2.16) that

( ) ( )∇⋅ =
∂

∂
∇⋅ + −

∂
∂

B N
1

1 4
3 3µ

ν
ϕ

x x
, N = ( , , )N N N1 2 3 . (2.17)

Relations (2.9) and (2.17) yield

ϕ
µ

= ∇⋅
1

2
( )N . (2.18)

Thus, the harmonic vector B = (Â1, Â2, Â3) and the harmonic scalar ϕ appearing in (2.10) are defined by (2.16) and

(2.18) in the second boundary-value problem for an elastic half-space. Substituting these expressions into (2.11), we obtain the

final formulas for the stresses σst .

2.2. Let us show how formula (2.10) can be used to determine stresses in an elastic layer. Consider an isotropic elastic

layer (0 3≤ ≤x h) with the following boundary conditions for the stresses σ31, σ32, and σ33:

σ3

0
1 2 3

1 2 3

0
t

t

t
h

f x x x

f x x x h
=

=
=

⎧
⎨
⎩

( , ) ,

( , ) ,

on

on
(t = 1, 2, 3). (2.19)

Formula (2.11) yields

σ µ
ϕ ϕ

31
3

1

1

3 1
3

2

1 3

2=
∂
∂

+
∂
∂

−
∂
∂

−
∂

∂ ∂
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

x

B

x x
x

x x
,

σ µ
ϕ ϕ

32
3

2

2

3 2
3

2

2 3

2=
∂
∂

+
∂
∂

−
∂
∂

−
∂

∂ ∂
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B

x

B

x x
x

x x
,
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( )σ µ ν
ϕ ϕ

33
3

3 3
3

2

3
2

2 1 2=
∂
∂

− −
∂
∂

−
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B

x x
x

x
. (2.20)

Each component Âm of the harmonic vector B satisfies the Laplace equation

∇2 Âm = 0, m = 1, 2, 3. (2.21)

The two-dimensional Fourier transform of some function f (x1, õ2, õ3) is given by the following formula [38]:

f x f x x x e dx dxi x x( , , ) ( , , ) ( )ξ ξ
π

ξ ξ
1 2 3 1 2 3 1 2

1

2
1 1 2 2= +

−∞

∞

−
∫

∞

∞

∫ . (2.22)

Taking the Fourier transform (2.22) of Eq. (2.21) and solving the resulting ordinary differential equation, we obtain

B x A x Ñ xm m m( , , ) ( , ) ( , )ξ ξ ξ ξ κ ξ ξ κ1 2 3 1 2 3 1 2 3= +sinh( ) cosh( ), (2.23)

where κ ξ ξ= +1
2

2
2 and m = 1, 2, 3.

The same is true for the function ϕ appearing in the equation ∇ =2ϕ 0:

ϕ ξ ξ ξ ξ κ ξ ξ κ( , , ) ( , ) ( , )1 2 3 0 1 2 3 0 1 2 3x A x Ñ x= +sinh( ) cosh( ). (2.24)

Taking the Fourier transform (2.22) of formulas (2.20) and considering that the stresses decay at infinity, we obtain

σ µ ξ ξ ϕ ξ
ϕ

31 1 3
1

3
1 1 3

3

2= − +
∂
∂

+ +
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i B

B

x
i i x

x
,

σ µ ξ ξ ϕ ξ
ϕ

32 2 3
2

3
2 2 3

3

2= − +
∂
∂

+ +
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i B

B

x
i i x

x
,

( )σ µ ν
ϕ ϕ

33
3

3 3
3

2

3
2

2 1 2=
∂
∂

− −
∂
∂

−
∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

B

x x
x

x
. (2.25)

Subjected to the Fourier transform, the boundary conditions (2.19) become

σ
ξ ξ
ξ ξ3

0
1 2 3

1 2 3

0
t

t

t
h

f x

f x h
=

=
=

⎧
⎨
⎩

( , ) ,

( , )

on

on
(t = 1, 2, 3). (2.26)

Satisfying conditions (2.26) and using formulas (2.23)–(2.25), we obtain the system of equations

− + + =i C À Ñ fξ κ ξ µ1 3 1 1 0 1
0 / , − + + =i C À Ñ fξ κ ξ µ2 3 2 2 0 2

0 / , κ ν κ µÀ À f3 0 3
01 2 2− − =( ) / ,

[ ] [ ]− + + +i A h C h A h C hξ κ κ κ κ κ1 3 3 1 1sinh cosh cosh sinh( ) ( ) ( ) ( )

[ ]+ + + +i A h C h i h A h Cξ κ κ ξ κ κ1 0 0 1 0 02sinh cosh cosh sinh( ) ( ) ( ) ([ ]κ µh f h) /= 1 ,

[ ] [ ]− + + +i A h C h A h C hξ κ κ κ κ κ2 3 3 2 2sinh cosh cosh sinh( ) ( ) ( ) ( )

[ ]+ + + +i A h C h i h A h Cξ κ κ ξ κ κ2 0 0 2 0 02sinh cosh cosh sinh( ) ( ) ( ) ([ ]κ µh f h) /= 2 ,

[ ] ( ) [ ]κ κ κ ν κ κ κA h C h A h C h3 3 0 01 2ñosh sinh cosh sinh( ) ( ) ( ) ( )+ − − +

[ ]− + =κ κ κ µ2
0 0 3 2h A h C h f hsinh cosh( ) ( ) / ,
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( )3 4 00 1 1 2 2 3− + + − =ν κ ξ ξ κÀ i C Ñ À , ( )3 4 00 1 1 2 2 3− + + − =ν κ ξ ξ κÑ i À À Ñ . (2.27)

The last two equations in (2.27) have been derived using the Fourier transform of expression (2.9).

The system of equations (2.27) can be solved symbolically using Cramer’s rule to find the coefficients À0, Ñ0, À1, Ñ1,

À2, Ñ2, À3, and Ñ3. Next, B1, B2 , B3 , and ϕ can be found from (2.23) and (2.24) and then σ31, σ32 , and σ33 from formulas (2.25).

Finally, applying the inverse two-dimensional Fourier transform, we recover the stresses σ31, σ32, and σ33 as functions of the

coordinates x1, õ2, and õ3.

The other three stresses σ11, σ22, and σ12 can be determined from (2.11). Next, we find σ11, σ22 , and σ12 (i.e., formulas

similar to (2.25)). These formulas again include B1, B2 , B3 , and ϕ. The original functions can easily be recovered numerically

using the inverse Fourier transform.

3. Third Formulation of the Stress Problem in Elasticity. We have proved, using the Fourier transformation, that the

six strain compatibility equations split into two groups, three equations in each. The equations of the first group can be derived

from the equations of the second group and vice versa. Only three compatibility equations are independent. A similar result has

been obtained for the stress compatibility equations. Therefore, it is advisable to use three equilibrium equations and three stress

compatibility equations to solve the three-dimensional stress problem of elasticity.

The classical three-dimensional stress problem of linear elasticity reduces to a system of nine differential equations

(three equilibrium equations and six Beltrami–Michell equations) with appropriate boundary conditions. Washizu [46] showed

that the components of the strain incompatibility tensor are related by three Bianchi identities. For this reason, Kozak [42]

proposed to determine the six independent stress components from three equilibrium equations and three Beltrami–Michell

equations chosen appropriately. The other three Beltrami–Michell equations must only hold on the boundary. Belov et al. [2]

derived three strain compatibility equations, one is algebraic and the other two are of the third order. This made it possible to

reduce the stress problem to three equilibrium equations for three tangential stresses.

3.1. Consider the following compatibility equations [27]:

ε ε ε εij km km ij ik jm jm ik, , , ,+ − − = 0, (3.1)

where εij are the components of the strain tensor; i, j, k, m = 1, 2, 3.

There are total 81 equations (3.1), of which six are strain compatibility equations, some are satisfied identically, and the

remaining repeat [34]. Contracting the tensors in (3.1) with respect to the indices k and m, we obtain somewhat different

compatibility equations:

∇ + − − = =2 0ε ε ε εij ij ik jk jk ik kke e, , , , . (3.2)

The compatibility equations (3.1) are six partial differential equations of the second order for six components of the

strain tensor εij. Some monographs on elasticity theory [27] consider these six equations independent.

Equations (3.1) can be written in a compact form: Ink rot rot 0� �ε ε= = , where �ε is the strain tensor.

Back in 1892, Beltrami concluded that only three compatibility equations are independent. He wrote them as rather

awkward partial differential equations of the third order.

Thus, the six compatibility equations (3.1) are not independent. However, there is no need to use the Beltrami equations.

We will show below that Eqs. (3.1) decompose into two dependent groups, three equations in each.

In Cartesian coordinates, these two groups are represented as

∂

∂
+

∂

∂
=

∂
∂ ∂

2

2

2

2

2ε ε γ
x y xy

y x x y
,

∂

∂
+

∂

∂
=

∂
∂ ∂

2

2

2

2

2ε ε γy z yz

z y y z
,

∂

∂
+

∂

∂
=

∂
∂ ∂

2

2

2

2

2ε ε γz x xx

x z z x
(3.3)

and

∂
∂

∂
∂

+
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂x y z x y z

zx xy yz xγ γ γ ε
2

2

,
∂
∂

∂
∂

+
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂y z x y z x

xy yz zx yγ γ γ ε
2

2

,
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∂
∂

∂
∂

+
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂z x y z x y

yz zx xy z
γ γ γ ε

2

2

. (3.4)

The three-dimensional Fourier transform of some function f (x, y, z) is represented by the following formula [38]:

f f x y z e dxdydzi x y z( , , )
( )

( , , )
/

( )α β γ
π

α β γ=
−∞

∞
+ +

−∞

∞

∫
1

2 3 2 ∫∫
−∞

∞

.

Taking the three-dimensional Fourier transform of Eqs. (3.3) and (3.4) and considering that the strains decay at infinity,

we obtain the following two groups of equations:

β ε α ε α βγ2 2
x y xy+ = , γ ε β ε βγγ2 2

y z yz+ = , α ε γ ε γαγ2 2
z x zx+ = (3.5)

and

( )α βγ γγ αγ βγεzx xy yz x+ − = 2 , ( )β γγ αγ βγ γαεxy yz zx y+ − = 2 , ( )γ αγ βγ γγ αβεyz zx xy z+ − = 2 . (3.6)

For simplicity, we will consider an unbounded elastic medium. This is possible because we deal only with differential

equations that describe the behavior of the medium, disregarding the boundary conditions.

Equations (3.5) and (3.6) are algebraic. Resolving the system of linear equations (3.5) for ε x , ε y , and ε z , we arrive at

Eqs. (3.6); and, conversely, resolving the system of equations (3.6) for γ xy , γ yz , and γ zx , we arrive at Eqs. (3.5).

Thus, only three of the six strain compatibility equations are independent. Hence, either Eqs. (3.3) or Eqs. (3.4) should

be used in practical applications and there is no need to set up new three compatibility equations by combing Eqs. (3.3) and (3.4).

3.2. Let us now address the three-dimensional stress problem of elasticity. In the classical formulation, this problem

reduces to the differential equilibrium equations

σ ij j if, + = 0 (3.7)

and the Beltrami–Michell equations

σ
ν ν

δij kk ij ij k k i j j is f f f, , , , ,( )+
+

=−
−

− +
1

1

1

1
, (3.8)

where σij are the components of the stress tensor; s = σii; v is Poisson’s ratio; δij is the Kronecker delta; and fi are body force

components.

Thus, we have a system of nine differential equations for the six stress components σij.

There were many attempts to find a general solution to the system of equations (3.7), (3.8). Using an invariant

representation of the stress tensor, Krutkov reduced this system of equations to one rather awkward differential equation for the

stress function tensor.

Numerical methods are widely used to solve problems in elasticity. However, such methods face serious difficulties in

solving the three-dimensional stress problem of elasticity based on Eqs. (3.7) and (3.8) because there are nine equations for six

stress components.

To solve this problem, it is sufficient to discard three equations in system (3.7), (3.8). However, the question remains:

Exactly which equations should be rejected? There seems to be little sense in discarding the equilibrium equations (3.7); hence,

such three equations are among Eqs. (3.8). To find them, we should split the six equations (3.8) into two dependent groups.

However, such a splitting appears impossible.

To resolve this problem, we have to abandon the Beltrami–Michell equations (3.8) and use the stress compatibility

equations instead. As shown below, the stress compatibility equations can be split into two dependent groups. The system of

equations (3.8) has been derived by combining the stress compatibility equations and the equilibrium equations (3.7). This is

probably the reason why Eqs. (3.8) cannot be divided into two dependent groups.

Substituting Hooke’s law
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ε
µ

σ
ν
ν

δij ij ij s= −
+

⎛
⎝
⎜ ⎞

⎠
⎟

1

2 1
,

where µ is the shear modulus, into (3.1), we obtain the system of six stress compatibility equations:

σ σ σ σ
ν
ν

δ δ δij km km ij im jk jk im ij km km ij is s, , , , , ,+ − − =
+

+ −
1

( )m jk jk ims s, ,−δ . (3.9)

Let us show that (3.9) can be split into two dependent groups. In Cartesian coordinates, the system of equations (3.9) can

be written as

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

∂
∂

2

2

2

2

2

2

2

2

2

1
2

σ σ ν
ν

τ
x y xy

y x

s

x

s

y x∂y
,

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

∂
∂

2

2

2

2

2

2

2

2

2

1
2

σ σ ν
ν

τy z yz

z y

s

y

s

z y∂z
,

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

∂
∂

2

2

2

2

2

2

2

2

2

1
2

σ σ ν
ν

τz x zx

x z

s

z

s

x z ∂x
, (3.10)

∂
∂

∂
∂

+
∂
∂

−
∂

∂
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂

−
+

⎛
⎝
⎜ ⎞

x y z x y z
s

zx xy yz

x

τ τ τ
σ

ν
ν

2

1 ⎠
⎟ ,

∂
∂

∂
∂

+
∂

∂
−

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂

−
+

⎛
⎝
⎜ ⎞

y z x y z x
s

xy yz zx
y

τ τ τ
σ

ν
ν

2

1 ⎠
⎟ ,

∂
∂

∂
∂

+
∂
∂

−
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂ ∂

−
+

⎛
⎝
⎜ ⎞

z x y z x y
s

yz zx xy

z

τ τ τ
σ

ν
ν

2

1 ⎠
⎟ . (3.11)

Let us prove that the first group (3.10) depends on the second group (3.11). To this end, we take the three-dimensional

Fourier transform of Eqs. (3.10) and (3.11) and take into account the conditions at infinity. Doing so gives:

( )β σ α σ
ν
ν

α β αβτ2 2 2 2

1
2x y xys+ −

+
+ = ,

( )γ σ β σ
ν
ν

β γ βγτ2 2 2 2

1
2y z yzs+ −

+
+ = ,

( )α σ γ σ
ν
ν

γ α γαβτ2 2 2 2

1
2z x zxs+ −

+
+ = , (3.12)

( )α βτ γτ ατ βγ σ
ν
νzx xy yz x s+ − = −

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
,

( )β γτ ατ βτ γα σ
ν
νxy yz zx y s+ − = −

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
,

( )γ ατ βτ γτ αβ σ
ν
νyz zx xy z s+ − = −

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
. (3.13)
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Equations (3.12) and (3.13) are linear algebraic equations. Resolving the system of equations (3.13) for τ xy , τ yz , and

τ zx , we arrive at Eqs. (3.12); and, conversely, resolving the system of equations (3.12) for

σ
ν
νx s−

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
, σ

ν
νy s−

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
, σ

ν
νz s−

+
⎛
⎝
⎜ ⎞

⎠
⎟

1
,

we arrive at Eqs. (3.13).

Hence, only three of the six stress compatibility equations (3.9) are independent. Therefore, either Eqs. (3.10) or

Eqs. (3.11) should be used when a Cartesian coordinate frame is used.

Thus, in solving the three-dimensional stress problem of elasticity, it is expedient to use three equilibrium equations and

three stress compatibility equations.

3.3. Let us show that the third problem formulation based on the three compatibility equations (3.10) or (3.11) and three

equilibrium equations allows solving stress boundary-value problems in elasticity. Let us consider, as an example, an elastic

half-space with three stress components prescribed on the boundary.

We will use the coordinates õ1, õ2, õ3 instead of õ, ó, z.

In the new notation, the compatibility equations (3.10) and the equilibrium equations become

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =

∂2
11

2
2

2
22

1
2

2

1
2

2

2
21

2
σ σ ν

ν
σ σ

x x x x

2
12

1 2

σ
∂ ∂x x

,

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =

∂2
22

3
2

2
33

2
2

2

2
2

2

3
21

2
σ σ ν

ν
σ σ

x x x x

2
23

2 3

σ
∂ ∂x x

, (3.14)

∂

∂
+

∂

∂
−

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =

∂2
33

1
2

2
11

3
2

2

3
2

2

1
21

2
σ σ ν

ν
σ σ

x x x x

2

3 1

σ31

∂ ∂x x
,

∂
∂

+
∂
∂

+
∂
∂

=
σ σ σ11

1

12

2

13

3

0
x x x

,
∂
∂

+
∂
∂

+
∂
∂

=
σ σ σ21

1

22

2

23

3

0
x x x

,
∂
∂

+
∂
∂

+
∂
∂

=
σ σ σ31

1

32

2

33

3

0
x x x

. (3.15)

Let body forces be absent.

The two-dimensional Fourier transform of some function f (õ1, õ2, õ3) is given by the formula

f x f x x x e dx dxi x x( , , ) ( , , ) ( )α α
π

α α
1 2 3 1 2 3 1 2

1

2
1 1 2 2= +

−∞

∞

−
∫

∞

∞

∫ .

Taking the two-dimensional Fourier transform of Eqs. (3.14) and (3.15), we obtain a system of ordinary differential

equations:

( )− − + + =−α σ α σ γ α σ α σ α α σ2
2

11 1
2

22 1
2

2
2

1 2 122 ,

d

dx

d

dx
i

d

dx

2
22

3
2 2

2
33 2

2
2

3
2 2

23
2

σ
α σ γ α σ

σ
α

σ
− + −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =−

3

, (3.16)

− + + −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =−α σ

σ
γ α σ

σ
α

σ
1
2

33

2
11

3
2 1

2
2

3
2 2

31
2

d

dx

d

dx
i

d

dx3

,

− − + =i i
d

dx
α σ α σ

σ
1 11 2 12

13

3

0, − − + =i i
d

dx
α σ α σ

σ
1 21 2 22

23

3

0,

866



− − + =i i
d

dx
α σ α σ

σ
1 31 2 32

33

3

0 (γ = ν / ν( )1+ ). (3.17)

Resolving Eqs. (3.16) for σ12 , d dxσ23 3/ , and d dxσ13 3/ and substituting them into Eqs. (3.17), we get

( )[ ]d

dx

d

dx

2
11

3
2

2
11

2

3
2

2
1
2

1
2 0

σ
κ σ γ

σ
γ κ α α σ− − + + − = ,

( )[ ]d

dx

d

dx

2
22

3
2

2
22

2

3
2

2
2
2

2
2 0

σ
κ σ γ

σ
γ κ α α σ− − + + − = ,

( )d

dx

d

dx

2
33

3
2

2
33

2

3
2

21 2 0
σ

κ σ γ
σ

γκ σ− + − + = (κ =α α2
1
2

2
2+ ). (3.18)

Summing Eqs. (3.18) yields a differential equation for the function σ α α( , , )1 2 3x :

d

dx

2

3
2

2 0
σ

κ σ− = . (3.19)

Solving the system of differential equations (3.18), (3.19), we find the two-dimensional Fourier transforms of the

normal stresses σ11, σ22, σ33 and the function σ. Then, we use Eqs. (3.16) to find the Fourier-transformed tangential stresses. The

arbitrary constants are determined from the boundary conditions.

To find the solution of Eqs. (3.18), (3.19), we need to define the domain occupied by the elastic body. Let it be the

half-space õ3 ≥ 0.

3.4. To find the solution for the elastic half-space õ3 ≥ 0, we will first solve Eq. (3.19). Considering that stresses decay at

infinity, we obtain

σ κ= −C e õ
0

3 (Ñ0 = Ñ0(α1, α2)). (3.20)

Substituting (3.20) into (3.18) yields

( )d

dx
C e õ

2
11

3
2

2
11 1

2
01 3

σ
κ σ γ α κ− = − − , ( )d

dx
C e õ

2
22

3
2

2
22 2

2
01 3

σ
κ σ γ α κ− = − − ,

( )d

dx
C e õ

2
33

3
2

2
33

2
01 3

σ
κ σ γ κ κ− = − − . (3.21)

In finding partial solutions of the inhomogeneous equations (3.21), it should be remembered that κ is a simple root of

characteristic equations [24]. Therefore, the general solutions of Eqs. (3.21) have the form

( )σ γ
α

κ
κ

11 1 0
1
2

31
2

3= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−C C õ å õ , ( )σ γ
α

κ
κ

22 2 0
2
2

31
2

3= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−C C õ å õ ,

( )σ γ
κ κ

33 3 0 31
2

3= + −
⎡
⎣⎢

⎤
⎦⎥

−C C õ å õ , (3.22)

where Ñm = Ñm(α1, α2), m = 1, 2, 3. Summing formulas (3.22), we get

Ñ0 = Ñ1 + Ñ2 + Ñ3. (3.23)
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Next, substituting formulas (3.22) into Eqs. (3.16), we find the two-dimensional Fourier transforms of the tangential

stresses:

( )σ
α α

α α γκ γ
α α

κ12
1 2

2
2

1 1
2

2
2

0
1
2

2
2

0 3

1

2
1= + − − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

C C Ñ C õ å õ−κ 3 ,

( ) ( ) ( )[ ]σ
α κ

α α κ γκ γ α κ κ
23

2
2
2

1 2
2 2

2
2

0 2
2

0 32
1 1 3=− + + − − − + −i

C C Ñ Ñ õ å õ ,

( ) ( ) ( )[ ]σ
α κ

α κ α γκ γ α κ κ
31

1
1
2 2

1 1
2

2
2

0 1
2

0 32
1 1 3=− + + − − − + −i

C C Ñ Ñ õ å õ . (3.24)

The coefficients Ñ1, Ñ2, and Ñ3 appearing in (3.22) and (3.24) can be determined from the boundary conditions, and Ñ0

from (3.23).

On the boundary õ3 = 0 of the elastic half-space, we have

σ3j = fj (õ1, õ2) (j = 1, 2, 3), (3.25)

where fj are known functions. Taking the two-dimensional Fourier transform of (3.25), we obtain (on õ3 = 0)

σ3 j = f j (α1, α2) (j = 1, 2, 3). (3.26)

Formulas (3.22) and (3.24) yield (on õ3 = 0)

( ) ( )[ ]σ
α κ

α κ α α γα31
1

1
2 2

1 1
2

2 1
2

2
2

02
=− + + − +

i
C C Ñ ,

( ) ( )[ ]σ
α κ

α α κ α γα32
2

2
2

1 2
2 2

2 2
2

1
2

02
=− + + − +

i
C C Ñ , σ33 3=C . (3.27)

Using (3.23), (3.26), and (3.27), we obtain a system of algebraic equations for Ñm (m = 0, 1, 2, 3):

( ) ( )α κ α α γα α κ1
2 2

1 1
2

2 1
2

2
2

0 1 12+ + − + =C C Ñ i f ,

( ) ( )α α κ α γα α κ2
2

1 2
2 2

2 2
2

1
2

0 2 22C C Ñ i f+ + − + = ,

C f3 3= , Ñ1 + Ñ2 + Ñ3 – Ñ0 = 0.

Solving it yields

( ) ( ) ( )C i f i f1 4 1
2

1
2

1 2
3

2 1
4

1
21

1
2 2 1 1=

−
− + + − + +

( )γ κ
α κ κ γα γα κ γ α γ α α[ ]{ }2

2
2
4

32+ γα f ,

( ) ( ) ( )C i f i f2 4 1
3

1 2
2

2
2

2 2
4

1
21

1
2 2 1 1=

−
+ − + − + +

( )γ κ
γα κ α κ κ γα γ α γ α α[ ]{ }2

2
1
4

32+ γα f ,

C f3 3= , ( ) ( )C f f f0 1 1 2 2 3

2

1
=

−
+ +

γ κ
α α κ . (3.28)

Substituting (3.28) into (3.22) and (3.24), we arrive at the final formulas for the Fourier-transformed components of the

stress tensor. The original stress components σ κj (j, κ = 1, 2, 3) can be recovered using the inverse Fourier transform.

Now, by determining the stress σ33, we will demonstrate the rest of the procedure. Substituting the expressions for Ñ3

and Ñ0 from (3.28) into the third formula in (3.22), we obtain
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( ) ( )[ ]σ α α α α κ κ
33 1 2 3 3 1 1 2 2 3 3

3, ,x f i f i f f õ å õ= + + + − . (3.29)

Applying the inversion formula and the convolution theorem [29] to (3.29), we find

σ33 1 2 3
3

3
3

3

1

1

2

2

3

3

( , , )x x x
Q

x
x

x

Q

x

Q

x

Q

x
=−

∂
∂

+
∂

∂
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , (3.30)

where Q x x x f y y
dy dy

x y x y
j j

j

( , , ) ( , )
( ) (

1 2 3 1 2
1 2

1 1
2

2 2

1

2
=

− + −
∫∫π Ω )

, , )
2

3
2

1 2 3
+

=
x

j( ; Ωj are the domains in the plane õ3 = 0 in

which fj (õ1, õ2) ≠ 0.

Formula (3.30) is in agreement with the results of [10].

The formulas for the other stress components can be derived in a similar way.

4. Stress Problem in Thermoelasticity. Two new solutions of the stress problem in thermoelasticity were proposed in

[12, 37]. Aspects of problem solving and specific problems in thermoelasticity are addressed in [16, 17, 21, 23, 25, 26].

Consider a homogeneous isotropic material occupying a half-space or a layer of finite thickness. Assume that there are

neither body forces nor thermal sources and that temperature is constant.

The three-dimensional stress problem in thermoelasticity includes the equilibrium equation

∇⋅ =�T 0, (4.1)

the strain compatibility equations

∇ +
+

∇∇ =− ∇∇ +
+
−

∇
⎛
⎝
⎜ ⎞

⎠
⎟� �T

v

v

v
E

1

1
2

1

1
2σ µα θ θ , (4.2)

and the heat-conduction equations

∇ =2 0θ . (4.3)

We will examine the static case. Given a distribution of surface forces F, the boundary condition on the surface O is

defined by

n ⋅ =�T F
o

. (4.4)

The thermal boundary condition is given by

θ θo = 0 , (4.5)

where �T is the stress tensor; σ = I TI ( � ) is the first variant of the stress tensor; ∇2 is the Laplacian; ∇ is the inverted delta; ν is

Poisson’s ratio; µ is the shear modulus; α is the coefficient of linear expansion; n is the unit outward normal vector to the surface;

θ is the temperature measured starting from the temperature of the natural state; and �E is a unit tensor of the second rank. The

heat-conduction problem is treated independently of the thermoelastic problem. In this case,

∇ =−
+
−

∇2 24
1

1
σ µ α θ

v

v
.

Taking Eq. (4.3) into account, we obtain

∇ =2 0σ . (4.6)

Then

( )2 2 2∇ = ∇ − ∇ϕ ϕ ϕR R , (4.7)
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where ϕ is a scalar, and R = ³s õs is the position vector.

Applying (4.7) to σ and taking (4.6) into account, we find 2 2∇ = ∇σ σ( )R . It can be shown that ∇ = ∇ +( ) ( ) �R Rσ σ σE.

Hence

[ ]∇∇ = ∇ ∇ = ∇ ∇ +σ σ σ σ
1

2

1

2
2 2( ) ( ) �R R E . (4.8)

Considering (4.3), we similarly arrive at

[ ]∇∇ = ∇ ∇ +θ θ θ
1

2
2 ( ) �R E . (4.9)

With (4.8) and (4.9), Eq. (4.2) becomes

[ ]∇ +
∇ +

+
+ ∇ + +

+
−

⎧
⎨
⎩

⎫
⎬2

2 1
2

1

1
�

( ) �

( )
( ) � �T

E

v
E E

σ σ
µα θ θ µα

ν
ν

θ
R

R
⎭

= 0.

Considering (4.3) and (4.6), we finally obtain

( )∇ +
+

∇ + ∇
⎧
⎨
⎩

⎫
⎬
⎭

=2
1

2 1
0�

( )
( )T

v
σ µα θR R . (4.10)

Denote

( )� �
( )

( )G T
v

= +
+

∇ + ∇
1

2 1
σ µα θR R. (4.11)

Then Eq. (4.10) takes the form

∇ =2 0�G . (4.12)

Hence, �G is a harmonic asymmetric tensor of the second rank.

From (4.11), it follows that

( )� �
( )

( )T G
v

= −
+

∇ − ∇
1

2 1
σ µα θR R. (4.13)

Representation (4.13) satisfies the strain compatibility equation (4.2). Let the tensor �T also satisfy the equilibrium

equation (4.1). We have

( )[ ]∇⋅ ∇ = ∇⋅∇ +∇ ⋅∇ = ∇ +∇ ⋅ = ∇σ σ σ σ σ σR R R R 2 �E

because ∇ =2 0σ and ∇ =R �E. Then, we arrive at

∇⋅ = ∇⋅ −
∇
+

− ∇T G
v

�
( )

σ
µα θ

2 1
.

Considering (4.1), we obtain

∇⋅ =
∇
+

+ ∇�
( )

G
v

σ
µα θ

2 1
. (4.14)

When written component-wise, relation (4.14) is equivalent to three equations. Thus, if the components of the tensor �G

satisfy relation (4.14), then the stress tensor �T will also satisfy the equilibrium equation (4.1).

Representation (4.13) has the following component-wise form:
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σ
σ

µα
θ

ij ij j
i

j
i

g
v

x
x

x
x

= −
+

∂
∂

−
∂
∂

1

2 1( )
, (4.15)

where σij and gij are the components of the tensors �T and �G, respectively.

By the reciprocity of the tangential stresses (σij = σji), it follows from (4.15) that

g g
v

x
x

x
x

x
x

xij ji j
i

i
j

j
i

= +
+

∂
∂

−
∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

∂
∂

−
1

2 1( )

σ σ
µα

θ
i

jx

∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ
. (4.16)

Substituting (4.16) into (4.15), we obtain

σ
σ

µα
θ

ij ji i
j

i
j

g
v

x
x

x
x

= −
+

∂
∂

−
∂

∂
1

2 1( )
(i, j = 1, 2, 3). (4.17)

Formula (4.17) is more convenient for further analysis than (4.15). In particular, if i = 3, then

σ
σ

µα
θ

3 3 3 3

1

2 1j j
j j

g
v

x
x

x
x

= −
+

∂
∂

−
∂

∂( )
(j = 1, 2, 3). (4.18)

Formula (4.18) describes the stresses on the area elements parallel to the plane õ1Îõ2.

The rest of the procedure is similar to that for the problem without thermal terms.

4.1. Another formulation of the stress problem in thermoelasticity. Consider an elastic isotropic body occupying a

half-space or a layer of finite thickness.

The strain compatibility condition reads

Ink �ε = 0, (4.19)

where

Ink ( )� �
*ε ε= rot rot ,

�ε is the (symmetric) linear strain tensor.

Because of the thermal terms, the relationship between the strain tensor �ε and the stress tensor �T takes the form

� � � �ε
µ

ν
ν

σ αθ= −
+

⎛
⎝
⎜ ⎞

⎠
⎟ +

1

2 1
T E E. (4.20)

Substituting (4.20) into (4.19), we obtain the stress compatibility equations with thermal terms:

Ink
1

2 1
0

µ
ν
ν

σ αθ� � �T E E−
+

⎛
⎝
⎜ ⎞

⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥ = . (4.21)

In the absence of body forces, the differential equilibrium equation is as follows:

div �T = 0. (4.22)

Assume that the temperature is constant and there are no thermal sources. Then, we arrive at the heat-conduction

equation

∇ =2 0θ . (4.23)

Thus, the stress problem in thermoelasticity reduces to the equations of statics (4.22), the strain compatibility equations

(4.21), and the Laplace equations (4.23).

Let the distributed forces (4.4) be prescribed on the surface O of the elastic body, and the thermal boundary condition

have the form (4.5).
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Let us first solve the compatibility equation (4.21). According to [21], a symmetric tensor with zero incompatibility

(Ink) is a deformation of some vector. Applying this rule to (4.21), we get

1

2 1µ
ν
ν

σ αθ� � �T E E−
+

⎛
⎝
⎜ ⎞

⎠
⎟ + =def b, ( )[ ]def b b b= ∇ +∇

1

2
* , (4.24)

where b is some vector.

From (4.24) it follows that

� �T E= +
+

−
⎛
⎝
⎜ ⎞

⎠
⎟2

1
2µ

ν
ν

σ µαθdef b . (4.25)

Since I1(def b) = div b, I E1 3( � )= , and I T1 ( � )=σ, formula (4.25) becomes

( )ν
ν

σ
ν µ

ν
αθ

1

2

1 2
div

+
=

−
−b 3 .

Substituting this expression into (4.25), we obtain

�
�

�T
E

E= +
−

−
+

−
⎡

⎣
⎢

⎤

⎦
⎥2

1
µ

ν
ν

ν
ν

αθdef
1 2

div
1 2

b b . (4.26)

This representation of the stress tensor �T identically satisfies the compatibility equation (4.21).

Let us express the vector b in terms of a harmonic vector B (∇2Â = 0) and a scalar ϕ:

b = B – x3∇ϕ. (4.27)

Substituting (4.27) into (4.26) yields

( ) ( )�
�

�T x
E

x E= − ∇ +
−

− ∇ −
+

−
⎡

⎣
⎢

⎤

⎦
⎥2

1
µ ϕ

ν
ν

ϕ
ν
ν

αθdef
1 2

div
1 23 3B B . (4.28)

Representation (4.28) satisfies the compatibility equation (4.21). The stress tensor �T must also satisfy the equation of

statics (4.22). Therefore, substituting (4.28) into (4.22), we get

( ) ( )div def
1 2

div
1 23 3B B− ∇ +

−
− ∇ −

+
−

⎡

⎣
⎢

⎤

⎦
⎥ =x

E
x Eϕ

ν
ν

ϕ
ν
ν

αθ
�

�
1

0. (4.29)

Since div( �Ediv b) = grad div b and div def b = ∇ +∇( ) /2 2b bdiv , Eq. (4.29) becomes

( ) ( )1

2 1 2

1

2

1
02

( )−
∇ − ∇ − ∇ ∇ −

+
−

∇ =
v

x xdiv
1 23 3B ϕ ϕ

ν
ν

α θ , (4.30)

where ∇2Â = 0 has been taken into account.

Considering the equalities

( )div 3 3x x
x

∇ = ∇ +
∂
∂

ϕ ϕ
ϕ

2

3

, ( ) ( )∇ ∇ = ∇ ∇ + ∇
∂
∂

2 2

3

2x x
x3 3ϕ ϕ
ϕ

,

we rearrange Eq. (4.30) to the form

( ) ( ) ( ) ( ) ( )∇ − −
∂
∂

− +
⎡

⎣
⎢

⎤

⎦
⎥ −∇ ∇ − − ∇ ∇ =div 3 3B 3 4 2 1 1 2 0

3

2 2ν
ϕ

ν αθ ϕ ν ϕ
x

x x . (4.31)
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Let

∇2ϕ = 0, ( )[ ]∂
∂

=
−

− +
ϕ

ν
ν αθ

x3

2 1
1

3 4
div B , (4.32)

then Eq. (4.31) becomes an identity.

Thus, representation (4.28) satisfies the compatibility condition (4.21) and the equation of statics (4.22) if the function ϕ
satisfies conditions (4.32) and the function B is a harmonic vector.

Expression (4.28) can be simplified somewhat. Considering (4.32), we get

( )div 3x
x

∇ =
∂
∂

ϕ
ϕ

3

, ( ) ( )div 3 4B = −
∂
∂

+ +ν
ϕ

ν αθ
x3

2 1 .

Hence,

( ) ( ) ( )div 3B− ∇ = −
∂
∂

+ +x
x

ϕ ν
ϕ

ν αθ2 1 2 2 1
3

. (4.33)

Substituting (4.33) into (4.28), we finally obtain

( ) ( )� �T
x

E x=
∂
∂

− +
⎡

⎣
⎢

⎤

⎦
⎥ + − ∇

⎧
⎨
⎩

⎫
⎬
⎭

2 2 1
3

µ ν
ϕ

ν αθ ϕdef 3B , (4.34)

or in component-wise form:

( )σ µ ν
ϕ

ν αθ δst st
s

t

t

sx

B

x

B

x
=

∂
∂

− +
⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟4 2 1

3

⎧
⎨
⎩

−
∂

∂
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

∂
∂

∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭x
x

x x
x

xt s s t
3 3

ϕ ϕ ( )
⎪

=s t, , ,1 2 3 , (4.35)

where σst are the components of the stress tensor, and δst is the Kronecker delta.

The stress tensor (4.34) satisfies the strain compatibility equation (4.21) and the equilibrium equation (4.22). Specific

expressions for the harmonic vector B and the harmonic scalar ϕ can be derived from the boundary conditions (4.4), (4.5) and

heat-conduction equation (4.23).

Representation (4.34) can be used to solve the three-dimensional stress problem of thermoelasticity. For example,

expression (4.34) or (4.35) can be applied to the second boundary-value problem for an elastic half-space or an elastic layer of

finite thickness.

Elastic Half-Space. Consider an elastic half-space with the following stresses and temperature prescribed on its

boundary (õ3 = 0):

σ3

1 2 1 2

1 20
1 2 3j

j j

j

f x x x x

x x
j=

− ∈
∉

⎧
⎨
⎩

=
( , ), ( , ) ,

, ( , ) ,
( , ,

Ω
Ω ) (4.36)

θ
θ

=
∈
∉

⎧
⎨
⎩

0 1 2 1 2

1 20

( , ), ( , ) ,

, ( , ) ,

x x x x

x x

Ω
Ω (4.37)

where Ωj are the loaded regions on the plane õ3 = 0, and Ω is the domain within which a nonzero temperature is maintained.

Each component Âm of the harmonic vector B satisfies the Laplace equation

∇2Âm = 0, m = 1, 2, 3. (4.38)

Moreover,

∇ =2 0ϕ , ∇ =2 0θ . (4.39)
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Taking the two-dimensional Fourier transform of Eqs. (4.38) and (4.39), we obtain

B x A em m
kx( , , )ξ ξ1 2 3

3= − , ϕ ξ ξ( , , )1 2 3 0
3x A e kx= − ,

θ ξ ξ( , , )1 2 3 0
3x C e kx= − , k 2

1
2

2
2= +ξ ξ , (4.40)

and taking the two-dimensional Fourier transform of Eqs. (4.35), we get

σ µ ξ ξ ϕ31 1 3
1

3
1= − +

∂
∂

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i B

B

x
i , σ µ ξ ξ ϕ32 2 3

2

3
2= − +

∂
∂

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i B

B

x
i ,

( ) ( )σ µ ν
ϕ

ν αθ33
3

3 3

2 1 2 1=
∂
∂

− −
∂
∂

+ +
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

B

x x
. (4.41)

On the boundary (for õ3 = 0) of the half-space, we have

σ σ ξ ξ3 3 1 2j j= ( , ). (4.42)

Using (4.32) and (4.40)–(4.42), we arrive at the system of algebraic equations

− − + = −i A kA i Aξ ξ µ σ1 3 1 1 0
1

31, − − + = −i A kA i Aξ ξ µ σ2 3 2 2 0
1

32 ,

( ) ( )− + − = + +−kA kA C3 0
1

33 01 2 0 5 1ν µ σ ν α. ,

( ) ( )− − + + + =− +3 4 2 10 1 1 2 2 3 0ν ξ ξ ν αkA i A i A kA C . (4.43)

The system of equations (4.43) can be solved symbolically, using Cramer’s formulas, to determine A0, A1, A2, and A3.

Then, we use formulas (4.40) to find Bm (m = 1, 2, 3) and ϕ. The original functions Âm(õ1, õ2, õ3) and ϕ(õ1, õ2, õ3) can be

recovered using the inverse Fourier transform. The components of the stress tensor are found from (4.35).

To demonstrate the rest of the procedure, let us consider the special case where σ31 = σ32 = σ33 = 0 on õ3 = 0.

If the temperature distribution (4.37) is prescribed on the boundary of the half-space, then solving Eqs. (4.43) yields

À0 = 0, ( )A C
i

k
1 0

1

2
1= +ν α

ξ
, ( )A C

i

k
2 0

2

2
1= +ν α

ξ
, ( )A C

k3 01
1

=− +ν α .

Hence,

( )B C
i

k
e kx

1 0
1

2
1 3= + −ν α

ξ
, ( )B C

i

k
e kx

2 0
2

2
1 3= + −ν α

ξ
,

( )B C
k

e kx
3 01

1
3=− + −ν α , ϕ = 0, (4.44)

according to formulas (4.40).

In this case, σ31 = σ32 = σ33 = 0 on the area elements parallel to the boundary of the half-space. Let us determine the

other stress components (σ11, σ22, and σ12). Formulas (4.35) and (4.44) yield

( )σ µ ν α
ξ

11 0
2
2

2
2 1 3=− + −C

k
e kx , ( )σ µ ν α

ξ
22 0

1
2

2
2 1 3=− + −C

k
e kx ,

( )σ µ ν α
ξ ξ

12 0
1 2

2
2 1 3= + −C

k
e kx . (4.45)

Let us now determine Ñ0. According to (4.37), we have θ ξ ξ θ ξ ξ( , , ) ( , )1 2 0 1 20 = .
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From (4.40) it follows that θ ξ ξ( , , )1 2 00 =C . Hence, Ñ0 = θ ξ ξ0 1 2( , ), i.e.,

C x x e dx dxi x x
0 0 1 2 1 2

1

2
1 1 2 2= ∫∫ +

π
θ ξ ξ( , ) ( )

Ω
. (4.46)

Taking the inverse Fourier transform of (4.45), we obtain

σ
ν µα
π

ξ ξ
ξ

ξ ξξ ξ
11 0 1 2

2
2

2 1

1
3 1 1 2 2=−

+ − +( )
( , ) ( )C

k
e e d dkx i x x

2

−∞

∞

−∞

∞

∫∫ ,

σ
ν µα
π

ξ ξ
ξ

ξ ξξ ξ
22 0 1 2

1
2

2 1

1
3 1 1 2 2=−

+ − +( )
( , ) ( )C

k
e e d dkx i x x

2

−∞

∞

−∞

∞

∫∫ ,

σ
ν µα
π

ξ ξ
ξ ξ

ξ ξξ ξ
12 0 1 2

1 2

2 1

1
3 1 1 2 2=

+ − +( )
( , ) ( )C

k
e e d dkx i x x

2

−∞

∞

−∞

∞

∫∫ , (4.47)

where Ñ0 is defined by (4.46).

To achieve specific results, it is necessary to specify the function θ0(õ1, õ2) and the domain Ω.

Let the domain Ω be a square with side length 2à in the plane õ3 = 0, and let the function θ0(õ1, õ2) be described by the

formula

θ0(õ1, õ2) = θ β β0 1 2
1 1−

⎛
⎝
⎜ ⎞

⎠
⎟ −

⎛
⎝
⎜ ⎞

⎠
⎟

| | | |x

a

x

a
, (õ1, õ2) ∈ Ω, (4.48)

β changing from 0 to 1.

Substituting (4.48) into (4.46), we obtain

C
x

a

x

a
x

aa

0
0 1 2

00

1 1

2
1 1= −

⎛
⎝
⎜ ⎞

⎠
⎟ −

⎛
⎝
⎜ ⎞

⎠
⎟∫∫π

θ β β ξ
| | | |

cos cosξ2 2 1 2x dx dx .

Evaluating the integrals yields

( )C a
a

a0 1 2

0

1
1

1
2 1

2 1
1( , ) sin cosξ ξ

θ
π

β
ξ

ξ
β
ξ

ξ=
−

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )1
1

2
2

2
2 2

−
+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

β
ξ

ξ
β
ξ

ξsin cosa
a

a . (4.49)

We will restrict ourselves to calculating the stress σ11 in (4.47) because the stresses σ22 and σ12 can be determined in

much the same way.

Substituting (4.49) into the first formula in (4.47) results in

( )σ
ν µ θ
π

ξ β
ξ

ξ
β
ξ

ξ11

0

2

2
2

2
1

1

1
2 1

8 1 1
1=−

+ −
+ −

⎡

⎣
⎢

( )
sin cos

a

k
a

a
a

⎢

⎤

⎦
⎥
⎥

∞∞

∫∫
00

( )×
−

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
1

2
2

2
2 2 1 1

3
β

ξ
ξ

β
ξ

ξ ξsin cos cos cosa
a

a e x xkx
2 2 1 2ξ ξ ξd d . (4.50)

If γ ξ1 1= a , γ ξ2 2= a , γ γ γ= +( ) /
1
2

2
2 1 2 , y x ai i= / (i = 1, 2, 3), then formula (4.50) becomes
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σ
ν µ θ
π

γ γ
γ
γ

γ
11 1 2 3

0

2 1 2
2
2

2 1

8 1
3( , , )

( )
( , ) cosy y y

a
F e yy=−

+ − γ γ γ γ1 2 2 1 2

00

cos y d d

∞∞

∫∫ ,

( )F ( , ) sin cos sinγ γ
β

γ
γ

β
γ

γ
β

γ
γ1 2

1
1

1
2 1

2
2

1
1

1
=

−
+ −
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Since ó1 = ó2 = 0 on the ó3-axis, then

σ
ν µ θ
π

γ γ
γ
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γ γγ
11 3
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2 1 2
2
2

2 1 2

0

0 0
8 1

3( , , )
( )

( , )y
a

F e d dy=−
+ −

∞∞

∫∫
0

.

If

G y F e d dy( ) ( , )3 1 2
2
2

2 1 2

00

3= −
∞∞

∫∫ γ γ
γ
γ

γ γγ , (4.52)

then

σ
ν µ θ
π11 3

0

2 30 0
8 1

( , , )
( )

( )y
a

G y=−
+

.

The double integral in (4.52) can be evaluated numerically using quadrature formulas. The results are presented in

Fig. 3, where curves 1 and 2 correspond to β = 0, 1.
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