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A heat-conduction problem is formulated for laminated plates and shells with a heat-conducting layer

and debonding between laminas. The approach consists in analyzing how the layer thickness changes in

the process of debonding of laminas and deformation of plates and shells. The three-dimensional

thermoelastic and heat-conduction equations are expanded into polynomial Legendre series in

thickness. The first-order, Timoshenko’s, and Kirchhoff–Love equations are examined. A numerical

example of laminated shells with a heat-conducting layer is considered
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1. 3-D Formulation. Let an elastic homogeneous anisotropic laminated shell of arbitrary geometry consist of Q layers

with 2hq thickness. Here and henceforth, all the parameters related to layers are marked with superscripts in brackets. The same

parameters related to the whole shell have no subscripts in brackets.

We consider the possibility of debonding between laminas. There is a heat-conducting medium in the gap h0 ( )x

between laminas in the debonding area. The medium does not resist the deformation of laminas, and the heat exchange between

laminas is due to the thermal conductivity of the medium. We assume that h0 is commensurable with the displacements of

laminas and that these displacements are small.

The thermodynamic state of the system, including the laminas and the heat-conducting medium, is defined by the

following parameters: h0 , ε ij
q( )

( )x , and ui
q( )

( )x are the components of the stress and strain tensors and displacement vector, and

θ( ) ( )q x , χ ( ) ( )q x , θ* ( )x , and χ * ( )x are the temperature and specific strength of internal heat sources in the bodies and the

medium, respectively. In this case, the following relations hold [1, 4]:
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where∂ =∂ ∂i ix/ are partial derivatives with respect to the space variables xi ; and cijkl
q( )

and β ij
q( )

are the elastic modulus and the

coefficients of linear thermal expansion. In the isotropic case,
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q q q q
ij
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where λ and µ are the Lamé constants,α ( )q are the coefficients of linear thermal expansion, and the summation convention for

repeated indices is adopted.

The differential equilibrium equations for the displacement components may be presented in the form
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( ) ( ) ( ) ( )( )= + ∂µ λ α3 in the anisotropic

and isotropic cases, respectively.

Boundary conditions for displacements and traction on the parts ∂Vp
q( )

and ∂Vu
q( )

have the form
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In the debonding areas ∂Ve
q( )

, the boundary conditions at the crack edges have the form of inequalities [2, 3, 6]:
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, qτ
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, and ∆u u uτ τ τ
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are the normal and tangential components of the contact force

vector and the displacement discontinuity vector, respectively; and k
q

τ
( )

andλτ
( )q

are coefficients that depend upon the properties

of the contact surfaces.

The linear heat-conduction equations have the form

λ θ χij
q

i j
q q( ) ( ) ( )∂ ∂ − = 0, ∀ ∈x V q( ) , (5)

where λ ij
q( )

are the coefficients of thermal conductivity. In the isotropic case, we have λ δ λij
q

ij T
q( ) ( )= .

The boundary conditions for temperature and heat flux on the parts ∂V
q

θ
( )

and ∂Vq
q( )

have the form
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q q
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The temperature distribution within the heat-conducting medium is described by the heat-conduction equations

λ θ χij i j
*

* *∂ ∂ − = 0, ∀ ∈x V * . (7)

The boundary conditions on the lateral sides of the heat-conducting medium have the form
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The heat-conduction conditions for the heat-conducting medium have the form
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In the area of close mechanical contact, the thermal conditions transform into the form

( )q e
q

b
q

θ α θ θ= −( ) ( )
, ∀ ∈∂x Ve

q( )
, (10)

where qθ is the heat flux across the close mechanical contact area, andα e is the contact heat conductivity.

The analysis of the problem encounters mathematical difficulties caused by the dimension and non-linearity of the

problem. The problem can be partially simplified by considering thin bodies. In this case, we can reduce the dimension of the

problem.
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2. 2-D Formulation. Let the component parameters, which describe the stress–strain state of each lamina as a

three-dimensional body, be sufficiently smooth functions of x3 expandable into Legendre series. Using the approach developed

in [5, 8], we can express them as
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whereω = x h q
3 / ( ) is a dimensionless coordinate.

Equations (1) and (2) may be easily rewritten for the coefficients of the Legendre series. The boundary conditions (3),

(5), (8)–(10) may also be easily rewritten for the coefficients of the Legendre series. The corresponding 2-D equations for the k

coefficient in the Legendre polynomial will have the same form, but the boundary conditions in the debonding area (9) become
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Now instead of one 3-D boundary-value problem, we have an infinite set of 2-D boundary-value problems for the

coefficients of the Legendre series. In order to construct an approximate theory, we have to keep only a finite number of terms in

(11).

3. First-Order Equations. In the first approximation, shell theory retains only the first two terms in the Legendre series

[8, 10]. In this case, the thermodynamic parameters, which describe the state of the laminated shell, can be represented in the

form
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Then the 2-D thermoelastic equations (2) have the form
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and the 2-D heat-conduction equations (5) have the form
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We will keep only one term in the Legendre series for θ* . Then the 2-D heat-conduction equations (7) for the layer

become
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The unknown parameters in Eqs. (14) have the form
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See [7] for details.

4. Timoshenko’s Shell Equations. Timoshenko’s theory of shells is based on the following assumptions concerning

the nature of the stress–strain state of the shell: σ33 0= and ε 33 0= . In this theory, the thermodynamic state of shells is

determined by quantities specified on the middle surface. The stress state is characterized by the normal (nαα), tangential (nαβ
(α β≠ )), and shear (nα3 ) forces, as well as the bending (mαα) and twisting (mαβ (α β≠ )) moments. The components of the stress

tensor are given by the equations
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The components of the stress tensor are

ε καβ αβ ν αβ ν( ) ( ) ( )x x x= +e x3 , εα α ν3 3( ) ( )x x= e , ε 33 0( )x = ,

where e iα characterize deformation that is uniform throughout the thickness of the shell and is associated with the tension and

compression of the middle surface and the displacement in perpendicular planes, while καβ is associated with the bending and

twisting of the middle surface [7, 10]. In these and further equations, we omit the index ( )q .

The components of the displacement vector are given by the equations

u v xα α ν α νγ( ) ( ) ( )x x x= + 3 , u v3 3( ) ( )x x= ν ,

where vi is the displacement of the middle surface and γ α is the angle of rotation of the middle surface.

According to Timoshenko’s theory, the differential thermoelastic equations for shells have the form

( )L v L L bij
u

j i

u
i i+ + − + =β

γ
βγ θ θ0 0

0
0 0,

( )L v L L mij
u

j
γ

αβ
γ

β α αγ θ θ+ + − + =1 1
0
1 0, (19)

where bi and mα are the external loads acting on Ω+ and Ω− and reduced to the middle surface; Lij
u , L

i

u

β
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, L j
u
α
γ

, and Lαβ
γ

are

second-order differential operators; Li
0 and Lα

1 are first-order differential operators. Their expressions are given in [9] for some

shell geometries.

The differential heat-conduction equations for the shells and the layer do not change and have the form of (14) and (16).

5. Kirchhoff–Love Shell Equations. In addition to the assumptions of Timoshenko’s theory, the classical

Kirchhoff–Love theory of shells assumes that εα3 0= and that the angles of rotation of the normal to the middle surface are

dependent and are given by the equations

γ α ν
α ν

α ν α ν α ν( )
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1

3A
v k v .

The inconsistencies of the Kirchhoff–Love theory of shells resulting from these hypotheses are well known [7, 10].

Nevertheless, the differential thermoelastic equations for shells have a simple form in this case:
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+ − + =
=
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1

0. (20)

The differential heat-conduction equations for the shells and the heat-conducting layer do not change too and have the

form of (14) and (16).

6. Example. Let us consider an axisymmetric cylindrical shell in adhesive contact with a foundation in a uniform

temperature field. There is a debonding area with gap h x0 ( ) between the shell and the foundation. Let us study the temperature

field and stress–strain state using the approach presented above.

The differential thermoelastic and heat-conduction equations in the Kirchhoff–Love theory for an axisymmetric

cylindrical shell have the form
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Then the boundary-value problem (21) can be transformed into Hammerstein-type integral equations:
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The kernels in these integral equations are Green’s functions
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An algorithm for solving the problem has been elaborated in [5].

Calculations have been performed for the following data: temperature: h x h x lm0 ( ) sin /= π , θ0
+ = 700 °C, θ− = 0 °C,

geometrical parameters r=0.7 m, h =0.01 m, h x h x lm0 ( ) sin /= π , hm =0.0025 m, l rd =2 , material properties: E =2.5⋅105 MPa,

ν = 0.25,ατ = 2.5⋅10–5 °C–1, λ1 = 20 V/(m⋅°C), λ * = 10 V/(m⋅°C).

The temperature field and the stressesσx andσθ are presented in Fig. 1. It is assumed that the shell is in unstressed state

in a homogeneous temperature field. The results show that even in this model problem, debonding changes the thermal

conditions and affects the temperature field and stress distribution.
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