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The critical states in simple and compound rotation of thin cylindrical shells elastically coupled with a

platform are modeled theoretically. The technique developed has been implemented in a software system

intended to analyze the mechanical phenomena associated with the critical states and to establish general

conditions for such phenomena to occur. The results obtained may be used to model the dynamic

behavior of turbine rotors in aircraft and ship engines
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Introduction. Current trends in design of turbines rotors for aircraft and ship engines, which are distinguished by high

specific power and high intensity of engine processes, add significance to the problems of their stability and vibration strength.

Rotors are usually made from several thin-walled shells of various shapes. While in service, rotors are subject to nonstationary

loads due to aerodynamic forces and high-temperature fields. The highest operational loads occur in reorientations of the rotor

axis in space such as in maneuvering of an airplane or rocking of a ship, when structural members undergo compound rotation

[6–12, etc.]. The dynamic behavior of the rotor in such states depends substantially on the stiffness of its elastic coupling with the

base. In this connection, it is of interest to study the conditions for critical states to occur during simple and compound rotation of

thin-walled rigid and elastic bodies and to examine the effect of the stiffness of their elastic coupling on these processes. We will

do such studies for a cylindrical shell.

1. Critical States of a Rigid Cylindrical Shell. Let us first analyze the critical states of rigid cylindrical shells hinged to

and elastically coupled with a rotating platform. We choose an inertial coordinate frame OX*Y*Z* (Fig. 1). The shell is coupled

by its lower end with a plane that is hinged or elastically connected to a platform rotating with a constant angular velocityω about

the OZ*-axis. Let a coordinate frame Oxyz be fixed to the platform so that the Oz-axis is aligned with the OZ*-axis. Suppose that

the lower end plane can turn about the Ox- and Oy-axes through small angles
�
α and

�
β and cannot turn about the Oz-axis. In the

initial state, the axis of circular symmetry of the shell is aligned with the Oz-axis and
�
α = 0,

�
β = 0.

Let us study small free vibrations described by the angles α and β and the stability of equilibrium of the shell in the

coordinate frame Oxyz. Suppose that after rotation through these angles, the end of the shell is subjected to a restoring elastic

torque
� � �

Ì k i k jel =− +−α β , where k is the stiffness. When k = 0, the shell is hinged to the platform.

In addition to this torque, the body is acted upon by the moment of inertial forces
� � �

Ì Ì i Ì jx y
in in in= + . D’Alembert’s

principle suggests that

� �
M Min el+ = 0. (1)

Under the above assumptions, the shell acts as a rigid gyroscope whose stability and oscillation are governed by its

geometrical and inertial parameters [4, 5].
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To evaluate
�

M in , we choose a small element of mass ∆m in the shell and determine the inertial force ∆ ∆� �
p m a=− ⋅ that

acts on it, where
�
a is the absolute acceleration of the element in Oxyz,

� � � �
a a a a= + +c r C according to the Coriolis theorem.

The centrifugal (
�
a c), relative (

�
a r ), and Coriolis (

�
aC) accelerations are defined as follows [3]:

( )� � � �
a c = × ×ω ω ρ ,

� �
a d dtr = 2 2ρ / ,

� � �
a vC r= ×2ω , (2)

where
� �
v d dtr = ρ / is the relative velocity, and

� � � �
ρ β α α β= + + − + + −( ) ( ) ( )x z i y z j z y x k is the position vector of the element in the

disturbed state at small α and β.

Performing the necessary operations in (2), we obtain

� � � � � �
v z i z j y x k a x z i y zr c= − + − =− + − −� � ( � � ) , ( ) (β α α β ω β ω2 2 α )

�
j,

� � � � � � �
a z i z j y x k a z i zr C= − + − = +�� �� ( �� �� ) , � �β α α β ω α ω β2 2 j. (3)

Integrating these equations over the volume of the shell, we find the components of the moment of inertial forces:

( )( ) ( )( )M I I I Ix z x
in = − + + − − + −�� � ��α ωβ ω α α ω α2 2

0
2

0 ,

( )( ) ( )( )M I I I Iy z x
in = − − + − − + −�� � ��β ωα ω β β ω β2 2

0
2

0 , (4)

where Ix and Iz are the axial moments of inertia of the shell; and I I Ix z0 2= + / is the polar moment of inertia in the frame Oxyz in

the strain-free state.

Equations (1) and (4) yield equations describing the free vibrations of the shell in the rotating coordinate frame:

( ) ( )[ ]I I I I I kx z z x
�� �α ω β ω α− − + − + =2 00

2 ,

( ) ( )[ ]I I I I I kx z z x
�� �β ω α ω β+ − + − + =2 00

2 . (5)

These equations allow us to analyze the state of dynamic equilibrium α = β = 0 for stability and to find frequencies and

modes of free vibrations. When � �α β= = 0 and �� ��α β= = 0, the system of equations (5) is uncoupled and the inequality

[ ( ) ]ω 2 I I kz x− + > 0 is the condition of stability.

Then the critical angular velocity is defined by

ω cr =± − −k I Iz x/ ( ). (6)
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Equation (6) indicates that when Iz – Ix > 0, the rigid shell regarded as a gyroscope does not lose stability. For the shell to

lose stability at some ω, it is necessary that Iz – Ix < 0. It is significant that if k = 0, then the gyroscope is stable when Iz > Ix and is

unstable when Iz < Ix, whatever the value of ω. The case Iz = Ix is limiting.

Equations (5), which describe free vibrations, are distinguished by having gyroscopic terms. Therefore, they permit

precession motions with frequency c:

α β= =A ct B ctsin , cos . (7)

Let us first examine the case A = B. Each of Eqs. (5) is reduced to the characteristic equation

− + − + − + =I c I I c I I kx z z x
2

0
22 0( ) ( )ω ω , (8)

which defines the relationship between c and ω in the form of hyperbolic curves

c I I I I I I k Iz x x x x1 2 0
2

0
2 2

, ( ) / ( ) / /= − ± − +ω ω (9)

with the asymptotes

c c I I Ix z x1 2= = −ω ω, ( ) / . (10)

The angles between these lines and the ordinate axis areψ π1 4= / andψ2 = −arctan [( ) / ]I I Ix z x .

If ñ1 > 0 and ñ2 > 0 in (9), then, according to (7), at both frequencies, the gyroscope axis describes a cone in the rotating

coordinate frame by moving in the opposite direction to self-rotation (regular retrograde precession). When one of the

frequencies is negative, the corresponding motion (7) will be regular progressive precession. If k = 0, then ñ1 and ñ2 are defined

by (10), which follows from Eq. (9).

The case A = –B is also represented by the hyperbolic curves ci ( )ω , but with the asymptotes c1 =−ω,

c I I Ix z x2 =− −ω ( ) / . Again, retrograde precession occurs at both frequencies when Ix > Iz and progressive precession at the

frequency ñ2 when Ix < Iz.

It should be emphasized that ñ2 = 0 is the limiting (in the sense of static stability) case Ix = Iz.

Let us now examine compound rotation. Suppose that the Oz-axis of the rotating coordinate frame Oxyz to which the

body is fixed is additionally forced to turn with a constant angular velocityω0 <<ω in the plane X*OZ*. Let us introduce a turning

coordinate frame OXYZ: the OY-axis is fixed and aligned with the OY*-axis, and the OZ-axis is turning and aligned with the

Oz-axis. The interaction of two rotary motions generates a gyroscopic moment
� � �

M I z
gyr = ×ω ω 0 that remains constant in the

frame OXYZ [3] and rotates with angular velocity –ω in the frame Oxyz. Therefore, this moment has the following components in

this frame:

M I t M I t Mx z y z z
gyr gyr gyr=− = =ωω ω ωω ω0 0 0cos , sin , . (11)

Substituting M x
gyr

and M y
gyr

into the right-hand sides of Eqs. (5), we obtain

( ) ( )[ ]I I I I I k I tx z z x z
�� � cosα ω β ω α ωω ω− − + − + =−2 0

2
0 ,

( ) ( )[ ]I I I I I k I tx z z x z
�� � sinβ ω α ω β ωω ω+ − + − + =2 0

2
0 . (12)

The solution of this system of equations has the form

( ) ( )α ωω ω β ωω ω= − =I k t I k tz z0 0/ cos , / sin . (13)

It indicates that during compound rotation, the body undergoes retrograde precession with angular velocity ω in the

frame Oxyz; but since this frame itself rotates with velocity ω, the motion of the body in the turning frame OXYZ is a stationary

state in which the Oz-axis remains turned through an angle Izωω0/k in the plane YOZ. Critical equilibrium states in the frame
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OXYZ or resonant precession oscillations (13) in the frame Oxyz do not occur, because the circular frequency ω of the moments

(11) never becomes equal to the natural frequencies (9).

2. Critical States of an Elastic Cylindrical Shell. A technique for elastic strain analysis of thin rotating shells without

possible rotations through angles α and β at the elastic supports was discussed in [1, 2, 6–12]. It is based on the general equations

of motion of shells in a curvilinear orthogonal coordinate frame ox1x2x3 with the basis vectors
�
eα on its mid-surface:

∇ Τ + =α
α

� �
p 0, ( )∇ Μ + ×Τ = =α

α
α

α α
� �

( ) ,e a a11 22 0 1 2 , (14)

where the x1-axis lies in the plane of the generating section of the shell; the x2-axis is directed in the circumferential direction; the

x3-axis is directed along the inward normal to the mid-surface;
�
Τα is the vector of internal forces;

�
Μα is the vector of internal

moments; à11 and à22 are the coefficients of the first quadratic form of the mid-surface; and
�
p is the vector of intensity of the

external distributed load.

Here the load
�
p is the inertial forces of compound motion defined by the formula

� �
p ha=−γ , where γ is the density of the

shell material; h is the thickness of the shell; and
�
a is the absolute acceleration of the element.

In the general case, the acceleration
�
a is calculated from formulas (2) and (3) in which, however, the vectors

�
ω,

�
v r , and

�
ρ

should account for all elastic motions of the shell and its turn through the angles α and β. To this end, we transform the

accelerations
�
a c ,

�
a r , and

�
a C defined in the basis

� � �
i j k, , of the rigid shell to the local basis

� � �
e e e1 2 3, , of the elastic shell:

( ) ( )a z x r x z x r x1 2 2 2 2= − + + −sin sin sin cos �� cos sin cos cosϕ ϕ α ϕ ϕ[ �� cos sin �β ω ϕα+2 2z x

]+ + −2 2 2 2 2 2
11ω ϕβ ω ϕα ω ϕβz x z x z x asin sin � sin sin cos sin ,

a z x z x z x z x z2 2 2 2 2 22 2= − − − + +cos �� sin �� sin � cos � cα β ω α ω β ω( )os sinx z x a2 2 2
22α ω β+ ,

( ) ( )a z x r x z x r x3 2 2 2 2= + + − −sin cos sin sin �� cos cos cos sinϕ ϕ α ϕ ϕ �� cos cos �β ω ϕα−2 2z x

− − +2 2 2 2 2 2ω ϕβ ω ϕα ω ϕβz x z x z xsin cos � sin cos cos cos (15)

and sum them with the corresponding contravariant components of the accelerations of the elastic shell undergoing compound

rotation [1, 2, 6–12].

To examine the critical states of simple rotation and the precession resonances of compound rotation, we linearize

Eqs. (14) about the state of simple rotation with angular velocity ω, assuming that the shell is prestressed by membrane forces

T 11 and T 22 . The radius r, the angle ϕ, and the parameters of the second quadratic form bii increase by ∆r, ∆ ∆ϑϕ = 1, and ∆bii ,

respectively, and the strains ε ij are defined by nonlinear relations [1, 2, 6–12].

We finally obtain a linearized system of differential equations of dynamic equilibrium for forces:

∂ Τ ∂ +∂ Τ ∂ + + Τ + Τ −∆ ∆ Γ Γ ∆ Γ ∆ ∆11 1 12 2
11
1

21
2 11

22
1 22

1
12/ / ( )x x b Τ 13

− − − −γ ω ϕ ω ϕ ω ϕh r a r a u a a2
11

2
1 11 2 11 222sin / cos / sin � /*∆ ∆ϑ ∆[ ]+∆�� /u a1 11

( ) ( )− − + + −γ ϕ ϕ α ϕ ϕh z x r x z x r xsin sin sin cos �� cos sin cos cos2 2 2 2[ �� cos sin �β ω ϕα+2 2z x

( )+ + + − +2 2 2 2 2 2ω ϕ]β ω ϕ ϕ α ω ϕz x x z r x zsin sin � sin sin cos cos sin( ) ]r acosϕ β 11

= +2 0
2

11γ ω ω ω ϕh r t x asin( )cos ,

∂ ∂ +∂ ∂ + + −∆ ∆ Γ Γ ∆ ∆T x T x T b T12 1 22 2
12
2

11
1 12

2
2 233/ / ( )

− − + −γ ω ϕ ϑ ω ϕ ω ϕh r a u a a u a2
2 22 1 11 22 32 2cos / sin � / cos � /*∆ ∆ ∆[ ]22 2 22

2
2 22+ −∆ ∆�� / /u a u aω
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− − − − + +γ α β ω α ω β ωh z x z x z x z x zcos �� sin �� sin � cos � c2 2 2 2 22 2[ ]os sinx z x a2 2 2
22 0α ω β+ = ,

∂ ∂ +∂ ∂ + + + +∆ ∆ Γ Γ ∆ ∆ ∆T x T x T b T b T13 1 23 2
12
2

11
1 13

11
11

11
1/ / ( ) 1

22
22

22
22+ +b T b T∆ ∆

[ ]− − + +γ ω ϕ ω ϕ ϑ ω ϕh r r u a u2 2
1 2 22 32cos sin cos � / ��*∆ ∆ ∆ ∆

( ) ( )[− + + − −γ ϕ ϕ α ϕ ϕh z x r x z x r xsin cos sin sin �� cos cos cos sin2 2 2 2 ��β

( )− − − −2 22 2 2 2ω ϕα ω ϕβ ω ϕ ϕ αz x z x x z rcos cos � sin cos � sin cos sin

( ) ]+ − = +ω ϕ ϕ β γ ω ω ϕ ω2 2
0

22cos cos sin sin sin( )x z r h r t x , (16)

whereΓ jk
i are the Christoffel symbols, and ∆ denotes an increment.

The system of equations (16) is supplemented with the linearized equations for moments following from (14). What

distinguishes this system of equations is that its unknown functions are ∆u1, ∆u2 , and ∆u3 dependent on x1, x2 , and t and are α

and β dependent on t. Therefore, the governing equations of shell theory should be supplemented with conditions at the end

x1 0= :

� �
M Msh

el el+ = 0 or ( )� � �
M k i jsh

el − + =α β 0, (17)

where
�

M sh
el is the resultant moment of internal elastic forces at the end x1 0= .

The governing system of equations is a hybrid one because it includes both partial and ordinary derivatives with respect

to the unknown variables. This circumstance imposes some restrictions on the solution technique.

3. Technique. For analyzing the stability of equilibrium of a rotating elastic shell, we suppose that its bifurcation

buckling occurs at α ≠ 0 and β = 0 in the first harmonic of the coordinate x2 for the distributed unknown variables. Then,

assuming that the odd and even functions describing the strain state of the shell are proportional to sin x2 and cos x2 ,

respectively, we reduce the governing system of equations to the form

dy

dx
A x y g x b y k

�
� � � �= + − =( , ) ( , ) , ( ) ( )ω ω α ω α0 0, (18)

where x x≡ 1 is an independent variable, 0≤ ≤x L;
�
y x( ) is an eight-component vector of unknown variables; A(x, ω) is an 8×8

matrix of coefficients;
�
g x( , )ω is a known vector function; and

�
b( )ω is a known vector.

We add the boundary equations

Dy Fy L
� �
( ) , ( )0 0 0= = , (19)

where D and F are constant 4×8 matrices.

We seek a solution of the system of ordinary differential equations (18) with an unknown parameter α in the form
� � �
y x C y x y xi i( ) ( ) ( )= ⋅ + ⋅α α. The partial solutions

�
yi and

�
yα are found by the Runge–Kutta method, and the constants Ci and α

are calculated from the system of equations (19) and the second equation of (18). The states in which the determinant of the

matrix of coefficients vanishes are bifurcational.

If the subject of study is the natural vibrations of a rotating shell, then the odd and even unknown functions will have the

multipliers sin( )x ct2 + and cos( )x ct2 + , respectively. In this case, it is necessary to solve the eigenvalue problem for the

homogeneous system of equations

dy

dx
A x y c G x y cH x y g x b

�
� � � � �

= + + +( , ) ( , ) ( , ) ( , ) , ( )ω ω ω ω α ω2 �
y k( )0 0− =α .
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When the elastic shell undergoes compound rotation, sin( )x t2 +ω and cos( )x t2 +ω are used as basis functions and the

equations describing forced vibrations constitute an inhomogeneous system of equations:

dy

dx
A x y g x f x b y k

�
� � � � �= + + − =( , ) ( , ) ( ) , ( ) ( )ω ω α ωω ω α0 0 0.

Given ω andω 0 , it is solved by the method of initial parameters, and the partial solutions are found by the Runge–Kutta

method.

4. Results. To establish the conditions for critical states to occur in elastic cylindrical shells elastically coupled with a

rotating platform, we analyzed for stability of perfectly rigid and elastic structures with equivalent geometrical and inertial

parameters. In these two cases, the shell was modeled by a thin-walled cylindrical pipe and a bar with appropriate length and

mass per unit length. The results of the analysis are summarized in Table 1. The critical angular velocities for the rigid

thin-walled pipes have been determined by formula (6). The moments I x and I z have been calculated for pipe lengths from 0.1 m

to 1 m, mid-surface radius r = 0.025 m, wall thicknesses h = 0.0005 m and h = 0.001 m, and stiffnesses k from 1 to 105 (N⋅m/rad).

For the equivalent rigid bar, we have I z = 0; therefore,ω cr = k I x/ , where I M lx = ⋅ 2 3/ , M is the mass of the bar.

Each cell of the table includes two values of ω cr : for the bar/beam (upper) and pipe/shell (lower). In both cases:

E = ⋅2 1 1011. Pa, ν = 0.3, γ = ⋅7 8 103. kg/m3.

Analyzing the data in the table, we conclude that the difference between the values of ω cr for the rigid and elastic

structures is negligible when k is low (k ≤ ⋅1 103 N⋅m/rad). This indicates that with low k all the structures behave as equivalent

rigid bodies. For k = ⋅1 105 N⋅m/rad, however, this difference becomes significant, withω cr being less for the elastic structures

apparently because of their additional elastic compliance.

Note that with low k, the value of ω cr for the elastic shells is somewhat greater than the value of ω cr for the elastic

beams. For k = ⋅1 105 N⋅m/rad, the situation is opposite.

We also examined how the stiffness of the elastic coupling between the shell and the platform affects the natural

frequencies. Figure 2 shows the multiple natural frequencies c1
± and c2

± as functions of the angular velocity ω for a shell with

l = 1 m, r = 0.25 m, and h = 0.02 m rigidly fixed to the rotating platform. It is seen that the curves c1
+ ( )ω and c2

+ ( )ω smoothly join,

crossing neither the bisector of the right quadrant nor the ordinate axis. This is indicative of no critical states at these frequencies,
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TABLE 1

k,
N m

rad

⋅

Rigid structures Elastic structures

Bar

Thin-walled pipe

Beam

Shell

l = 0.1 m

h = 1 mm

l = 0.25 m

h = 0.5 mm

l = 0.25 m

h = 1 mm

l = 1 m

h = 1 mm

l = 0.1 m

h = 1 mm

l = 0.25 m

h = 0.5 mm

l = 0.25 m

h = 1 mm

l = 1 m

h = 1 mm

1
49.483

51.979

17.703

17.838

12.518

12.613

1.565

1.566

49.483

51.998

17.703

17.845

12.518

12.634

1.565

1.605

10
156.48

164.37

55.983

56.408

39.586

39.886

4.958

4.951

156.48

164.43

55.980

56.428

39.585

39.953

4.948

5.076

103 1564.78

1643.73

559.83

564.08

395.86

398.86

49.483

49.506

1662.99

1640.74

556.66

560.72

394.74

398.27

48.920

50.205

105 15647.8

16437.3

5598.33

5640.79

3958.62

3988.64

494.83

495.06

14110.2

13710.9

3808.17

3718.56

3151.78

3112.43

241.01

278.85



whether the rotation is simple or compound [1, 2, 6–8]. The curves c1
− ( )ω and c2

− ( )ω cross the ordinate axis atω1
cr =2487.1 Hz

andω 2
cr = 10154.0 Hz, which are angular velocities of simple rotation that cause the shell to lose stability.

Figure 3 shows the same curves for the shell connected by an elastic coupling with k = ⋅1 108 N⋅m/rad to the platform. It

is seen that the curves c1
+ ( )ω and c2

+ ( )ω do not join, and the curves c1
− ( )ω and c2

− ( )ω cross the ordinate axis at smaller values of

ω. This indicates that reducing the stiffness of the elastic coupling causes the first critical angular velocity to decrease and

produces additional critical velocitiesω 3
cr .
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