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The natural vibration of an elastic sandwich beam on an elastic foundation is studied. Bernoulli’s

hypotheses are used to describe the kinematics of the face layers. The core layer is assumed to be stiff and

compressible. The foundation reaction is described by Winkler’s model. The system of equilibrium

equations is derived, and its exact solution for displacements is found. Numerical results are presented

for a sandwich beam on an elastic foundation of low, medium, or high stiffness
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Introduction. Widespread use of laminated thin-walled members in modern structures has aroused considerable

scientific interest in their physical and mechanical properties and behavior under various external forces. The inhomogeneity and

anisotropy of such structures call for special methods of their analysis. Of special interest is the behavior of laminated members

under dynamic loads typical primarily of modern high-speed vehicles. The vibration of orthotropic shells was studied, for

example, in the monograph [3], which, as well as the review [9], provides an extensive bibliography on the subject. Techniques

and examples of studying the behavior of laminated bodies under dynamic loads were considered in [1, 4–6, 8, 10]. The vibration

of sandwich beams not lying on an elastic foundation was studied in [2, 7, 11]. The present paper addresses the natural vibration

of a sandwich beam asymmetric across the thickness. It lies on an elastic inertialess foundation.

1. Formulation of the Problem. Suppose that Bernoulli’s hypotheses hold in the isotropic face layers, and the exact

relations of the theory of elasticity with linear approximation of displacements in the transverse coordinate z hold in the stiff core

layer. The displacements are assumed to be continuous at the interfaces between the layers. The face layers are transversely

incompressible, and the core is subject to the corresponding reduction. Strains are assumed to be small.

A coordinate system x, y, z is fixed to the mid-surface of the core. A distributed surface load q(x) is applied to the outer

surface of the upper face layer at a right angle (Fig. 1). The foundation acts on the outer surface of the lower face layer qr(x, t). Let

wk(x) and uk(x) denote the deflections and longitudinal displacements of the mid-surfaces of the face layers; hk and ρk denote the

thickness and density of the kth layer (k = 1, 2, 3 is the layer number); h3 = 2ñ; and b0 denotes the width of the beam. All

displacements and linear dimensions of the beam are referred to its length l.

The longitudinal and transverse displacements u(k)(x, z) and w(k)(x, z) can be expressed in terms of four unknown

functions w1(x, t), u1(x, t), w2(x, t), and u2(x, t) as follows:
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in the core layer, where z is the distance from a filament of interest to the mid-line of the core; and the comma in the subscript

denotes differentiation with respect to the coordinate indicated next to the comma.

The equations of motion of the sandwich beam follow from Lagrange’s principle in view of the work done by inertial

forces:

δÀ – δW = δÀI, (1.1)

where δA is the variation of the work done by external forces; δW is the variation of the work done by internal elastic forces; and

δÀI is the variation of the work done by inertial forces.

To determine the work done by external forces, we assume that an arbitrary transverse load q(x, t) is applied to the outer

surface of the upper face layer (Fig. 1), and some forces and moments are applied to the ends of the beam. Then we have
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The variation of the work done by elastic forces is defined by
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and the variation of the work done by inertial forces is given by
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where the double overdot denotes the second derivative of displacement with respect to time.

Substituting (1.2)–(1.4) into (1.1) yields an equation that must identically hold at arbitrary values of the varied

quantities. This will be possible if we equate the coefficients of independent variations to zero. As a result, we arrive at the

following system of equations of motion written for forces:

542

Fig. 1

l

q(x, t)

h
2

h
3

h
1

x

z

Oc
c

qr(x, t)



( ) ( )F
b

H P F
b

S H T q

F
b

H P

x xx x1
0

1 1 3
0

1 2 1

2
0

1 2

1
0

1

1

+ − = + + − =

− +

, , , , ,

,( ) ( )x xx xF
b

S H T q= + − − = −

⎧

⎨
⎪⎪

⎩
⎪
⎪ 0

1
4

0
2 2 2, , , ,r

(1.5)

where the inertial terms are given by

F m u m u m w m wx x1 1 1 8 2 5 1 7 22= + + −�� �� �� , �� , ,

F m u m u m w m wx x2 8 1 2 2 5 1 7 22= + + −�� �� �� , �� , ,

F m u m u m w m w m w mx x xx3 5 1 5 2 1 1 8 2 3 1 62= − − + + − +�� , �� , �� �� �� , �� ,w xx2 ,

F m u m u m w m w m w mx x xx4 7 1 7 2 8 1 2 2 6 1 42= + + + + −�� , �� , �� �� �� , ��w xx2 , . (1.6)

Depending on the properties of the elastic foundation, the deflection and the reaction may be related in different ways.

Let the foundation be inertialess (Winkler’s model); then

q wr =κ 0 2 , (1.7)

where κ0 is the foundation modulus.

Applying Hooke’s law, the Cauchy relations, and expression (1.7) to Eqs. (1.5), we obtain a system of partial

differential equations for the four unknown functions w1(x, t), u1(x, t), w2(x, t), and u2(x, t). Retaining only those inertial terms

(1.6) that describe the inertia of motion along the coordinate axes and the rotary inertia of normals in the face layers, we get

equations of motion in the form
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where Kk and Gk are the bulk and shear moduli of elasticity of the layers;
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Let the beam be simply supported at the ends. The supports are rigid and fixed. The corresponding constraints for the

displacements to the sections x = 0; l are given by

w u wk k x k xx= = =, , 0 ( , )k = 1 2 . (1.9)

The initial conditions (t = 0) are
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where u x u xk k
0 0( ), � ( ), w xk

0 ( ), and � ( )w xk
0 are given initial displacements and velocities of the mid-surfaces of the face layers.

The initial–boundary-value problem (1.8)–(1.10) is solved by the Bubnov–Galerkin method. To this end, the unknown

displacements u1(x), u2(x), w1(x), and w2(x) and the load q(x, t) are expanded into series in terms of basis functions satisfying the

boundary conditions (1.9):
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Substituting (1.11) into (1.8) yields a system of equations for the time functions Tmi (t) (i = 1, 2, 3, 4). We write it in

matrix form:

[ ]{ } [ ]{ } { }B T M T Q+ =�� , (1.12)

where [B] is a fourth-order square matrix composed of the coefficients Âmij; [M] is a fourth-order diagonal matrix with elements

Mmij; {T} and {��T} are formed of the unknown functions Tmi and their second derivatives; and {Q} is a vector whose elements

Qmk are composed of the expansion coefficients of the load;
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where the coefficients bi are dependent on the parameter m and are expressed in terms of the coefficients ai as follows:
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Equations (1.12) can be written as

B T M T Qmkj
j

mj mkk mk mk
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4

�� (k = 1, …, 4). (1.13)

Since the matrix [M] is diagonal, only the kth term remains in the second sum. To close the problem, the initial

conditions (1.10) should be added to Eqs. (1.13).

2. Analytic Solution. Assume that there is no external load: q(x, t) = 0. Then the initial–boundary-value problem

(1.8)–(1.10) will describe the natural vibration of the sandwich beam on elastic foundation. The equations of motion (1.13) take

the following form (Qmk = 0):
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The solution can be represented as

T t A tmk mk m mk( ) sin( )= +ω α , (2.2)

where Amk, ωm, and αmk are the amplitude, frequency, and initial phase of vibration, respectively.

Substituting (2.2) into (2.1) leads to the generalized eigenvalue problem

[ ]{ } [ ]{ }B A M A=ω 2 , (2.3)

where {A} is the vector of amplitudes Amk.

Inverting the matrix [M], which is not degenerate, in Eq. (2.3) leads to the standard eigenvalue problem

[ ]{ } { }R A A=ω 2 , [ ] [ ] [ ]R M B= −1 , ([ ] ){ }R E A− =ω 2 0. (2.4)

The system of equations (2.4) is homogeneous in Amk. A trivial solution would mean no vibration. To find it, it is

necessary to equate the determinant to zero. Doing this yields an algebraic equation of the fourth order forωm
2 . Solving it, we

obtain four real non-negative roots. Thus, the vibratory process for each value of m appears four-frequency. Hence, instead of

(2.2) it is necessary to set

T t A tmk mki mi mi
i

( ) sin( )= +
=
∑ ω α

1

4

. (2.5)

The unknown displacements are defined by (1.11) in view of (2.5). The twenty constants of integration Amki, αmi for

each m are determined as follows. Substituting ωmi
2 into Eqs. (2.1), we get four equations for each k = 1, 2, 3, 4. Of these

equations, three are independent. These twelve independent homogeneous equations should be supplemented with eight
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inhomogeneous equations that follow from the initial conditions (1.10). Note that if all the initial conditions are zero, then all

Amki and αmi will also be equal to zero because the solution of the homogeneous algebraic system of equations is unique.

3. Numerical Results. We have determined the natural frequencies of a D16T–PTFE–D16T beam.

Figure 2 shows the minimum frequencies ωm1 of the beam as functions of the thickness of the upper face layer h1 for

different stiffnesses of the elastic foundation (c = 0.09, h2 = 0.05) and different values of m: m = 1, κ0 = 1 MPa/m (curve 1); m = 2,

κ0 = 1 MPa/m (curve 2); m = 1, κ0 = 500 MPa/m (curve 3); m = 2, κ0 = 500 MPa/m (curve 4); m = 1, κ0 = 105 MPa/m (curve 5);

and m = 2, κ0 = 105 MPa/m (curve 6). With foundations of low and medium stiffnesses ((1, 2) and (3, 4)), the first two frequencies

are almost equal. If the beam lies on a foundation of high stiffness (5, 6), then as the layer increases in thickness, the first

frequency decreases and the second frequency abruptly increases. With further increase in the foundation modulus, these curves

move farther apart.

As the thickness of the relatively soft core (h2 = 0.05; h1 = 0.01) increases, the natural frequencies of the beam decrease

(Fig. 3). The curves in Fig. 3 are numbered in the same way as in Fig. 2.

Figure 4 shows the frequencies ωm1 as functions of the foundation modulus κ0 (c = 0.09, h2 = 0.05, and h1 = 0.01). The

value of m is indicated near each curve. With foundations of low and high stiffnesses (κ0 < 108 Pa/m and κ0 > 1011 Pa/m), this

dependence is weak and frequencies vary a little. In the range 108 < κ0 < 1011 Pa/m, the frequencies significantly increase with

the stiffness of the foundation. It should be noted that the natural frequencies of the beam not lying on elastic foundation are

scarcely different from those of the beam on the foundation of low stiffness.

Conclusions. We have studied the natural vibration of a sandwich beam. The analytic and numerical results obtained

allow us to conclude that elastic foundations of medium and high stiffness have a significant effect on the natural frequencies.

The influence of foundations of low stiffness may in some cases be neglected.
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