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The natural frequencies of cylindrical shells filled with a fluid and having the ends either simply

supported or clamped are determined. Conditions are studied under which the natural frequencies of

the shell are close or multiple
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Introduction. In designing fluid-filled elastic cylindrical shells against nonlinear forced and parametric vibration, one

needs preliminary information on the spectrum of their natural frequencies that would account for the presence of the fluid. The

possible closeness or multiplicity of these frequencies (internal resonances [1, 5]) creates prerequisites for strong energy

coupling and interaction of different modes of the shells during vibration [4, 5]. Because of this, the uncoupled (single-mode)

vibration of these shells becomes unstable, and, simultaneously, complex, coupled (multimode) vibration may occur.

Occurrence of internal resonances, including combinational ones, in the shell–fluid system is usually the starting point for

approximating the expected dynamic deflection of shells.

In the present paper, we study the frequency spectrum of cylindrical shells of finite length completely filled with a fluid.

We will examine the influence of the geometry of the shell and fluid on the feasibility of internal resonances that most often occur

in real shell–fluid systems vibrating with large deflections.

1. To describe the dynamic behavior of a shell filled with a fluid, we use the well-known medium-deflection equations

in mixed form [2, 3]:
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where w = w (x, y, t) is the radial deflection (positive when directed toward the center of curvature); x and y are the longitudinal

and circumferential coordinates, respectively, the Ox-axis being reckoned from one of the ends of the shell; D = Eh3/[12(1 – µ2)]

is cylindrical stiffness (E is the elastic modulus, h is the shell thickness, and µ is Poisson’s ratio); Φ = Φ(x, y, t) is the function of

stresses in the mid-surface of the shell; ρ is density; q = q0(x, y)cosΩt is the external transverse pressure on the shell (q0(x, y) is

the function of pressure distribution over the lateral surface); Ph is the hydrodynamic pressure due to the motion of the fluid; and

∇4 = (∂2/∂x2 + ∂2/∂y2)2 is a differential operator.

Since the shell is closed [2], its dynamic deflection can always be approximated by a two-parameter series:
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where f nm
1 2, are unknown functions of time having the sense of generalized coordinates of the shell; sn = n/R is the

circumferential wave number; and Xm(x) are axial coordinate functions that satisfy prescribed end conditions.

To determine the hydrodynamic pressure exerted by the fluid on the shell (the static pressure of the fluid is hereafter

neglected [6]), we will use the following well-known relation [3, 6]:
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where ρ0 is the density of the fluid; and x, r, and Θ are cylindrical coordinates. The velocity potential ϕ can be found from the

solution of the boundary-value problem [3, 5, 6]
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where l is the length of the shell; and Q is the domain occupied by the fluid (0 ≤ x ≤ l; 0 ≤ r ≤ R; and 0 ≤ Θ ≤ 2π).

Substituting the potential ϕ (in view of (1.3)) into the first equation in (1.1) and applying the Bubnov–Galerkin method,

we obtain a system of ordinary differential equations for fi
nm :
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where ωnm are the natural frequencies of the shell with fluid; F nm
1 and F nm

2 are functions nonlinear with respect to the

generalized displacements {fi} = { fi
01, fi

02 , …, fi
11, fi

12 , …} (i = 1, 2) (up to the third power inclusively [5, 7–12]); and Qnm
1 2,

are constants dependent on the form of the function q0(x, y).

It follows from (1.5) that there are always internal resonances [5]. Indeed, each pair of the generalized displacements

f nm
1 and f nm

2 , and, hence, each pair of the corresponding natural modes Xm cos sn y and Xmsin sn y, is associated with the same

natural frequencies ωnm.

In addition to these resonances, more complex resonances are possible, such as ω ωn m n mp q
1 1 2 2

≈ ( / ) (n1 ≈ n2), where

p and q are some coprime numbers. However, such resonances occur only with certain geometries of the shell. Specific values of

p and q depend on the type of nonlinear relations among the functions fi
nm in Eqs. (1.5) [1, 5].

2. To ascertain whether one internal resonance or another is feasible in (1.5), let us consider a shell with boundary

conditions of two most popular types at the shell ends x = 0 and x = l: simply supported and clamped. In the former case, we

have [2]
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In the latter case, we have
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The corresponding axial modes Xm(x) can be represented as
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On the whole, the dynamic deflection w is approximated by a five-term series:
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for the simply supported shell and
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for the clamped shell. Here, s1 = n1/R; s2 = n2/R; and λm = mπ/l.

When q ≡ 0 (free vibration), the governing equations (1.5) for both cases take the following form [6, 9–12]:
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where ωk are the natural frequencies of the shell with fluid. In the case of the boundary conditions (2.1), we have
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where [7, 11]
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(In are modified Bessel functions). In the case of the boundary conditions (2.2), we have
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Qj0 (j = 1–5) are constants obtained by applying the Bubnov–Galerkin method and taking series (2.4) and (2.5) into account.

The frequency ω3 corresponding to an axisymmetric vibration mode is expressed as follows for both types of boundary

conditions:
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The constant coefficients kij of the nonlinear terms in Eqs. (2.6) depend on the material and geometrical parameters of

the shell, the wave numbers, and the added masses of the fluid [11].

Analyzing the system of nonlinear equations (2.6) in a well-known way [1], we establish the following five internal

resonances in the first approximation [5, 10]:
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Of prime practical interest are the first three resonances, since the frequencyω3 in shells of medium length [2] is usually

much greater than the frequencies ω1 and ω2 [12]. The frequency ω3 can become comparable to ω1 and ω2 only in modes with a

sufficiently large wave number n.

Let us consider in more detail the conditions under which the first three resonances (2.13) occur.

3. To derive specific analytic relations among geometrical parameters of the shell (at which the frequencies ω1 and ω2

“resonate” in the above-mentioned sense), we require that ω1 = kω2, where k = 1, 2, 1/2. In the case of the simply supported

boundary conditions (2.7), (2.8), we get the equation
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This equation yields a relation between the dimensionless parameters ξ and η = h/R:
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Thus, we have derived an expression for selecting values of the length l, radius R, or thickness h of the filled shell at

which it has equal or multiple natural frequencies. Note that if the shell is empty, then relation (3.1) becomes more simple [5],

η ξ ξ2
2 0=−ñ c( ) / ( ), and leads to the condition ω1 = kω2.

In the case of the clamped boundary conditions (2.2), for the “resonance” conditionω1 = kω2 to hold, it is necessary to set
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4. As a numerical example, let us consider a shell (E = 2⋅1011 Pa; ρ = 7.8⋅103 kg/m3; and µ = 0.3) filled with water

(ρ0 = 1⋅103 kg/m3).

Figure 1 shows the fundamental natural frequenciesω (in Hz) of this shell for the following geometry: h/R = 3.125⋅10–3,

l/R = 2.45, and R = 0.16 m, and the following wave numbers: m = 1, 2; 4 ≤ n ≤ 14. Figure 1a corresponds to the shell with simply

supported ends, and Fig. 1b to the shell with clamped ends. The dashed lines represent the natural frequencies of the dry shell.
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It follows from the figures that the fluid not only significantly reduces (by a factor of 2 to 4) the natural frequencies of

the cylindrical shell, but also causes spectrum “crowding” (in the range of n under consideration), compared with the empty

shell. Thus, the probability that internal resonances (especially the principal resonance ω1 ≈ ω2) occur in the filled shell is much

higher than in the corresponding “dry” shell.

Figures 2 and 3 show the graphs of η = η(ξ) plotted from Eq. (3.1) for simply supported (Fig. 2) and clamped (Fig. 3)

fluid-filled cylindrical shell for k = 1, m = 1, and different values of ni (indicated in the figures).

As is seen, almost every filled cylindrical shell can have close natural frequencies. Two to three and more modes with

different wave numbers may “resonate” (in nonlinear sense). For example, Fig. 3a, b suggests that for ξ = 1.35 and η = 0.023, the

following modes (m, ni) satisfy the resonance relation ω1 ≈ ω2: (1, 2), (1, 6), (1, 4), and (1, 5), which, in particular, correspond to

the following frequencies:ω1,2 = 1391.5 Hz andω1,6 = 1390.9 Hz,ω1,4 = 1264.1 Hz, andω1,5 = 1262.6 Hz. During free or forced

vibration, these modes are strongly energetically coupled with one another; hence, they should be accounted for in groups in

selecting an approximation for the dynamic deflection w.

Figure 4 illustrates the graphs of η = η(ξ) for a simply supported shell with (solid curves) and without (dashed curves)

the fluid at k = 2, i.e., at resonance ω1 = 2ω2.

It follows from Fig. 4 that multiple frequencies (ω1 = 2ω2) occur in the “dry” shell at larger values of the thickness h

than in the filled shell. This is also true of the resonance ω1 = ω2 considered earlier.

Conclusions. We have studied the problem of natural frequencies of cylindrical shells completely filled with a fluid and

simply supported or clamped at the ends. From the results obtained we conclude that the effect of the fluid on the frequencies of

the shell is stronger for modes with smaller wave numbers n. The more complex the modes, i.e., the greater the wave number n,

the weaker the effect of the fluid on the frequency spectrum. The fluid may change the flexural vibration mode corresponding to

the minimum natural frequencyωmin. From Fig. 1, for example, it follows that the mode n = 9, m = 2 of a simply supported empty

shell is observed at ω = ωmin. If this shell is filled with a fluid, then the frequency ωmin corresponds to the mode n = 8, m = 2. A

similar effect is observed in the clamped shell. The vibration mode atω =ωmin changes at m = 1. This mode corresponds to n = 8

in the “dry” shell and to n = 7 in the filled shell.

The analytic relation (3.1) derived here is the key to determining whether the vibrating shell–fluid system has internal

resonances or not.
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