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A method developed for solving two-dimensional problems in the theory of conical shells is used to

analyze the stress–strain state of shells with different boundary conditions and thickness varying in two

directions at constant mass. Numerical results are given in the form of plots and tables
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Shells of varying thickness, as well as shells of constant thickness, are widely used as structural members. By changing
the law of variation in thickness at constant mass, it is possible to provide a more rational stress–strain state of shell elements
[1–3]. This particularly true of conical shells used as components of machines, aircraft, and devices [4].

1. We will address the class of stress–strain problems for a conical shell with thickness varying in two coordinate
directions. Use will be made of the exact equations of the moment theory of shells. The boundary conditions at the ends are

arbitrary. The shell is subjected to a surface load. The midsurface of the shell is referred to an orthogonal coordinate system s, θ,

where s is the arc length along the generatrix, and θ is the central angle in the cross section. If the radius of the cross-sectional
circle is expressed as

r s r s( ) cos= + ⋅0 ϕ , (1)

where r0 is the radius of the datum plane circle along the generatrix and ϕ is the angle between the normal to the midsurface and

the z-axis of revolution, then the governing equations can be written as follows [1, 2]:
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where (0 ≤ s ≤ L, 0 ≤ θ ≤ π)

N N Qr s s= +cos � sinϕ ϕ , N N Qz s s= −sin � cosϕ ϕ ,

u u wr = +cos sinϕ ϕ , u u wz = −sin cosϕ ϕ ,

q q qr s= +cos sinϕ ϕγ , q q qz s= −sin cosϕ ϕγ ,
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In (2) and (3): Ns, Qs, S, Ms, and H are forces and moments; u, v, and w are displacements; qs, qθ, and qγ are the load

components; D
E h s

N =
⋅
−

( , )θ
ν1 2 and D

E h s
M =

⋅
−

3

212 1

( , )

( )

θ
ν

are the tangential and flexural stiffnesses; h = h (s, θ) is the shell thickness;

E is Young’s modulus; and ν is Poisson’s ratio. End conditions are prescribed.
Thus, the boundary-value stress–strain problem for a conical shell is described by a system of partial differential

equations with variable coefficients and boundary conditions at s = 0 and s = L.

2. In the general case, the coefficients of Eqs. (2) depend on the variables s and θ, which makes it impossible to separate
variables. Therefore, we will solve the two-dimensional boundary-value problem by making it one-dimensional and expanding
functions defined on a discrete point set into Fourier series (for brevity, we will call them discrete Fourier series [5, 6]). With this
aim in mind, we introduce the following additional functions:
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Let us substitute the functions (4) into the governing equations (2) and expand the unknown and additional functions

into Fourier series in θ:
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After substitution of the series (5) into Eqs. (2) and some manipulations, we arrive at a coupled system of ordinary
differential equations for amplitude values of (5):
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Boundary conditions for (6) are prescribed in the form

B Z b1 10( )= , B Z L b2 2( )= , (7)

where Z s N N S M u u vr n z n n s n r n z n n s n
T( ) { , , � , , , , , }, , , , , ,= ϑ is the column vector of unknown functions; B1 and B2 are

rectangular matrices; and b1 and b2 are vectors.
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(6) are amplitude values of the additional functions (4) and are not expressed explicitly in terms of the Fourier coefficients of the
series for the unknown functions. Rather, these functions are calculated during the integration of system (6) using discrete
Fourier series at each step s = const and are dependent on the amplitude values of the unknown functions [7–10].

Equations (6) are integrated simultaneously for all harmonics of series (5) using the discrete-orthogonalization method.
During the integration, the amplitude values of the additional functions are calculated from the current amplitude values of the

unknown functions for s s k Kk= =( , )0 at some points θr of the interval 0 ≤ θ ≤ π, and a Fourier series is formed for a discrete

function using the Runge scheme [11]. At the beginning of the integration, the associated boundary conditions are taken into
account. The integration over s is continued after the substitution of the found amplitude values of the additional functions into

Eqs. (6). The following quantities are calculated at the points θr (1 ≤ r ≤ R):
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Using the values obtained and the additional functions (4) expressed in terms of unknown functions, we get the
equalities
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The values of all the additional functions are calculated in much the same way.
Using the found values of the additional functions, we construct discrete Fourier series in the form (5) whose

coefficients are the missing amplitude values of the additional functions at s = sk for Eqs. (6). Their values can be found in a
standard way [5, 11]. After substitution of these values into Eqs. (6), we continue the integration over s, proceeding from the
point sk to the point sk + 1. The boundary-value problem (6), (7) is solved by the stable discrete-orthogonalization method, which
produces a highly accurate solution.

The values of the unknown functions can be used to determine all the stress/strain characteristics of the shell.
Following this approach, we will analyze the displacement and stress fields in conical shells with thickness varying in

two coordinate directions at constant mass. Let the thickness vary according to the formula
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If the shell has constant thickness, we assume that h = H = const. Then, requiring that the mass of the shell be

independent of γ, we get
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( cos )1 2
0

2

+ =∫ β θ θ π
π

d . (13)

Formulas (11)–(13) allow us to conclude that the thickness of the shell remains constant while γ and β change, i.e., the
requirement of constant mass is met.

Let us first solve the stress–strain problem for a conical shell with circumferentially varying thickness, i.e., γ = 0 in (9).
The shell is rigidly fixed at s = 0, is free from loads at s = L, and is subjected to a normal load q = q0 = const. The problem has been

solved for L = 30; H = 0.25; β = 0.2, 0.4; mean radius R = 30; α = 90°; and ϕ = 0°, 15°, 30°, 45°.

Figure 1 shows the longitudinal distribution of deflection for β = 0.2 depending on the apex angle α (the solid lines

correspond to θ = 0, and the dashed lines to θ = π). Similar curves for β = 0.4 are shown in Fig. 2. It can be seen from Fig. 1 that

when the thickness varies along the circumference at constant mass and β = 0.2, the ratios of the deflections (at s = L) for θ = 0

and θ = π are: 1.53, 1.43, 1.37, and 1.33 for α = 0°, 15°, 30°, 45°, respectively. When β = 0.4, we have 2.7, 2.2, 1.9, and 2.0,

according to Fig. 2. Hence, the ratio of the deflections at θ = 0 and θ = π increases with β, the mass of the shell remaining
constant.
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γ = 0 γ = 0.4 γ = 0.4

β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4

0.2

0

3.518 2.963 2.594 3.659 3.112 2.883 3.412 2.876 2.556

0.4 4.196 3.604 3.132 3.706 3.215 3.002 4.668 4.013 3.529

0.6 5.047 4.318 3.743 4.458 3.842 3.487 5.608 4.796 4.191

0.8 5.442 4.557 4.078 5.800 4.871 4.399 5.196 4.350 3.926

0.2

0.5

3.518 3.510 3.484 3.659 3.641 3.564 3.412 3.407 3.386

0.4 4.196 4.189 4.168 3.706 3.694 3.640 4.668 4.663 4.637

0.6 5.047 5.038 5.009 4.458 4.446 4.400 5.608 5.599 5.571

0.8 5.442 5.458 5.511 5.800 5.806 5.825 5.196 5.217 5.287

0.2

1.0

3.518 4.433 6.081 3.659 4.548 5.855 3.412 4.309 5.877

0.4 4.196 5.112 6.783 3.706 4.491 5.709 4.668 5.677 7.432

0.6 5.047 6.116 7.932 4.458 5.376 6.786 5.608 6.797 8.753

0.8 5.442 6.958 9.597 5.800 7.344 9.865 5.196 6.672 9.260



Figure 3 demonstrates how the circumferential variation of the thickness affects the longitudinal distribution of the

deflection (the solid lines correspond to θ = 0, and the dashed lines to θ = π). When θ = 0, the deflection at the end s = L has the

following values depending on β: 1.22; 1.38; and 1.60 (divided by the deflection value at β = 0). Hence, it is possible to influence
the deflection by changing the thickness in the circumferential direction and not affecting the mass of the shell.

Figure 4a, b shows, for the same shell, the longitudinal distributions of stresses on the outside and inside surfaces (σ±)

for different values of β. It is seen that the stresses peak at the fixed end and then damp after a local extremum at some distance
from this end.
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TABLE 2

s/L θ/π

σ+

γ = 0 γ = 0.4 γ = 0.4

β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4

0

0

–64.20 –47.49 –32.33 –87.33 –65.00 –49.31 –54.00 –40.17 –27.99

0.2 6.35 4.66 2.46 4.76 4.01 3.54 6.14 4.25 2.33

0.4 –0.72 –0.48 –0.53 –1.50 –1.09 –0.07 –0.06 0.11 0.08

0.6 –0.87 –0.08 0.08 –2.51 –1.42 –0.36 0.47 1.03 0.95

0.8 15.69 11.44 7.13 13.39 10.28 6.63 15.05 10.61 6.58

1.0 –82.28 –60.33 –41.68 –113.0 –82.71 –58.37 –68.73 –50.57 –35.18

0

0.5

–64.20 –62.78 –58.08 –87.33 –85.34 –78.33 –54.00 –52.80 –48.70

0.2 6.35 5.95 4.81 4.76 4.42 3.24 6.14 5.74 4.47

0.4 –0.72 –0.74 –0.80 –1.50 –1.53 –1.72 –0.06 –0.09 –0.22

0.6 –0.87 –0.79 –0.53 –2.51 –2.40 –2.12 0.47 0.53 0.69

0.8 15.69 15.08 13.13 13.39 12.83 11.11 15.05 14.46 12.60

1.0 –82.28 –80.86 –76.01 –113.0 –111.0 –104.5 –68.73 –67.54 –63.51

0

1.0

–64.20 –87.40 –126.3 –87.33 –118.8 –165.9 –54.00 –73.07 –103.9

0.2 6.35 7.55 7.63 4.76 4.61 1.88 6.14 7.88 8.68

0.4 –0.72 –0.69 0.00 –1.50 –1.49 –1.10 –0.06 –0.04 0.49

0.6 –0.87 –1.90 –2.41 –2.51 –3.57 –4.03 0.47 –0.46 –1.16

0.8 15.69 19.64 21.85 13.39 15.23 13.75 15.05 19.84 23.95

1.0 –82.28 –112.3 –159.9 –113.0 –155.0 –220.6 –68.73 –93.50 –132.3



Figure 5 presents results for the following problem: for a shell with rigidly fixed ends under a varying normal load

q q= +0 1 0 1( . cos )θ , determine a value of β such that the circumferential distribution of deflection in the cross section s = L/2 is

most uniform. As is seen from the figure, such is the case when β = 0.22.
Tables 1–3 summarize the values of the deflections and stresses in a conical shell under a uniform normal load

q = q0 = const. These results have been obtained for different values of γ and β in the longitudinal and circumferential directions.
The thickness of the shell varies in two directions, its mass is constant, and both of its ends are rigidly fixed.

Thus, from the results presented in Figs. 1–5 and Tables 1–3 it follows that the coefficients γ and β appearing in the law
of variation in thickness (9) can be chosen so as to obtain the most rational distribution of deflections and stresses, with the mass
of the shell remaining constant.
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TABLE 3

s/L θ/π

σ−

γ = 0 γ = 0.4 γ = 0.4

β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4 β = 0 β = 0.2 β = 0.4

0

0

59.06 42.97 28.76 82.44 60.65 45.48 48.71 35.49 24.23

0.2 –5.84 –4.21 –2.19 –4.38 –3.63 –3.16 –5.64 –3.84 –2.07

0.4 0.66 0.43 0.47 1.36 0.98 0.06 0.06 –0.10 –0.07

0.6 0.80 0.07 –0.07 2.28 1.26 0.31 –0.44 –0.94 –0.85

0.8 –14.44 –10.35 –6.35 –12.33 –9.31 –5.91 –13.83 –9.59 –5.85

1.0 75.70 54.58 37.09 106.7 77.18 53.83 62.00 44.68 30.45

0

0.4

59.06 57.76 53.43 82.44 80.56 73.94 48.71 47.63 43.93

0.2 –5.84 –5.48 –4.42 –4.38 –4.07 –2.98 –5.64 –5.27 –4.11

0.4 0.66 0.68 0.73 1.36 1.39 1.57 0.06 0.08 0.20

0.6 0.80 0.72 0.49 2.28 2.18 1.93 –0.44 –0.49 –0.64

0.8 –14.44 –13.87 –12.08 –12.33 –11.82 –10.23 –13.83 –13.30 –11.58

1.0 75.70 74.39 69.93 106.7 104.8 98.64 62.00 60.93 57.29

0

1.0

59.06 81.76 120.1 82.44 113.4 160.2 48.71 67.29 97.75

0.2 –5.84 –7.06 –7.26 –4.38 –4.32 –1.79 –5.64 –7.36 –8.26

0.4 0.66 0.65 –0.00 1.36 1.38 1.04 0.061 0.04 –0.47

0.6 0.80 1.77 2.29 2.28 3.31 3.80 –0.44 0.44 1.11

0.8 –14.44 –18.37 –20.78 –12.33 –14.26 –13.09 –13.83 –18.54 –22.78

1.0 75.70 105.1 152.1 106.7 148.0 213.1 62.00 86.11 124.4



REFERENCES

1. Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution with Varying Stiffness [in Russian],
Naukova Dumka, Kiev (1973).

2. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Variable-Stiffness Shells, Vol. 4 of the five-volume series Methods of

Shell Design [in Russian], Naukova Dumka, Kiev (1981).
3. Ya. M. Grigorenko, A. T. Vasilenko, I. G. Emel’yanov, et al., Statics of Structural Members, Vol. 8 of the 12-volume

series Mechanics of Composite Materials [in Russian], A.S.K., Kiev (1999).
4. A. D. Kovalenko, Ya. M. Grigorenko, and L. A. Il’in, Theory of Thin Conical Shells and Its Application in Mechanical

Engineering [in Russian], Izd. AN USSR, Kiev (1963).
5. G. M. Fikhtengol’ts, Differential and Integral Calculus [in Russian], Vol. 3, Fizmatgiz, Moscow (1966).
6. R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).
7. Ya. M. Grigorenko and L. S. Rozhok, “Discrete Fourier-series method in problems of bending of variable-thickness

rectangular plates,” J. Eng. Math., 46, 269–280 (2003).
8. Ya. M. Grigorenko and L. S. Rozhok, “Stress analysis of orthotropic hollow noncircular cylinders,” Int. Appl. Mech., 40,

No. 6, 679–685 (2004).
9. Ya. M. Grigorenko and L. S. Rozhok, “Influence of corrugation frequency and amplitude on the stress state of hollow

elliptic cylinders,” Int. Appl. Mech., 40, No. 9, 1012–1017 (2004).
10. Ya. M. Grigorenko and L. S. Rozhok, “Stress solution for transversely isotropic corrugated hollow cylinders,” Int. Appl.

Mech., 41, No. 3, 277–282 (2005).
11. Ya. M. Grigorenko and V. A. Tsybul’nik, “Application of discrete Fourier series in the stress analysis of cylindrical

shells of variable thickness with arbitrary end conditions,” Int. Appl. Mech., 41, No. 6, 657–665 (2005).

317




