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A mathematical model of the hydrodynamics of free closed surfaces in a fluid is expounded. It is used for

studying the dynamics of ellipsoidal cavities during their development. The model is based on a system of

differential equations that accounts for the influence exerted on the dynamics of cavities by various

perturbations such as gravity, surface tension, viscosity, and geometrical features of the cavity. Solving

this system makes it possible to determine the hydrodynamic characteristics of the flow around the

cavity and to plot cavity shapes depending on time and flow regimes. Characteristic features of the

development of such cavities under gravity and surface tension are established
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Introduction. The behavior of cavities in fluid is known to depend on its properties and the cavitation conditions.

Among the conditions strongly affecting the behavior of cavities are primarily gravity (which gives rise to the buoyancy force),

surface tension, and viscosity. If the influence of these factors was insignificant, then we could design a mathematical model that

would make it possible to determine all the basic dynamic characteristics of the cavity and its shape depending on flow regime

and time. In reality, however, this can be done only within the framework of a linear or linearized theory and the superposition

principle; therefore, the greater the effect of these forces, the less reliable the results. When these forces are strong, the

mathematical model of the process is rather involved and not easy to implement, and the cavity no longer has well-defined

boundaries. Therefore, even if a linearized model may not be used for a flow highly disturbed by these forces, it can still be

applicable to a moderately disturbed flow.

The behavior of a spherical cavity is well understood. There are a number of mathematical models [3, 11–13, etc.] that

account, to some extent, for the forces mentioned above. The mathematical model of such a cavity includes nothing but the

density of the fluid and the difference of the pressures inside and outside (far from) the cavity. If, however, the cavity is not

spherical, then its dynamic analysis involves considerable difficulties [6, 8]. This is why the search is still under way for simpler

mathematical models that are capable of describing the deformation of nonspherical cavities with adequate accuracy and

simplicity [2, 5, 7]. One is a linearized model used in acoustics [9], particle dynamics [10], surface impact theory [12], and other

problems. A version of the linearized theory, which was repeatedly used and tested against hydrodynamic problems for flows

with free boundaries, was proposed in [1]. It is based on using a system of differential equations for the deformation modes of the

cavity and determining the initial perturbations of the cavity shape.

1. Problem Formulation. Mathematical Model. First, note that the model is based on the hydrodynamics of thin

axisymmetric bodies and spherical cavities in a perfect fluid. Let a free closed surface at time zero be a nonspherical surface of

revolution. The general equation of a disturbed surface S reads F t r( , , )ϑ = 0. The mathematical model of the potential flow

around the cavity S can be expressed as

∇ =2 0Φ outside S,
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whereΦ ϑ( , , )t r is the velocity potential; ~p is the generalized pressure on the cavity surface; p∞ is the pressure at infinity; and ρis

the density of the fluid. It is expedient to place the origin of coordinates at the center of the cavity.

Thus, in this model it is necessary to find a solution of the Laplace equation for the potential Φ that would be valid

outside the surface S and would satisfy the kinematic no-flow condition (the second equation in (1)) and the dynamic condition

(in the form of the Lagrange–Cauchy integral) that the pressures are equal on the cavity surface S (the third equation in (1)).

Moreover, the condition at infinity should also be met. Note that the kinematic and dynamic conditions have been written in a

fixed coordinate system. If the coordinate system moves with a velocity
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If the free boundary kept its shape, then the problem could be solved quite easily. However, after moving to a region of

lower pressure, the free boundary takes a specific shape ensuring minimum strain energy. This means that near the cavity a new

flow with a potential ϕ, which will be called a perturbation, is superimposed on the main flow with a potential Φ 0 . The next task

is to determine the potential of the new flow.

If the velocity potential Φ 0 and the radius R0 of the cavity (sphere) in these flows are known, then the velocity

potentials Φ and the shapes (radii R) of cavities in disturbed flows can be sought in the form

Φ Φ= + = +0 0ϕ , R R f , (2)

as suggested by small-perturbation theory.

In this case, the problem arises of satisfying the conditions (1) on the disturbed surface S, which is still unknown. This

could be done by linearizing all the equations in (1). Expanding the unknowns into Taylor series about the nonperturbed surface

and neglecting the nonlinear terms, we reduce the problem (1) to the following problem for the perturbations themselves:
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Note that
�
c is the vector of velocity with which the coordinate system moves under the action of, for example, the

buoyancy force, and F x y z t0 0( , , , )= is the equation of nondisturbed surface of the cavity. For flows not very different from

spherically symmetric, the generalized pressure can be found, according to [4], by the formula
�
p p p p pi g= + + +τ µ , where

p gZ p H p R Rg = = − = −ρ τ µτ µ, , � /2 4 , and τ and µ are the coefficients of surface tension and viscosity, respectively. In this case,

the perturbations ϕ and f may be due to various physical or geometrical factors. These may include anything that makes a specific

mathematical model different from the nondisturbed flow model ( , )Φ 0 0R . For example, among these factors are gravity,

surface tension, compressibility and viscosity of the fluid, local pressure, and various geometrical features of flow (the shape and

orientation of the nondisturbed cavity, asymmetry, finiteness, etc.). The velocity { }�
c u u= −cos , sin ,ϑ ϑ 0 of the cavity moving

with no change of shape is expressed in terms of its vertical velocity u.

We will consider that a flow around a sphere is nondisturbed. The potential of the flow is given by
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0
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Here the first term describes a spherically symmetric flow; and the second, a flow caused by the upward motion of the

cavity with the velocity u and with no change of shape.

The perturbation potentialϕ as a damped-at-infinity solution of the Laplace equation and the perturbation f t( , )ϑ can be

written in terms of Legendre polynomials Pn ( )µ as
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Then the second equation in (3) yields relations between potential modes and deformation modes:
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Next, it is necessary to satisfy the dynamic condition in (3) to obtain a final system of differential equations for

deformation modes f tn ( ) [2]:
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are the Weber number (τ is the

surface tension coefficient) and the Froude number, where R a cin 0
23= is the diameter of an equal-area sphere at the initial time.

Note that all the variables appearing in the equations are made nondimensional by dividing them by Rin 0 orV p0 = ∆ / ρ. If
~σn ,

Hn , and Zn are not constant, then these are the coefficients in the Legendre expansion series of the differential pressure, mean

curvature, and the vertical distance from a point on the cavity boundary to the horizontal plane. It should also be noted thatV0
2 is
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not a physical velocity—it just has dimensions of velocity because it is given by the formula V p0
2 = ∆ / ρ, where ∆p is the

difference of the pressures inside and outside the cavity.

2. Solution of Nonlinear Problems. Initial and Boundary Conditions. The system of equations (7) is quasilinear,

since the higher derivative enters linearly into the equations, and the nonlinearity is due to the fact that the velocity u of the cavity

is also an unknown function, which is to be determined. This nonlinearity is principal; it reflects the interaction of deformation

modes. In linear theory, deformation modes are always independent. An analysis of Eqs. (7) shows that the interaction of the

modes n−1and n+1is most significant, though the modes n−2and n+2 have some effect too.

Solving the system of equations (7) and using formulas (4), we determine the potential of the disturbed flow and then the

potential of the main flow:
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all characteristics of this flow, and the shape of the deformed cavity
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However, to integrate the system (7), we need initial conditions, in addition to the initial shape of the cavity and the

initial velocities of its change. These initial conditions can be determined considering an ellipsoid as a deformed sphere. To this

end, we write the equation of an ellipsoid of revolution
x y

a

z

c

2 2

2

2

2
1

+
+ = using spherical coordinates x r= cos cosϕ ϑ,

y r= sin cosϕ ϑ, and z r= sin ϑ:

r
ac

c a

c

e
( )

cos sin cos
ϑ

ϑ ϑ ϑ
=

+
=

−2 2 2 2 2 21
, (10)

where e is the eccentricity of the cross section of the ellipsoid; the squared eccentricity is given by the formula e c a2 2 21= − /

(c < a corresponds to a horizontally oblong ellipsoid). Note that the angle ϑ is measured from the major axis counterclockwise. In

the case of a vertically oblong ellipsoid (c a> ), we may use another coordinate system in which the angle ϑ is measured from the

Oz-axis clockwise. Then the squared eccentricity in formula (10) will be defined by the formula ε 2 2 21= −a c/ , and the

numerator in (10) will include the factor a instead of c. Note that the orientation of the ellipsoid is important only in the presence

of gravity.

With a small eccentricity, the expression under the radical sign in (10) can be expanded into a power series:
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To determine the coefficients of this expansion, we multiply this equality by Pm ( )µ ,
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We will now use the fact that Legendre polynomials are orthogonal on this interval:
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which are power series in the squared eccentricity.

Since all the terms in these series are positive, the truncated series used to calculate the coefficients rn underestimate

their values. Therefore, for example, the coefficient r0 is expedient to calculate as the radius of a sphere equivalent to an

ellipsoid: r R a c0
23= =in0 . The coefficients rn (n =1, 2, 3, ...) can be considered the initial perturbations of a spherical cavity of

radius Rin 0 . Therefore, the system of equations (7) should be supplemented with the initial conditions

f r fn n n( ) , � ( )0 0 0= = . (11)

The second equality in (11) means that the initial velocities are equal to zero (they can be specified in any other way).

Thus, the system of equations (7) and the initial conditions (11) completely define a Cauchy problem for the system.

There is an obstacle here, however: the equations include the function R t0 ( ) that is a solution of the Rayleigh equation (6). This

equation is known not to have an analytic solution. Therefore, it is necessary either to incorporate the Rayleigh equation into

system (7) or to use an approximate expression for this function:

R t t t t0
20 84 0 11 1 0 3( ) . . ( )= + + < < , R t t t0 0 82 0 4 3( ) . . ( )= + > .

The exact expressions for the derivatives of this function are well-known:
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Note that all variables here are relative:
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Now the problem can be solved by using the Runge-Kutta method (or other numerical methods) and printing out plots

of the meridional section of the cavity at predefined time points.

3. Numerical Results for Ellipsoidal Cavities. Some of the results obtained are shapes of the cavity at fixed times.

Figure 1 shows several meridional sections of an initially ellipsoidal cavity with semiaxes a b= = 3 and c=1at small

time intervals (t =2, 4, 6, 10). The major axis of the ellipsoid is perpendicular to the direction of gravity. Flow occurs when Fr= 4

and We=103 . The heavy line is half the outline of the meridional section of the initially ellipsoidal cavity, and the other lines

represent only half the meridian section of the cavity, since it is symmetric. Though the initial ellipsoid is quite oblong, its section

gradually becomes circular. Note also that at the initial stage of expansion, the effect of gravity on the cavity is hardly noticeable.

The curve for t = 6 is still close to elliptical (though its aspect ratio is already c a/ =1.4), whereas the curve for t = 10 is already

very close to circular (though it is still an ellipse, its aspect ratio is just c a/ = 1.2).

Figure 2 illustrates meridional sections of an initially ellipsoidal cavity with semiaxes a b= =1.5 and c=1at longer time

intervals t = 10, 50, 70, 180. The parameters of the flow are the same: Fr= 4 and We= 1000. This ellipsoid is less oblong;

therefore, the meridional sections are nearly circular at early time points. It is seen from Fig. 2 that after the time t ≈ 50, the

deformation mode of the cavity looks like that observed under gravity. A peculiar feature of the mode is a dome-shaped

depression formed at the bottom of the cavity. It is well observed at t = 70 and t =180 (Fig. 2). This depression indicates the

beginning of formation of an axisymmetric cumulative jet. At the same time, the upper surface of the cavity moves downward,

toward the jet. It is this jet that makes the cavity toroidal after reaching its upper surface, which was discovered in the

experiments [4, 5], though these experiments address collapsing cavities. It should also be noted that the cross sections of

cavitation bubbles occurring in heavy flows deform similarly (have a depression at the bottom).
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