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The elastoplastic state of thin cylindrical shells weakened by two circular holes is analyzed. The centers

of the holes are on the directrix of the shell. The shells are made of an isotropic homogeneous material

and subjected to internal pressure of given intensity. The distribution of stresses along the hole

boundaries and over the zone where they concentrate (when the distance between the holes is small) is

analyzed using approximate and numerical methods to solve doubly nonlinear boundary-value

problems. The data obtained are compared with the solutions of the physically nonlinear (plastic strains

taken into account) and geometrically nonlinear (finite deflections taken into account) problems and

with the numerical solution of the linearly elastic problem. The stress–strain state near the two holes is

analyzed depending on the distance between them and the nonlinearities accounted for
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Introduction. Stress, strain, and strength analyses of isotropic and anisotropic structural members (plates and shells) of

complex geometry, including multiple connectivity, under static and dynamic loads are still of importance. Of heightened

interest are nonaxisymmetric problems for thin and nonthin shells and plates of various outlines and shapes under high surface

and boundary loads. Solving such static and dynamic problems, in both linear and nonlinear formulations, involves severe

mathematical and computational difficulties.

Efficient methods developed to solve linearly elastic boundary-value problems for multiply connected shells

(weakened by two or more curvilinear holes or notches) are outlined in [1, 2, 6, 7, 11–13].

Concrete numerical results have been obtained for metal and composite shells of spherical, cylindrical, conical, and

other shapes subjected to static surface loads, axial forces, and a system of boundary forces and moments. Note that the

publications [2, 6, 7, 12] present results for elastic isotropic and orthotropic cylindrical shells with two equal or unequal circular

holes (their centers are on a common generatrix or directrix) and with a finite number of circular holes, and for periodic cases.

It should also be emphasized that two-dimensional static problems for shells (plates) of various shapes and purposes

with a curvilinear (circular or elliptic) hole or a notch of various geometries (simply and doubly connected domains) have mostly

been solved considering only the elastic stage of deformation or only geometrical (finite deflections) or physical (plastic or creep

strains) nonlinearities [6, 7, 9, 11, 13]. The principles and methods of theoretical and experimental analysis of stress

concentration in load-bearing structural members were developed with an eye toward solving two-dimensional boundary-value

problems in various formulations [3–8, 10, 11]. Isolated results were obtained by solving nonlinear problems for shells with both

finite (large) deflections and plastic strains [6, 7, 13].

As regards nonlinear problems for multiply connected thin shells, there are only isolated theoretical results. For

thin-walled isotropic spherical and cylindrical shells with two circular holes, such results are presented in [6, 14–17].
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The paper [14] gives a general nonlinear formulation to the stress (or strain or displacement) distribution problem for

arbitrary thin shells weakened by two and more curvilinear holes (notches) and described by nonconjugate curvilinear

coordinates. Also, this paper briefly outlines a theory and an approximate method for solving two-dimensional boundary-value

problems for isotropic homogeneous shells characterized by two nonlinearities (finite deflections and plastic strains). Concrete

numerical results have been obtained for spherical [14, 15] and cylindrical [16, 17] shells having two equal circular holes and

subjected to a uniform surface load (internal pressure) of given intensity. Also, the case of an axially stretched cylindrical shell

with two circular holes aligned along a common generatrix was analyzed numerically. The results obtained in [14–17] made it

possible to study the mutual influence of the holes and the influence of nonlinearities on the elastoplastic state of flexible shells in

stress concentration regions.

In support of the studies [14, 16, 17], here we will discuss concrete numerical results from an inelastic stress–strain

analysis of flexible cylindrical shells subjected to internal pressure of increasing intensity. The shells have two circular holes

with the centers lying on a common directrix and the boundaries interfering with each other. Also, we will analyze the

distribution of stress-concentration factors along the hole boundaries, compare the associated numerical results, and evaluate the

effect of one or two nonlinearities on these factors.

1. Governing Equations. Solution Technique for Nonlinear Problems. Let us analyze the stress–strain state of

thin-walled cylindrical shells with two circular holes (Fig. 1). Their centers are on a common directrix. The shells are subjected

to surface pressure of given intensity (q = const). The materials of the shells are isotropic, homogeneous (metals or their alloys),

and such that high levels of the load produce small plastic strains in the zones of maximum stress concentration and normal

displacements comparable with the shell thickness [6, 14].

The holes are assumed [6, 16] to be closed with special plugs that transmit only shearing forces to the hole boundary,

which are equivalent to the surface load on each hole. Thus, adopting certain boundary conditions, geometrical parameters of the

shells, and mechanical characteristics and deformation curves (σ versus ε and σ i versus ei ) of their materials, we arrive at

elastoplastic problems for flexible shells of complex geometry with two holes spaced at different distances.

The paper [14] suggests analyzing the elastoplastic state of multiply connected thin shells with finite deflections on the

basis of the theory of flexible shells (geometrically nonlinear theory of second order), the theory of flow with isotropic

hardening, the Mises yield criterion, and the associated flow rule.

For shells with the mid-surface described by nonconjugate curvilinear coordinates ( , , )α α α1 2 3 , the nonlinear

geometrical equations can be written in the following matrix form ( )α 3 = const :

{ } { } { } { } { }e e e= + = +ε α κ3
l n . (1.1)

The linear and nonlinear terms are defined by

{ } [ ]{ } [ ]{ } [ ]{ }( )e A U A A Ul = + +ε κ κα ϕ3
* ,

{ } [ ]{ } [ ] [ ]{ }e B A A Un = =0 5. , *
ϕ κ ϕϕ ,
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where { } { }U u u u= 1 2 3, , , { } { }ϕ ϕ ϕ= 1 2, , and { } { }e e e e= 1 2 3, , are the vectors of displacements, angles of rotation, and

strains, respectively; and [ ]Aε , [ ]Aκ , and [ ]Bϕ are the linear differentiation matrices.

With complex loading and the adopted flow theory, the nonlinear physical equations are given by

{ } [ ] { } { }( ) [ ] { } { } [ ]{ } { }σ σ σ= − = + = +D e e D e D epl pl l n , (1.2)

where the total strain is the sum of elastic and inelastic (plastic) components ({ } { } { }e e e= +el pl ); [ ]{ } { }σpl pl= − D e ,

[ ]{ } { } { }σ σn n pl= +D e ; and { } { , , }σ σ σ σ= 11 22 12
T is the stress vector.

The solution technique for the nonlinear problems in question is based on the procedure of incremental loading. The

governing equations are derived from the nonlinear equations (1.1) and (1.2), using [6, 14] the virtual-displacement principle, the

modified Newton–Kantorovich method, the method of additional stresses, and the finite-element method (FEM).

Thus, the complex nonlinear problem is reduced to a sequence of linearly elastic problems. They are solved

numerically, after the finite-element discretization of the shell’s mid-surface. Within each of the finite elements, the components

of the vector of displacement increments { }∆U are represented by polynomials of two variables [14].

Linearizing and discretizing the corresponding variational equation and using the stationarity condition for the

linearized total energy of a complex-geometry shell, we arrive at a system of governing algebraic equations. For the nth step of

loading, this system is expressed as

[ ] { } { }K q F= =∆ ∆ ,

[ ] [ ] [ ] [ ] { } { } { } { }K K K K F P N= + + = − +l α σ , ∆ ∆ ∆ ∆Φ , (1.3)

where [ ]K l is the incremental stiffness matrix for linearly elastic shells; [ ]Kα and [ ]Kσ are the influence matrices for the initial

angles of rotation and stresses;{ }∆q is the column vector of increments of nodal degrees of freedom (nodal variables); { }∆P is the

load vector; { }∆N is the vector of nonlinearities; and { }∆Φ is the residual vector for the equilibrium equations at the end of the

( )n−1 th step of loading.

For further calculations, Eqs. (1.3) should be supplemented with appropriate boundary conditions on the hole edges and

far from them (outer edge), and the geometrical and force symmetries of the problems should be taken into account. The software

application system, which implements our method [14], allows us to solve intricate doubly nonlinear boundary-value problems

for thin shells. The problem-solving process proceeds until | | | | /| | | |∆q qn
i

n
i ≤ δ, where 10 102 3− −≤ ≤δ is a prescribed error

tolerance.
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TABLE 1

~
l point; θ ξ

σθθ
0

LP PNP GNP PGNP

2.5

A; 0

0.5 2621 1693 2142 1515

–0.5 –3487 –1945 –812 –816

B; /π 2
0.5 1626 1271 3063 1785

–0.5 6084 2326 3478 1844

C; π
0.5 7296 4300 2794 1683

–0.5 –5499 –2987 532 1310

2.7

A; 0

0.5 2623 1782 2176 1536

–0.5 –3717 –1974 –856 –857

B; /π 2
0.5 1638 1479 3104 1774

–0.5 5945 2209 3466 1800

C; π
0.5 5230 2913 2561 1646

–0.5 –5061 –2698 91 507

3.0

A; 0

0.5 2601 1770 2165 1527

–0.5 –3701 –1984 –854 –857

B; /π 2
0.5 1579 1420 3066 1770

–0.5 5755 2151 3433 1805

C; π
0.5 3440 2127 2388 1611

–0.5 –4520 –2369 –383 –147

4.0

A; 0

0.5 2607 1570 2160 1521

–0.5 –3646 –1972 –806 –774

B; /π 2
0.5 1625 1399 2994 1762

–0.5 5517 2090 3341 1798

C; π
0.5 2334 1736 2179 1565

–0.5 –3667 –1987 –861 –830



2. Stress Concentration in Cylindrical Shells with Two Holes Aligned Along the Directrix. We will discuss

numerical results from an elastoplastic stress–strain analysis of flexible thin-walled shells with two equal circular holes (Fig. 1)

subjected to a static load—uniform surface pressure q q= ⋅0
510 Pa. The shells are made of AMg-6 alloy and have the following

geometrical and mechanical characteristics:

ρ = = = = =r Rh l l r l r0 0 02 2 5 27 3 0 4 0 0 5 0 7 1/ ,
~

/ . , . , . , . ( / . , . , .* 0 2 0, . ),

E = 65 GPa, ν = 0.3–0.5, σn = 130 MPa, ε n = 0.002, σT = 165 MPa, (2.1)

where r0 and R are the radii of the holes and shell; h is its thickness; and l and l* are the distances between the centers and edges of

the holes. The shell is referred to a Cartesian coordinate system ( , )x y with the origin at the center of one of the holes (Fig. 2);

( , )r θ is a polar coordinate system.

It is assumed that only the shearing forces Q qrk = 0 2/ act at the boundaries of the unreinforced holes [6]. The elastic

state at a sufficient distance from the holes is momentless and defined by the following conditions:

T qRk = at x xk= ,
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TABLE 2

~
l σij

0 ξ LP PNP GNP PGNP

2.5

σrr
0

0.5 120 764 –637 –364

–0.5 259 210 1022 1283

σθθ
0

0.5 7588 4352 2473 1483

–0.5 –3425 –1950 753 1507

2.7

σrr
0

0.5 –256 –633 –626 –402

–0.5 517 1300 1104 1301

σθθ
0

0.5 –5923 –3185 2136 1368

–0.5 –2062 –784 611 896

3.0

σrr
0

0.5 –320 493 –343 –295

–0.5 1080 1898 1089 1212

σθθ
0

0.5 –4089 2417 1794 1344

–0.5 –804 602 502 494

4.0

σrr
0

0.5 –30 –822 429 376

–0.5 1944 1940 992 1041

σθθ
0

0.5 851 883 851 981

–0.5 602 746 314 291



T qRk = / 2 at y yk= ,

symmetry conditions at x = 0 and y l= − / 2 (Fig. 2). (2.2)

Due to the force and geometry symmetry of the problem, only a quarter of the shell ( )Σ1 needs to be considered. We

partition it into five fragments for finite-element discretization and then solve numerically the linearly elastic ( )q0 1= and

nonlinear problems for shells with the parameters (2.1) and conditions (2.2) under an internal pressure of intensity q = ⋅1 5 105. Pa.

To this end, the loading process is divided into 20 steps for
~
l = 2.5; 15 steps for

~
l = 2.7, 3.0; and 10 steps for

~
l = 4.0.

3. Numerical Results and Their Analysis. The results of the solution are the values of the components of the

displacement vector { }U and the strain and stress tensors ( , ; , , )e i j rij ijσ θ= calculated, using Eqs. (1.1) and (1.2), at different

nodes of the hole boundary ( )r r= 0 , in the area of interest ( , / )r r r≤ ≤ ≤ ≤ ≤0 04 0 2θ π π , and at three points across the thickness

of the shell. Some of the results are presented in the figures and tables below.

Table 1 shows the distribution of the maximum hoop stresses (σθθ = ⋅σθθ
0 510 Pa) along the hole boundary

( , )r r= ≤ ≤0 0 θ π at the points A, B, and C on the outer and inner surfaces ( / . )ξ = = ±z h 0 5 of the shells for
~
l = 2.5–4.0. Table 2

collects the values of the radial and hoop stresses at the point D (the center of the bridge between holes, x y l= = −0 2, / ). These

results (Tables 1 and 2) have been obtained by solving four boundary-value problems: linear problem (LP), physically nonlinear

problem (PNP), geometrically nonlinear problem (GNP), and doubly (physically and geometrically) nonlinear problem (PGNP).

Figures 3–6 show the stress-concentration factors ( / )K h qRθ θθσ= on the hole boundary ( )0≤ ≤θ π for different sizes

of the bridge. Curves 1, 2, 3, and 4 in these figures correspond to LP, PNP, GNP, and PGNP, respectively, in the tables.

An analysis of the results presented in Tables 1 and 2 and Figs. 3–6 suggests that (as in [16, 17]) the effect of the second

hole on the stress distribution along a part of the boundary ( / )0 2≤ ≤θ π of the first hole increases insignificantly with decreasing

distance between the holes. For example, the hoop stresses at the point B ( , / )r r= =0 2θ π increase by 10% in the LP, by 11% in

the PNP, by 4% in the GNP, and by 3% in the PGNP.

The mutual influence of the holes is maximum at the point C ( , )r r= =0 θ π . The hoop stresses in this section on the outer

surface ( . )ξ = 0 5 for
~
l = 2.5 are greater than those for

~
l = 4.0 by 213, 148, 28, and 8% (in the LP, PNP, GNP, and PGNP,

respectively). When the distance between the hole centers is large (
~

. )l = 4 0 , the point B ( , / )r0 2π on the inner surface ( . )ξ = −0 5 is

the most stressed. When the distance between the hole centers is small (
~

. )l = 2 5 , the most critical is the point C ( , )r0 π on the outer

surface ( . )ξ = 0 5 according to the LP and PNP and the point B ( , / )r0 2π according to the GNP and PGNP.

The maximum stresses at the point D ( / , )r l= =2 θ π are less than the maximum stresses on the hole boundaries when
~
l =4.0 and are greater than these stresses, according to the LP and PNP, when

~
l =2.5. Thus, for a short bridge between the holes,

the most critical is the point D (bridge center) according to the LP and PNP and the point B according to the GNP and PGNP.
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The results indicate that the nonlinearities greatly reduce the maximum stresses for all distances between the holes. For

example, when
~
l =2.5, this reduction is 43% with inelastic strains, 54% with finite deflections, and 76% with both nonlinearities

taken into account.

It also follows from the results that when the bridge is larger than two hole radii (
~

. )l = 4 0 , the mutual influence of the

holes has not to be taken into account in a stress–strain analysis of cylindrical shells (weakened by two circular holes located on a

common directrix) with plastic strains and finite deflections.
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