
ON THE STRESS STATE OF A PIEZOCERAMIC BODY WITH A FLAT CRACK
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A static-equilibrium problem is solved for an electroelastic transversely isotropic medium with a flat

crack of arbitrary shape located in the plane of isotropy. The medium is subjected to symmetric

mechanical and electric loads. A relationship is established between the stress intensity factor (SIF) and

electric-displacement intensity factor (EDIF) for an infinite piezoceramic body and the SIF for a purely

elastic material with a crack of the same shape. This allows us to find the SIF and EDIF for an

electroelastic material directly from the corresponding elastic problem, not solving electroelastic

problems. As an example, the SIF and EDIF are determined for an elliptical crack in a piezoceramic

body assuming linear behavior of the stresses and the normal electric displacement on the crack surface

Keywords: piezoelectricity, flat crack, elliptical crack, stress intensity factor, electric-displacement intensity

factor

Introduction. The wide use of piezoelectric ceramic materials, which are highly brittle, in various transducers (based

on the coupling of mechanical and electric fields) necessitates a careful study into the concentration of mechanical and electric

fields in electroelastic bodies with imperfections such as cavities, inclusions, and cracks. However, the solution of

three-dimensional problems of electroelasticity involves severe mathematical difficulties since the original system of equations

describing the electrostressed state of a body consists of complicated coupled differential equations [1, 4]. This is why plane

problems of electroelasticity have recently been studied in more detail. Noteworthy are the papers [2, 11, 14, 17, 18] that address

the two-dimensional electroelastic state around a single cavity, inclusion, and crack and the interaction of concentrators of

electric and mechanical fields. Three-dimensional problems of electroelasticity for an infinite medium with cavities, inclusions,

and cracks are solved in [5–7, 9, 10, 13, 15, 16]. The papers [5, 15, 16] propose approaches to finding the general solutions of

coupled equations of electroelasticity for a transversely isotropic body. The exact solutions of electroelastic problems for

spheroidal and hyperboloidal cavities and inclusions have been found in [6, 13]. The electrostressed state and stress intensity

factors (SIFs) and electric-displacement intensity factors (EDIFs) for an infinite medium with penny-shaped and elliptic cracks

are studied in [1, 9, 10] and [7, 15, 16], respectively.

1. Problem Formulation and Governing Equations. Consider a transversely isotropic electroelastic body with a flat

crack in the plane of isotropy. Symmetric mechanical and electric forces act on the surfaces of the crack. An electroelastic body

with the axis of transtropy coinciding with the Oz-axis is described by the following complete system of equations [1]:

the equilibrium equations (no body forces)

σ ij j, = 0, (1)

the electrostatic equations

D Ei i i i, ,,= = −0 Ψ , (2)
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the equations of state

σ ε ε εxx
E

x
E

y
E

z zc c c e E= + + −11 12 13 31 , σ ε ε εyy
E

x
E

y
E

z zc c c e E= + + −12 11 13 31 , σ ε ε εzz
E

x y
E

z zc c e E= + + −13 33 33( ) ,

σ εyz
E

yz yc e E= −2 44 15 , σ εxz
E

xz xc e E= −2 44 15 , σ εxy
E E

xyc c= −( )11 12 ,

D E ex
S

x xz= +ε ε11 15 , D E ey
S

y yz= +ε ε11 15 , D E e ez
S

z x y z= + + +ε ε ε ε33 31 33( ) , (3)

and the Cauchy relations

ε ij i j j iu u= +
1

2
( ), , ,

where c c c cE E E E
11 12 13 33, , , , and cE

44 are the independent elastic moduli (measured at constant electric field); e31, e15 , and e33 are

piezoelectric moduli; and ε11
S and ε 33

S are the dielectric permittivities (measured at constant strain).

Substituting the equations of state into Eqs. (1) and (2), we obtain a system of equations for the displacements ux , u y ,

and u z and electric potential Ψ:

c u c c u c u c cE
x xx

E E
x yy

E
x zz

E
11 11 12 44 11 12

1

2

1

2, , ,( ) (+ − + + + E
y xy

E E
z xzu c c u) ( ), ,+ +13 44 + + =( ) ,e e xz31 15 0Ψ ,

c u c c u c u c cE
y yy

E E
y xx

E
y zz

E
11 11 12 44 11 12

1

2

1

2, , ,( ) (+ − + + + E
x xy

E E
z yzu c c u) ( ), ,+ +13 44 + + =( ) ,e e yz31 15 0Ψ ,

( )( ) ( ), , , , ,c c u u c u u c uE E
x xz y yz

E
z xx z yy

E
z13 44 44 33+ + + + + zz xx yy zze e+ + + =15 33 0( ), , ,Ψ Ψ Ψ ,

( )( ) ( ), , , , ,e e u u e u u e ux xz y yz z xx z yy z zz31 15 15 33+ + + + + −ε11 33 0S
xx yy

S
zz( ), , ,Ψ Ψ Ψ+ − =ε . (4)

To solve the system of equations (4), we will use the representation of solution proposed in [5]. Note that such a solution

was also used in [5, 15, 16]. The displacement components and electric potential can be expressed as follows [5]:

ux j x
j

y= +
=
∑Φ Φ, ,

1

3

4 , u y j y
j

x= −
=
∑Φ Φ, ,

1

3

4 , u kz j j z
j

=
=
∑ Φ ,

1

3

, Ψ Φ=
=
∑ l j j z
j

,
1

3

, (5)

where ki and li are some constants to be determined.

After substitution of the expressions (5) into Eqs. (4), it becomes clear that these equations hold if the functions Φ j

satisfy the equations

Φ Φ Φj xx j yy j j zz, , ,+ + =ν 0 ( j = 1, 2, 3, 4), (6)

where ν4 44 11 122= −c c cE E E/ ( ), and the remaining ν i (i = 1, 2, 3) are the roots of the following cubic equation:

ν ν3
1 2 1 2

2
1 3 2 2 1 3 2 2( ) ( )A B C D A B A B C D C D− + + − −

+ + − − + − =ν( )A B A B C D C D A B C D2 3 3 2 2 3 3 2 3 3 3 3 0. (7)

The coefficients are defined by

A c eE
1 11 15= , A c c e e c e c eE E E E

2 13 44 31 15 11 33 44 15= + + − −( )( ) , A c eE
3 44 33= ,

B c c e e eS E E
2 11 13 44 15 31 15= − + + +[ ( ) ( )]ε , B c c e e eS E E

3 33 13 44 33 31 15= + + +ε ( ) ( )],

C cE S
1 11 11= − ε , C e e c cE S E S

2 31 15
2

11 33 44 11= + + +( ) ε ε , C cE S
3 44 33= − ε ,

1264



D e c c c e eE E E
2 15 13 44 44 31 15= + − +( ) ( ), D c e e e c cE E E

3 33 31 15 33 13 44= + − +( ) ( ). (8)

The constants k j and l j (i = 1, 2, 3) in (5) are related to the roots ν j as

a c k e l

c

c k e l

c a

c kj
E

j j

E

E
j j

E
j

E
j+ +

=
+

+
=

−13 31

11

33 33

13

33 33ε S
j

j
j

l

e d31 +
= ν ( j = 1, 2, 3), (9)

where

a c k e l d e k lj
E

j j j j
S

j= + + = + −44 15 15 111 1( ) , ( ) ε ( j = 1, 2, 3). (10)

The constants k j and l j are determined from the formulas

k
c c e e c c e e

j

j
E E

j j
E E

=
− − + + +[( )( ) ( )(ν ν ν11 44 15 33 44 13 31 15 )]

[( )( ) ( )( )]c c e e c c e eE E
j

E
j

E
13 44 15 33 44 33 31 15+ − − − +ν ν

,

l
c c c c c c

j

j
E E

j
E E

j
E E

j

=
− − + +[( )( ) ( ) ]

[(

ν ν ν

ν
11 44 44 33 44 13

2

c c e e c c e eE E E E
j44 33 31 15 13 44 15 33− + − + −)( ) ( )( )]ν

( j = 1, 2, 3). (11)

With the notation z zj j= −ν 1 2/ , it becomes clear that the functions Φ j are harmonic in the coordinate systems ( , , )x y z j ,

j = 1, 2, 3, 4. Then the stress and electric-displacement components are given by

( )σxx
E

j xx
E

j yy
E

j j zz j j zz
j

c c c k e l= + + +
=

11 12 13 31
1

3

Φ Φ Φ Φ, , , ,∑ + −( ) ,c cE E
xy12 11 4Φ ,

( )σ yy
E

j xx
E

j yy
E

j j zz j j zz
j

c c c k e l= + + +
=

12 11 13 31
1

3

Φ Φ Φ Φ, , , ,∑ + −( ) ,c cE E
xy12 11 4Φ ,

( )σ zz
E

j xx j yy
E

j j zz j j zz
j

c c k e l= + + +
=
∑ 13 33 33

1

3

( ), , , ,Φ Φ Φ Φ ,

σxy
E E

j xy
j

xx yyc c= − + −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
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2
211 12

1

3

4 4( ) , , ,Φ Φ Φ ,

σxz
E

j j
j

j xz yzc k e l c= + + −
=
∑ [ ( ) ] , ,44 15

1

3

44 41 Φ Φ ,

σ yz
E

j j
j

j yz xzc k e l c= + + −
=
∑ [ ( ) ] , ,44 15

1

3

44 41 Φ Φ ,

D e k l ex j
S

j
j

j xz yz= + − −
=
∑ [ ( ) ] , ,15 11

1

3

15 41 ε Φ Φ ,

D e k l ey j
S

j
j

j yz xz= + − −
=
∑ [ ( ) ] , ,15 11

1

3

15 41 ε Φ Φ ,
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D e e k lz j xx j yy j
S

j
j

j zz= + + −
=
∑ [ ( ) ( ) ], , ,31 33 33

1

3

Φ Φ Φε . (12)

Boundary conditions symmetric about the crack plane (z = 0) are the following:

u x R S3 13 23
20 0± ± ± ±= = = = ∈Ψ , ( / )σ σ �

,

σ σ σ13 23 33 30± ± ± ±= = = − = − ∈, ( , ), ( , ) ( )P x y D q x y x S
�

, (13)

where S is the region occupied by the crack.

2. Relationship between the SIFs in the Electroelastic and Purely Elastic Problems. For the sake of comparison, we

will write boundary conditions to the elastic problem for an isotropic medium with a flat crack of the same shape as in the

electroelastic problem under a symmetric load:

u x R S3 13 23
20 0± ± ±= = = ∈, ( / )σ σ �

,

σ σ σ13 23 330± ± ±= = = − ∈, ( , ) ( )P x y x S
�

. (14)

The displacement components for an elastic isotropic body can be expressed in terms of a harmonic function f as

follows [12]:

u f zfx x xz= − +( ) , ,1 2ν , u f z fy y yz= − +( ) , ,1 2ν , u f z fz z zz= − − +2 1( ) , ,ν . (15)

Then, the boundary conditions (14) yield the following conditions to determine the harmonic function f :

2 1
2µ∇ = − ∈±f P x y x S( , ) ( )

�
or ∇ = − ∈±

1
2 2f P x y x S( , ) / ( ) ( )µ �

,

f x R Sz, ( / )± = ∈0 2�
, (16)

where ∇ = ∂ ∂ +∂ ∂1
2 2 2 2 2/ /x y , and µ is the shear modulus. Note that the superscripts “+” and “–”, which refer to the upper and

lower surfaces of the crack, can be omitted owing to symmetry.

In this case, K r
r

zz zI =
→

=lim |
0

02π σ .

Using the formulas (14), we can express the stress intensity factor K I in terms of the harmonic function f :

K r f
r

zI = ∇
→

=lim |
0

1
2

02 2π µ (
�
x R S∈ 2 / ), (17)

provided that the function f satisfies the condition (16). Note that the formulas (16) and (17) show that K I does not depend on the

elastic constants since first the function f on the crack surface is determined from the load magnitude multiplied by 1 2/ ( )µ , and

then, in determining K I , its expression in terms of f is multiplied by 2µ.

Now we suppose that the problem for a flat crack of the same shape (located in an elastic isotropic body rather than a

piezoceramic medium) and for the same load−P x y( , )has been solved and the harmonic function f x y z( , , )has been determined.

Then, in (5) we set Φ 4 =0; Φ j j j jx y z f x y z( , , ) ( , , )= α ( j =1, 2, 3), where α j are some constants to be determined, and all the

functions Φ j jx y z( , , )(z zj j= −ν 1 2/ ) can fully be determined in terms of the harmonic function f x y z( , , ). Note that z j = 0(j = 1,

2, 3) in the crack plane z = 0. Using the functionsΦ j jx y z( , , ), we solve the homogeneous system of equations (4) and derive the

expressions for the stress components and the normal component of the electric-displacement vector in the crack plane:

( )σ αzz z j
E

j j
j

zc k e l f| ( ) |=
=

== + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∇∑0 44 15
1

3

1
2

01 ,
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( )D e k l fz z j j
S

j
j

z| ( ) |=
=

== + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∇∑0 15 11
1

3

1
2

01α ε ,

σ α
νxz z j

E
j j

jj
xz z

c k e l
f|

( ( ) )
|,=

=
==

+ +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑0

44 15

1

3 1

0 ,

σ α
νyz z j

E
j j

jj
yz z

c k e l
f|

( ( ) )
|,=

=
==

+ +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑0

44 15

1

3 1

0 . (18)

It follows from (18) that if the unknown constants α j ( j = 1, 2, 3) are determined from the system of linear equations

( )α µj
E

j j
j

c k e l44 15
1

3

1 2( )+ + =
=
∑ , ( )α εj j

S
j

j

e k l15 11
1

3

1 0( )+ − =
=
∑ ,

α
νj

E
j j

jj

c k e l( ( ) )44 15

1

3 1
0

+ +
=

=
∑ , (19)

then the resulting electroelastic solution will satisfy the boundary conditions

u x R S3 13 23
20 0± ± ± ±= = = = ∈Ψ , ( / )σ σ �

,

σ σ σ13 23 33 30 0± ± ± ±= = = − = ∈, ( , ), ( )P x y D x S
�

. (20)

Let us now solve a new purely elastic problem for an isotropic medium with a flat crack of the same shape, but with the

boundary conditions

u x R S3 13 23
20 0± ± ±= = = ∈, ( / )σ σ �

,

σ σ σ13 23 330± ± ±= = = − ∈, ( , ) ( )q x y x S
�

, (21)

where the function q x y( , ) appears in (13).

If the solution of this problem is expressed in terms of the harmonic function f x y z1 ( , , ), i.e.,

2 1
2

1µ∇ = − ∈±f q x y x S( , ) ( )
�

, f x R Sz1
20, ( / )± = ∈�

, (22)

then we express the electroelastic solution in term of the functions Φ 4 0= and Φ j j j jx y z f x y z( , , ) ( , , )= β 1 ( j = 1, 2, 3) and

derive the following system of linear algebraic equations for the unknown constants β j ( j = 1, 2, 3):

( )β j
E

j j
j

c k e l44 15
1

3

1 0( )+ + =
=
∑ , ( )β ε µj j

S
j

j

e k l15 11
1

3

1 2( )+ − =
=
∑ , β

νj

E
j j

jj

c k e l( ( ) )44 15

1

3 1
0

+ +
=

=
∑ . (23)

With such β j ( j = 1, 2, 3), the following boundary conditions are satisfied:

u x R S3 13 23
20 0± ± ± ±= = = = ∈Ψ , ( / )σ σ �

,

σ σ σ13 23 33 30 0± ± ± ±= = = = − ∈, , ( , ) ( )D q x y x S
�

. (24)

We represent the solution of the original electroelastic problem with the boundary conditions (13) as a superposition of

two states, i.e.,
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Φ Φ4 10= = +, ( , , ) ( , , ) ( , , )j j j j j jx y z f x y z f x y zα β ( j = 1, 2, 3).

As a result, we get

( )K r c k e l f f
r

j
E

j j
j

I = + +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ∇ +

→ =
∑lim ( ) (

0
44 15

1

3

1
22 1π α 1 0

0
1
2

02 2)| lim |z
r

zr f=
→

== ∇π µ ,

K K rD r fD
r

z
r

zIV = = = ∇
→

=
→

=lim | lim |
0

3 0
0

1
2

1 02 2 2π π µ (
�
x R S∈ 2 / ). (25)

Note that an arbitrary finite (nonzero) number, including unity, may appear instead of 2µ on the right-hand sides of

Eqs. (19) and (23), since first the function f is determined from the magnitude of the load on the crack surface divided by this

number and then is multiplied by the same number in determining the SIF K I . It may be seen that with similar nature (structure)

of mechanical and electric loads on the crack surface there is no need to decompose the problem with the boundary conditions

(13) into two problems with the conditions (19) and (24).

Thus, for a flat crack of arbitrary shape (internal or external) located in the plane of isotropy of a piezoceramic material

under symmetric loads (13), the SIF K I depends neither on the material properties nor on the normal electric displacement on the

crack surface and completely coincides with the SIF K I for a purely elastic isotropic medium (with the same crack and under the

same load). Similarly, K IV also depends on neither the material properties nor the mechanical loads on the crack surface and

completely coincides with the SIF K I in the purely elastic problem for an isotropic medium with the same crack and under a load

represented by the same function as the normal electric displacement in the original problem.

If the electrostressed state ( , )σ ij iD0 0 of an electroelastic medium is symmetric about the crack plane, satisfies the

homogeneous equations (4), and is disturbed by the crack, then it can be represented as a superposition of the principal and

disturbed states. In so doing, we arrive at a boundary-value problem similar to that above.

Note that similar results have been obtained in [1, 7, 9, 10, 15, 16] for specific shapes of a flat crack and some types of

loading. For example, it was established in [1, 9, 10, 15] that the SIFs in the electroelastic and purely elastic problems for a

circular crack with constant stresses on its surface coincide. The same conclusion was drawn in [9] for an arbitrary symmetric

load on the surface of a circular crack and in [7, 15, 16] for a constant load and normal electric displacement on the surface of an

elliptic crack.

3. Electroelastic Solution for a Piezoceramic Material with an Elliptic Crack. Let us consider, as an example, an

elliptic crack (with semiaxes a1 and a2) in the plane of isotropy of a piezoceramic medium under linearly varying stresses and

normal electric displacement on the crack surface. The boundary conditions are given by

u x R S3 13 23
20 0± ± ± ±= = = = ∈Ψ , ( / )σ σ �

,

σ σ σ α α13 23 33 0
1 2

3 00± ± ± ±= = = − + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = − +, ,P p

x

a
q

y

a
D

x

a1 2

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ∈β

y

a
x S( )
�

.

To solve this problem and determine the functions Φ j jx y z( , , ) ( j = 1, 2, 3), we will use the following harmonic

functions:

ω
ξ

n j

j

n

x y z
x

a s

y

a s

z

s

ds

Q s
j

( , , )
( )

=
+

+
+

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1
2

2

2
2

2

1

∞

∫ ,

where Q s s a s a s( ) ( ) ( )= + +1
2

2
2 , and the elliptic coordinate ξ ξj jx y z= ( , , ) is a function of Cartesian coordinates and determined

as the maximum positive root of the following cubic equation for the variable s:

x

a s

y

a s

z

s

j
2

1
2

2

2
2

2

1
+

+
+

+ = .
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Since mechanical and electric loads are structurally similar (linear functions of Cartesian coordinates), we will not

decompose the original problem into two problems, and the functions Φ j jx y z( , , ) ( j = 1, 2, 3) (where Φ 4 0= ) can be taken to

have the form

Φ j j jx y z A
x

a s

y

a s

z

s

d

j

( , , )
( )=

+
+

+
+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞

∫0
2

1
2

2

2
2

2

1

ξ

s

Q s( )

+ A
x

B
y

x

a s

y

a s

z

sj j
( ) ( )1 1

2

1
2

2

2
2

2

1
∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
+

+
+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞

∫
2

ξ j

ds

Q s( )
, (26)

where A Aj j
( ) ( )

,
0 1

, and B j
( )1

are unknown constants to be determined from the boundary conditions.

After tedious manipulations and asymptotic expansion of the ellipsoidal coordinates at the crack front [12], we obtain

(for a a1 2> ) the formulas

K
P

E k

a

a

p

a

a k k

I = +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ′

−
⎛

⎝
⎜⎜

0 2

1 2

1

3 2

2 2

1 1

π π ϕ
( )

cos

( )

/ ⎞

⎠
⎟⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜ E k

k
K k( ) ( )

1

2

+
+

⎛
⎝
⎜ ⎞

⎠
⎟ −

′⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟
⎟
⎟

q

k
E k

k

k
K k

a

a

π ϕsin

( )
( )

( )
1

1
2

2

2

2

1

⎟

× +( sin cos ) /a a1
2 2

2
2 2 1 4ϕ ϕ ,

K
E k

a

a a

a k k

D = +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ′

−
⎛

⎝
⎜⎜

α π α π ϕ0 2

1 2

1

3 2

2 2

1 1( )

cos

( )

/ ⎞

⎠
⎟⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜ E k

k
K k( ) ( )

1

2

+
+

⎛
⎝
⎜ ⎞

⎠
⎟ −

′⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟
⎟
⎟

β π ϕsin

( )
( )

( )
1

1
2

2

2

2

1

k
E k

k

k
K k

a

a

⎟

× +( sin cos ) /a a1
2 2

2
2 2 1 4ϕ ϕ , (27)

where k a a= −( / ) /1 2
2

1
2 1 2 , ′ =k a a2 1/ , and K k( ) and E k( ) are complete elliptic integrals of the first and second kinds.

As mentioned above, K I depends only on the mechanical loads, and K D only on the normal electric displacement on

the crack surface. As indicated above (Sect. 2), with such a crack and symmetric loads, the elastic and electric properties of the

material do not affect the values of the corresponding intensity factors. Note that the expressions for K I and K D could be derived

not by solving the electroelastic problem, but by using the established relationship between them and the SIF K I for a purely

elastic material, i.e., by solving only the purely elastic problem for an isotropic material.

4. Numerical Results and Their Analysis. Figures 1–3 shows K I for an elliptic crack with a1 = 1 and a2 = 0.6 (curve

1), a2 = 0.4 (curve 2), and a2 = 0.2 (curve 3) and linearly varying stresses on its surface. Figure 1 corresponds to a linear

dependence of the crack surface stress on the variable x: σ33 0 11 0 5± = − +P x a( . / ); Fig. 2 to a linear dependence on the variable y:

σ33 0 21 0 5± = − +P y a( . / ); and Fig. 3 to a linear dependence on both variables: σ33 0 1 21 0 5 0 5± = − + +P x a y a( . / . / ). If the normal
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electric displacement on the crack surface (as well as normal loads) varies in a similar manner, then the EDIF K D will exhibit

similar behavior.

Note that the relationship between the SIF and EDIF for a piezoelectric medium with a flat crack (in the plane of

isotropy) and the SIF for an isotropic medium allows us to calculate the SIF and EDIF directly from the SIF for an isotropic

medium, not solving specific problems for a piezoelectric material. For example, if the constant stresses σ σ11
0

22
0, , and σ33

0 and

the electric potential Ψ0
3
0= −E z define the principal electroelastic field in a piezoceramic body with a flat crack (located in the

plane of isotropy z = 0), then we can immediately determine Dz
0 from the following formula [1]:

D E d dz
S0
33 3

0
31 11

0
22
0

33 33
0= + + +ε σ σ σ( ) , (28)

where ε 33
S is an elastic compliance, and d31 and d33 are piezoelectric constants.

Let the crack surface be stress-free and electrically impermeable (which is a natural assumption because the permittivity

of, say, air is hundreds of times less than that of ceramics). Then the boundary conditions are

u x R S3 13 23
20 0± ± ± ±= = = = ∈Ψ , ( / )σ σ �

,

σ σ σ σ ε σ σ13 23 33
0

3 33 3
0

31 11
0

22
00± ± ± ±= = = − = − + + +, , ( )z

SD E d( )d x S33 33
0σ ( )

� ∈ .

Thus, with a homogeneous principal electrostressed state, the expression for the SIF completely coincides with that for

a purely elastic isotropic medium, and the EDIF can be calculated from the same formulas withσ z
0 replaced by Dz

0 , according to

(28). This is true for a flat crack of arbitrary shape. In the case of an elliptic crack, the expression for K D can be derived from

formulas (26) with α ε σ σ σ0 33 3
0

31 11
0

22
0

33 33
0= + + +S E d d( ) and α β= = 0. If only the tensile (compressive) stresses on the crack

plane are nonzero, σx
0 0≠ and σ y

0 0≠ , then K I = 0and K D ≠ 0since σ z
0 0= and D dz x y

0
31

0 0= +( )σ σ .

Conclusions. We have established a relationship between the SIF and EDIF for an arbitrarily shaped flat crack in the

plane of isotropy of a piezoceramic body under symmetric mechanical and electric loads and the SIF for a purely elastic isotropic

body. This makes it possible to calculate K I and K D immediately from K I for a purely elastic body, not solving the

electroelastic problem. Thus, we can now, on the one hand, determine the SIF and EDIF for many other electroelastic problems,

using, for example, the results from [3, 8, 12, etc.], from the SIF for elastic bodies and, on the other hand, reduce an electroelastic

problem to a more simple elastic problem. We have outlined a simple universal algorithm for solving the electroelastic problem

for an arbitrarily shaped flat crack in the plane of isotropy of a medium under symmetric mechanical and electric loads. This

algorithm employs the known harmonic function f x y z( , , ) for the purely elastic problem to determine the functions

Φ j jx y z( , , ), which not only allow determination of the stress and electric-displacement intensity factors, but also completely

describe the electrostressed state of a cracked piezoceramic body.
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