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The structural theory of short-term microdamage is generalized to a laminated composite with a

microdamageable matrix and physically nonlinear reinforcement. The basis for the generalization is the

stochastic elasticity equations of a laminated composite with a porous matrix. Microvolumes in the

matrix material meet the Huber–Mises failure criterion. The damaged-microvolume balance equation

for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a

laminated composite with porous matrix and physically nonlinear reinforcement constitute a

closed-form system of equations. This system describes the coupled processes of physically nonlinear

deformation and microdamage occurring in different composite components. Algorithms for computing

the microdamage–macrostrain relationships and deformation diagrams are developed. Uniaxial tension

curves are plotted for a laminated composite with linearly hardening reinforcement

Keywords: laminated composite, microdamageable matrix, physically nonlinear reinforcement, coupled

process of physically nonlinear deformation and microdamage

The structural model of damage [6, 8–21] is one of the new trends in damage theory. The model is based on the

stochastic equations of the mechanics of microinhomogeneous bodies. Dispersed microdamages are modeled by a system of

quasispherical micropores [6], and the accumulation of microdamages is modeled by increased porosity. A microvolume is

damaged, producing a micropore, according to the Huber–Mises or Schleicher–Nadai failure criterion, where the ultimate

strength is a random function of coordinates. The effective properties and stress–strain state of a macrovolume of a porous

composite material are determined from the stochastic differential equations of microinhomogeneous elastic medium. The

general properties of the distribution function for the statistically homogeneous random field of ultimate microstrength are used

to derive the equation of balance of damaged microvolumes or porosity. This equation relates porosity and microstress

invariants. The simultaneous equations relating the effective elastic constants and porosity and the porosity balance equation

describe the coupled processes of deformation and microdamage and lead to nonlinear deformation.

We will study the deformation of a two-component laminated composite with physically nonlinear reinforcement and

microdamageable matrix. To this end, we will use the stochastic elasticity equations for a laminated composite with a porous

matrix and nonlinearly elastic reinforcement. The damage of microvolumes is described by the Huber–Mises failure criterion,

where the ultimate strength is a random function of coordinates with power or Weibull distribution. The deformation of the

laminated material will be described and its effective deformation properties will be determined using the stochastic elasticity

equations for a laminated composite with a porous matrix and physically nonlinear reinforcement. Using the properties of the

distribution function of the statistically homogeneous random field of ultimate microstrength, we will derive a balance equation

for damaged microvolumes, which will be nonlinear with respect to porosity. This equation and the equations relating

macrostresses and macrostrains in a laminated composite with physically nonlinear reinforcement and microdamaged matrix

constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation

and microdamage in different components of the composite. We will propose algorithms for computing the
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microdamage–macrostrain relationships and deformation curves. Also we will plot uniaxial tension curves for a laminated

composite with a linearly hardening reinforcement.

1. Let us consider a two-component laminated composite with physically nonlinear reinforcement and matrix acquiring

microdamages during loading. The microdamages are simulated by randomly dispersed quasispherical micropores appearing in

microvolumes where the stresses exceed the ultimate microstrength. Let the matrix have porosity p2 . The physically nonlinear

deformation of the reinforcement is described by the dependence of its elastic moduli on strains. Denote the bulk and shear

moduli of the reinforcement and matrix by K1 1, µ , and K 2 2,µ , respectively, and the volume fractions of the reinforcement and

porous matrix by c1 and c2 , respectively. The moduli K1 and µ1 depend on strains, and the moduli K p2 and µ2 p are defined in

terms of K 2 and µ2 [6, 7],
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and depend on the porosity p2 . Then the macrostresses 〈 〉σ ij and macrostrains 〈 〉ε ij are related by
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and the effective elastic moduli λ λ λ λ11 12 13 33
* * * *, , , , and λ 44

* are functions of the porosity p2 and macrostrains 〈 〉ε jk .

The effective elastic moduli of a laminated composite with physically nonlinear reinforcement and porous matrix are

determined by the following iterative algorithm. In the nth-order approximation, the effective moduli λ λ λ λ11 12 13 33
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Here λ p
n( )

and µ p
n( )

take the values λ µ1 1
( ) ( )

,
n n

, and λ µ2 2p p, in the nonlinear reinforcement and porous matrix, respectively; and

an arbitrary function ϕ is defined by
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where 〈 〉ε jk
n1 ( ) are the mean nth-order strains in the reinforcement. They are determined in terms of the macrostrains 〈 〉ε jk by
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In the zero-order approximation, the reinforcement is considered linearly elastic:
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Given the macrostrains 〈 〉ε jk , the effective moduli are evaluated as the following limits:
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The Huber–Mises failure criterion defines a condition for the formation of a single microdamage in a microvolume of

the undamaged portion of the matrix:
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where I jk jkσ σ σ12 12 12 1 2= 〈 ′〉 〈 ′〉( ) / is the second invariant of the mean stress deviator 〈 ′〉σ jk
12 for the undamaged portion of the matrix,

and k2 is the ultimate microstrength, which is a random function of coordinates.

The one-point distribution function F k2 2( ) may have the form of a power law on some interval
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or an exponential–power law (Weibull distribution)
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where k20 is the minimum value of the ultimate microstrength of the matrix; and k21, m2 , and n2 are deterministic constants

describing a specific distribution function, which are determined by approximating experimental microstrength spread curves or

deformation curves.

The random field of the ultimate microstrength k2 of the matrix is statistically homogeneous for real materials. Its scale

of correlation and the dimensions of single microdamages and distances between them are assumed negligible compared with a

macrovolume of the material. Then the random field k2 and the distribution of microstresses in the matrix under homogeneous

loading satisfy the property of ergodicity, and the distribution function F k2 2( )determines the relative fraction of the undamaged

material in the matrix in which the ultimate strength is less than k2 . Therefore, if 〈 〉 ≠σ jk
12 0, then the function F I2

12( )σ , according

to (1.8)–(1.10), determines the relative fraction of damaged microvolumes in the matrix. Since damaged microvolumes are

modeled by pores, we can write the balance equation for the damaged microvolumes in the matrix or for its porosity:

p p p F I2 20 20 2
121= + −( ) ( )σ , (1.11)

where the mean stresses 〈 〉σ jk
12 are related to the macrostrains 〈 〉ε jk by the following formulas [7]:
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and effective moduli λ 2 p and µ2 p of the matrix are defined by (1.1).

Equations (1.2), (1.11), and (1.12) constitute a closed-form system describing the coupled processes of statistically

homogeneous, physically nonlinear deformation and damage of a two-component laminated composite. The physical

nonlinearity of its reinforcement influences the formation of microdamages in (i.e., the porosity of) the matrix under loading,

which is reflected on the deformation curve of the composite. Therefore, the resulting deformation curve of the laminated

composite includes the physical nonlinearity of the reinforcement and the nonlinearity due to increasing porosity of the matrix.

The deformation of a laminated composite with physically nonlinear reinforcement and damaged matrix at given

macrostrains are described by determining the macrostrain-dependent effective elastic moduli of the laminated material with

porous matrix and physically nonlinear reinforcement by the iterative algorithm (1.1), (1.3)–(1.7) and determining the porosity

of the matrix from Eqs. (1.11) and (1.12), also using a certain iterative method. Let us represent Eq. (1.11) for the nth step of the

iterative process (1.1), (1.3)–(1.7) in the form
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Then the root p2 of Eq. (1.13), (1.14) at the mth step of some iterative process can be found by the formula

( )p A f p
m n n m

2 2 2 2
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where A2 is an operator acting on the function f p
n

2 2
( )

( ). Its expression will be given below.
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The desired root is determined as follows:
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(1.16)

Relations (1.1)–(1.7), (1.13)–(1.16) give a solution to the problem posed, i.e., they produce macrodeformation curves

(〈 〉σ jk versus 〈 〉ε jk ) and microdamage curves (p2 versus 〈 〉ε jk ) for the laminated composite under consideration.

2. As an example, let us analyze the coupled processes of nonlinear deformation and microdamage of a laminated

composite with nonlinearly elastic reinforcement. Let the bulk strains of the reinforcement be linear, and the shear strains be

described by a linear hardening curve, i.e., the following relations hold within a microvolume in the reinforcement:
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where ′ε ij
1 and ′σ ij

1 are the deviators of the strain and stress tensors, respectively, σ10 is the coordinate-independent tensile elastic

limit, and µ10 and ′µ1 are the material constants of the reinforcement.

We will use the secant method [1] to find the root p2 of Eq. (1.13), (1.14). Since the root p2 falls into the interval [p20, 1],

which follows from the inequalities
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the zero-order approximation of p
n

2
0( , )

is determined, according to the secant method, from the formula

p
a f b b f a

f b

n
n n

n2
0 2

0
2 2

0
2
0

2 2
0

2

( , )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

(
=

−

2
0

2 2
0( ) ( ) ( )

) ( )− f a
n

, (2.5)

where a p2
0

20
( ) = and b2

0( ) = 1.

The subsequent approximations are determined in the iterative process
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which proceeds until
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( )| |f p
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2 2
( ) ( , ) < δ, (2.7)

where δ is the accuracy of computing the root.

Based on the theory stated above, we have studied the coupled processes of nonlinear deformation and microdamage of

a laminated composite with Weibull-distributed microstrength in its matrix. The components of the composite are

aluminoborosilicate-glass reinforcement described by the linear-hardening curve (2.1), (2.2) with the following parameters [3]:

K1 = 38.89 GPa, µ1 = 29.17 GPa, ′ =µ1 0.334 GPa (2.8)

and linearly elastic epoxy matrix with the following characteristics [2, 3]:

K 2 = 3.33 GPa, µ2 = 1.11 GPa. (2.9)

The limits of proportionality of the reinforcement and the minimum tensile microstrength of the matrix σ2 20

3

2p k=

have the following values:

σ10 = 0.01 GPa, σ2 p = 0.007 GPa, (2.10)

σ10 = 0.07 GPa, σ2 p = 0.007 GPa. (2.11)

When

〈 〉 ≠ 〈 〉 = 〈 〉 =ε σ σ11 22 330 0, (2.12)

according to (1.2), the macrostresses 〈 〉σ11 are related to the macrostrain 〈 〉ε11 by
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in the porosity balance equation (1.11). When

〈 〉 ≠ 〈 〉 = 〈 〉 =ε σ σ33 11 220 0, (2.15)

according to (1.2), the macrostresses 〈 〉σ33 are related to the macrostrain 〈 〉ε 33 by
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in the porosity balance equation (1.11).

Figures 1 and 2 show by solid lines the porosity p2 of the matrix versus the macrostrains 〈 〉ε11 and 〈 〉ε 33 , respectively,

for a laminated composite with a linearly hardening reinforcement with the limit of proportionality (2.10) and a matrix with the

minimum microstrength (2.10). For reference, similar curves (dashed) for a laminated composite with a linear reinforcement

have been plotted in the same figures. From Fig. 1 it is seen that the physical nonlinearity and volume fraction c1 of the

reinforcement do not affect the microdamage of the matrix. According to Fig. 2, the physical nonlinearity of the reinforcement

has a strong effect on the microdamage of the matrix for all, especially large (c1 ≥ 0.5), values of c1 > 0. With nonlinear

reinforcement, microdamage is less intensive at the initial stage (for a fixed value of 〈 〉ε 33 , the porosity p2 of the matrix is less).

Figures 3 and 4 show by solid lines the macrostress 〈 〉σ11 versus the macrostrain 〈 〉ε11 for (2.10) and (2.11),

respectively. Figure 5 shows the macrostress 〈 〉σ33 versus the macrostrain 〈 〉ε 33 for a laminated composite with a linearly

hardening reinforcement with the limit of proportionality (2.10) and a matrix with the minimum microstrength (2.10). For

reference, similar curves (dashed) for a laminated composite with a linear reinforcement have been plotted in the same figures.

The figures demonstrate that the physical nonlinearity of the reinforcement has a significant effect on the deformation curves for

all values of c1 0> . Comparing the results for linear and nonlinear reinforcements, we see that the level of macrostresses in the

material with linearly hardening reinforcement is higher than in the material with linear reinforcement, especially for the

dependence of 〈 〉σ11 on 〈 〉ε11 .
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