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The natural vibrations of anisotropic rectangular plates of varying thickness with complex boundary

conditions are studied using the spline-collocation and discrete-orthogonalization methods. The basic

principles of the approach are outlined. The natural vibrations of orthotropic plates with parabolically

varying thickness are calculated. The results (natural frequencies and modes) obtained with different

boundary conditions are analyzed
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Introduction. Plates of varying thickness are widely used in structures of various designations. To design them, it is

necessary to determine the natural frequencies and modes with high accuracy, which are needed to describe the response of

plates to the operating conditions. For plates with constant thickness and hinged opposite edges, the solution can be constructed

in a closed form [5, 13]. With boundary conditions of other types, however, it is impossible to obtain a similar solution for natural

vibrations of elastic plates. The natural vibrations of orthotropic plates with such boundary conditions were studied quite

actively, which was reflected in a number of publications. The solutions for forced and natural vibrations of orthotropic plates

were obtained in [21] in the form of double trigonometric series. Lagrangian multipliers were used in [20] to solve a similar

problem with allowance for shear strains in several first modes. The superposition method was used in [14] to table natural

frequencies for a certain range of stiffness ratios. In [23], the superposition method and affine transformation were used to

determine the natural frequencies of orthotropic plates partially clamped and partially simply supported. The Kantorovich

method was used in [7] to study the natural vibrations of clamped plates. The natural vibrations of complex anisotropic plates

were studied in [2, 9] using variational methods and the R-function method. The natural vibrations of rectangular plates of

varying thickness were addressed by many authors. For example, the paper [12] is concerned with the general natural-vibration

problem for plates of varying thickness. The transverse vibrations of plates with exponentially varying thickness are studied in

[10] and inhomogeneous rectangular plates with parabolically varying thickness in [22]. The natural vibrations of simply

supported plates with linearly varying thickness were investigated in [6, 9, 11, 19].

Thus, we may conclude that there is a variety of approximate approaches to natural-vibration problems for anisotropic

rectangular plates with boundary conditions that do not allow closed-form solutions. Recently, computational mathematics,

mathematical physics, and mechanics have widely employed spline functions to solve such problems. This is due to the

following advantages of the spline-approximation method over the other ones: stability of splines against local perturbations,

i.e., the behavior of a spline in the neighborhood of a point does not affect the overall behavior of the spline (as polynomial

approximation does, for example); better convergence of spline-interpolation compared with polynomial interpolation; and

simple and convenient computer implementation of spline algorithms. The use of spline functions in variational, projective, and

other discrete–continuous methods allows us to obtain appreciable results as contrasted to the use of classical polynomials, to

simplify substantially their numerical implementation, and to obtain a highly accurate solution.
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In the present paper, we extend the spline-collocation method proposed in [1, 15] to the natural vibrations of rectangular

orthotropic plates of varying thickness with complex boundary conditions. This method was also used in [16–18] to analyze the

stress–strain state of elastic bodies.

1. Basic Relations (Constitutive Equations). Let us solve the natural-vibration problem for a rectangular orthotropic

plate of varying thickness h(x, y) in a rectangular coordinate system (the coordinate plane xÎy is the mid-surface of the plate).

Within the framework of Kirchhoff–Love theory, the vibration equations can be written [4, 5] as
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where x and y are the Cartesian coordinates (0≤ ≤x a and 0≤ ≤y b); t is time; w is the deflection of the plate; and ρis the density of

its material.

The moments M x , M y , and M xy and the shear forces Qx and Q y satisfy the relations
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where the stiffness characteristics Dij of the plate are defined by
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Here E1, E2 , G12 , ν1, and ν2 are the elastic and shear moduli and Poisson’s ratios.

The system of equations (1)–(2) yields an equivalent differential equation for the deflection w:
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It is assumed that all points of the plate vibrate harmonically with a frequency ω, i.e., w x y z w x y ei t( , , ) ~( , )= ω (the

symbol “~” is omitted hereafter).

Let boundary conditions expressed in terms of the deflection be specified at the edges x = 0, x = a, y = 0, and y = b. For

y = const, we will consider the following boundary conditions:

w = 0,
∂
∂

=
w

y
0 at y = 0, y b= (clamped); (4)

w = 0,
∂
∂

=
2

2
0

w

y
at y = 0, y b= (hinged); (5)

w = 0,
∂
∂

=
2

2
0

w

y
at y = 0 (hinged) and w = 0,

∂
∂

=
w

y
0 at y b= (clamped). (6)

Similar conditions can be specified at the boundaries x = const.
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2. Solution Method. We will search for the solution of Eq. (3) in the form
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where w xi ( ) (i N= 1, ) are unknown functions, and ψi y( ) are functions constructed using quintic B-splines (N ≥ 6).

The functions ψi y( ) are selected so as to satisfy the boundary conditions for y = const using linear combinations of

B-splines:
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where B i
5 ( y) (i = – 2, ..., N + 2 is spline number) are splines constructed on a uniform mesh ∆ with a spacing h y :
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when the edges y = 0and y b= are clamped,
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where a a x yi i= ( , ), i = 1, 2, ..., 9, a a x y10 10= ( , , )ω .

We substitute (7) into Eq. (9) and require that it be satisfied at given collocation points ξ k b∈ [ , ]0 , k N= 0, . Let us

consider the case where the number of mesh nodes is even, i.e., N n= +2 1(n ≥ 3), and ξ2 2 2 1i i iy y∈ +[ , ], ξ2 1 2 2 1i i iy y+ +∈ [ , ]

( , ,... , )i n= 0 1 . The interval [ , ]y yi i2 2 1+ has two collocation points, and the adjacent intervals [ , ]y yi i2 1 2 2+ + do not have such

points. Within each of the intervals [ , ]y yi i2 2 1+ , collocation points are selected as follows:ξ2 2 1i i yy z h= + ,ξ2 1 2 2i i yy z h+ = +
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= + are the roots of a quadratic Legendre polynomial on the interval [0, 1]. Such

collocation points are optimal and substantially increase the accuracy of approximation. As a result, we obtain a system of N + 1

linear differential equations for wi . If
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The boundary conditions for this system can be expressed as

B Y1 0 0( )= , B Y a2 0( )= . (12)
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To solve the eigenvalue problem for the system of ordinary differential equations (11) with the boundary conditions

(12), we will combine discrete orthogonalization with incremental search [2].

3. Numerical Solution. We will use the proposed approach to study the spectrum of natural vibrations of a square plate

with varying thickness and different boundary conditions. The thickness of the plate varies by the formula

h x x x h( ) [ ( ) ]= − + +α 6 6 1 12
0 . (13)

The material of the plate is orthotropic (fiberglass fabric) with Young’s moduli E1
44 76 10= ⋅. MPa and E2

42 07 10= ⋅. MPa,

shear modulus G12
40 531 10= ⋅. MPa, and Poisson’s ratios ν1 0 149= . and ν1 0 0647= . .

The dimensionless frequencies ω ω ρ= a h D2
0

1 2( / ) / (D h0 0
3 412 10= ⋅( / ) MPa) of the clamped plate determined by the

spline-collocation method with different number of collocation points (N = 10, 12, 14, 16, 18, 20, 22) differ a little (Table 1).

Table 2 collect dimensionless frequencies ω i ( , , )i = 1 2 3 (ordered by value) of the orthotropic square plate for α ≤ 0and

α > 0, respectively, and the following boundary conditions:

(i) all edges are clamped (boundary conditions of type À)

w = 0,
∂
∂

=
w

y
0 at y = 0, y a= ,

w = 0,
∂
∂

=
w

x
0 at x = 0, x a= ,

(ii) three edges are clamped and the fourth one is hinged (boundary conditions of type B)

w = 0,
∂
∂

=
w

y
0 at y a= ,

w = 0,
∂
∂

=
2

2
0

w

y
at y = 0,

w = 0,
∂
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=
w

x
0 at x = 0, x a=
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TABLE 1

α ωi

N

10 12 14 16 18 20 22

0

ω1 61.139 61.132 61.129 61.127 61.127 61.127 61.127

ω2 107.188 107.066 107.016 106.994 106.982 106.976 106.972

ω3 142.550 142.537 142.532 142.530 142.529 142.528 142.528

0.3

ω1 62.108 62.102 62.099 62.099 62.098 62.098 62.098

ω2 97.737 97.637 97.598 97.580 97.570 97.566 97.562

ω3 145.289 145.276 145.271 145.269 145.268 145.268 145.267



and boundary conditions of type C

w = 0,
∂
∂

=
w

y
0 at y = 0, y a= ,

w = 0,
∂
∂

=
w

x
0 at x = 0,

w = 0,
∂
∂

=
2

2
0

w

x
at x a= ;
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TABLE 2

Boundary

conditions
ωi

α

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

A

ω1 58.375 59.012 59.605 60.159 60.674 61.139 61.542 61.871 62.108 62.237 62.238

ω2 121.526 119.010 116.240 113.311 110.281 107.188 104.058 100.904 97.737 94.557 91.364

ω3 124.339 129.656 134.030 137.585 140.405 142.550 144.062 144.968 145.289 145.035 144.212

Â

ω1 50.227 51.605 52.905 54.129 55.270 56.320 57.266 58.095 58.791 59.339 59.724

ω2 102.334 100.723 98.953 97.083 95.147 93.166 91.149 89.104 87.026 84.911 82.749

ω3 121.396 126.863 131.384 135.083 138.045 140.330 141.977 143.017 143.469 138.723 131.720

Ñ

ω1 52.733 52.211 51.624 50.995 50.337 49.659 48.965 48.257 47.535 46.801 46.051

ω2 109.151 112.403 110.490 107.334 104.080 100.783 97.477 94.187 90.928 87.713 84.546

ω3 116.222 113.496 114.497 116.613 117.777 118.403 118.535 118.208 117.477 116.269 114.688

D

ω1 43.939 44.009 43.998 43.923 43.790 43.607 43.376 43.098 42.774 42.402 41.982

ω2 97.299 95.178 92.905 90.549 88.155 85.755 83.369 81.013 78.694 76.420 74.190

ω3 105.958 109.322 111.879 113.750 115.019 115.748 115.981 115.752 115.085 113.998 112.506

Å

ω1 48.701 47.412 46.059 44.676 43.289 41.918 40.583 39.297 38.077 36.933 35.878

ω2 95.664 97.177 97.994 98.235 97.985 96.671 93.185 89.743 86.364 83.065 79.858

ω3 113.313 110.306 107.049 103.676 100.170 97.306 96.249 94.852 93.149 91.160 88.934

G

ω1 45.045 46.929 48.698 50.354 51.893 53.306 54.586 55.718 56.642 57.495 58.109

ω2 85.738 85.046 84.248 83.378 82.453 81.479 80.460 79.389 78.258 77.055 75.765

ω3 119.425 124.989 129.605 133.396 136.448 138.819 140.291 134.815 129.283 123.717 118.135



(iii) two edges are clamped and two are hinged (boundary conditions of type D)

w = 0,
∂
∂

=
w

y
0 at y = 0,

w = 0,
∂
∂

=
2

2
0

w

y
at y a= ,

w = 0,
∂
∂

=
w

x
0 at x = 0,

w = 0,
∂
∂

=
2

2
0

w

x
at x a= ,

boundary conditions of type E

w = 0,
∂
∂

=
w

y
0 at y = 0, y a= ,

w = 0,
∂
∂

=
2

2
0

w

x
at x = 0, x a= ,

and boundary conditions of type G

w = 0,
∂
∂

=
2

2
0

w

y
at y = 0, y a= ,

w = 0,
∂
∂

=
w

x
0 at x = 0, x a= .

Figures 1–3 show the dimensionless frequency ω i of the square orthotropic plate with different boundary conditions as

a function of the parameter α for N = 10. These results enable us to compare the first three frequencies of a plate with thickness

varying in different ways. The frequency of the clamped plate is maximum among all the frequencies computed for different

boundary conditions and different values of α. As the parameter α in (13) increases, the frequency behaves monotonically in the

first mode and nonmonotonically in higher modes for some types of boundary conditions. The maximum and minimum

frequencies ω2 and ω3 , shown in Figs. 2 and 3, correspond to the reorganization of vibration modes.
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Figure 4 shows natural modes of the plate with type G boundary conditions. Note that the third modes for different

values of α differ significantly.
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