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An approach is proposed to solve boundary-value stress–strain problems for cylindrical shells with

thickness varying in two coordinate directions. The approach employs discrete Fourier series to separate

circumferential variables. This makes it possible to reduce the problem to a one-dimensional one, which

can be solved by the stable discrete-orthogonalization method. Examples are given
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Modern structural elements and devices include circular cylindrical shells with constant or variable thickness and

different end conditions under nonuniform or local loads [3, 4, 7, 12–15]. Methods of stress–strain analysis are available for

cylindrical shells of constant thickness. For shells of variable thickness, however, the available methods apply only under

various simplified assumptions. For example, some methods for cylindrical shells of variable thickness employ the simplified

equations of the Mushtari–Donnell–Vlasov theory of shells [1, 2, 6, 8, 10, 11] or certain end conditions that allow separating

variables [5].

The present paper addresses stress–strain problems for cylindrical shells of thickness varying in two coordinate

directions under surface load and with arbitrary end conditions. These problems are solved using the exact equations of thin

shells [2, 8] and discrete Fourier series [9]. By expanding all functions into Fourier series in the circumferential coordinate on

continuous and discrete point sets, a two-dimensional boundary-value problem is reduced to a system of ordinary differential

equations with certain boundary conditions, which is solved by the stable discrete-orthogonalization method [3].

1. Let the median surface of the shell be referred to an orthogonal coordinate system, with s and θ being the arc length

and central angle, respectively. The basic relations include:
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and the elastic relations

( )N Ds M s= +ε νεθ , ( )N DN sθ θε νε= + , S DN s=
−1
2

ν
ε θ , ( )M Ds M s= +κ νκθ ,

( )M DM sθ θκ νκ= + , H DM s= −( )1 ν κ θ (0 ≤ s ≤ L, 0 ≤ θ ≤ π), (3)
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are tangential and flexural stiffnesses; u, v, and w are the displacements along the generatrix, directrix, and normal to the median

surface; εs, εθ, εsθ and κs, κθ, κsθ are tangential and flexural strains; Ns, Nθ, S, Qs, Qθ, Ms, Mθ, and H are forces and moments;

h = h (s, θ) is the thickness of the shell; r is the radius of curvature of its cross section; E is Young’s modulus; ν is Poisson’s ratio;

and qs, qθ, and qγ are the load components.

Let � , , � , , , ,Q N S M w u vs s s , and ϑ s be resolving functions, where
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Assuming that qs = qθ= 0 and performing some transformations in (1)–(4), we obtain a system of resolving equations:

∂
∂

= −
∂
∂

+
− ∂

∂
−
− ∂

∂
∂�Q

s r
N

r

M

r
D

v

r
D

s
s

s
N M

ν ν
θ

ν
θ

ν
θ2

2

2

2

2

2

4

2

2

1 1 v

∂
⎛
⎝
⎜ ⎞

⎠
⎟
θ
+
−

+
− ∂

∂
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ −

1 12

2

2

4

2

2

2

2

ν ν
θ θr

D w
r

D
w

qN M r ,

( )∂
∂

=−
∂
∂
+

∂
∂
⎛
⎝
⎜

⎞
⎠
⎟ +

− ∂
∂

∂N

s r

S

r

D

p D
S

r

D

p

s M

N

M1 4 2 1

3
0

3
0

�
�

θ θ
ν

θ
( )ϑ s M

r

D

p

u

∂
⎛
⎝
⎜

⎞
⎠
⎟ −

− ∂
∂

∂
∂

⎛
⎝
⎜

⎞
⎠
⎟

θ
ν

θ θ
2 1

4
0

,

∂
∂
=−

∂
∂

−
∂
∂

−
− ∂

∂
∂
∂

⎛
⎝
⎜ ⎞

⎠
⎟

�S

s r

N

r

M

r
D

vs s
N

ν
θ

ν
θ

ν
θ θ2

2

2

1 ( )−
− ∂

∂
∂
∂

⎛
⎝
⎜ ⎞

⎠
⎟ −

− ∂
∂

+
− ∂

∂
∂1 1 12

4

2

2

2

4

2ν
θ θ

ν
θ

ν
θr

D
v

r
D w

r
D

w
M N M ∂

⎛

⎝
⎜

⎞

⎠
⎟

θ2
,

∂
∂

= −
∂
∂
⎛
⎝
⎜

⎞
⎠
⎟ −

− ∂
∂

∂
∂

M

s
Q

r

D

p D
S

r

D

p

s
s

M

N

M s� �
( )4 2 1

2
0

2
0θ

ν
θ

ϑ
θ

ν
θ θ

⎛
⎝
⎜

⎞
⎠
⎟ +

− ∂
∂

∂
∂

⎛
⎝
⎜

⎞
⎠
⎟

2 1

3
0

( )

r

D

p

uM
,

∂
∂
=−

w

s sϑ ,
∂
∂
= −

∂
∂
−

u

s D
N

r

v

r
w

N
s

1 ν
θ
ν

, (6)

∂
∂
=
−

−
∂
∂
+

∂
∂
−

∂v

s p D
S

r

u

r

D

p D

u

r

D

p DN

M

N

M

N

s2

1

1 1 4 4

0
3

0
2

0ν θ θ
�

ϑ
∂θ

,

∂
∂

= +
∂
∂

−
∂
∂

ϑ s

M
ss D

M
r

w

r

v1

2

2

2 2

ν
θ

ν
θ

, p
r

D

D

h

r

M

N
0 2

2

2
1

4
1

4

12
= + = + . (7)

Boundary conditions for the resolving functions are specified at the shell ends s = 0 and s = L.

Since the stiffnesses DN and DM depend on the variable θ, it is impossible to separate variables using Fourier series in

the circumferential coordinate. Therefore, we introduce the following additional functions that include terms that prevent the

separation of circumferential variables:
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In view of (8), the resolving system (6) becomes
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Let us expand all the functions appearing in (9) into Fourier series in θ:
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Substituting (10) into Eqs. (9) and the boundary conditions and separating the variables, we arrive at a boundary-value

problem for a system of ordinary differential equations with corresponding boundary conditions for the amplitude values of the

functions appearing in (9):
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The boundary conditions are
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B Z b1 10( )= , B Z L b2 2( )= , (12)

where Z s Q N S M w u vs n s n n s N n n n s n
T( ) { � , , � , , , , , }, , , ,= ϑ is the column vector of resolving functions, B1 and B2 are rectangular

matrices, and b1 and b2 are vectors.

We will solve the boundary-value problem (11), (12) by the discrete-orthogonalization method on the interval 0 ≤ s ≤ L.

In view of (8), for each n in Eqs. (11) we have
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The functionsϕ in
j

appearing in the expressions for the coefficients of the Fourier series (10) are not expressed explicitly

in terms of the Fourier coefficients of the resolving functions and are calculated during the integration of system (11) using

discrete Fourier series at each step s = const. Relations (13) show the dependence of these coefficients on the amplitude values of

certain resolving functions and the interrelation of all the equations in (11).

2. Equations (11) are integrated simultaneously for all harmonics using the discrete-orthogonalization method. To

determine, during the integration, the amplitude values of the functions (13) from the current values of the resolving functions for

a fixed value s s k Kk= =( , )0 , we calculate the values of the functions (13) at a number of points θr r R( , )= 0 of the interval

0 ≤ θ ≤ π and expand the discrete function into a Fourier series, which will be called a discrete Fourier series. As the number of

points θr at which the values of the additional functions are calculated increases, the discrete Fourier series tends to the exact

Fourier series. At the beginning of the integration, the boundary conditions are satisfied. The amplitude values of the functions

(13) are substituted into system (11) and the integration over s is continued, using the Runge-Kutta method with

orthogonalization at isolated points of the interval 0≤ s ≤ L [3]. Thus, using the current amplitude values of the resolving

functions, we calculate the following quantities at the points θr (1 ≤ r ≤ R) for the fixed value s = sk (0 ≤ s ≤ L):
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Using the numerical values of these quantities and the expressions of the functions (8), we obtain
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The values of the functionsϕ ϕ ϕ ϕ2 3 4 5
j j j
, , , ,ϕ 6 , andϕ 7 at the points θr (1 ≤ r ≤ R) are calculated similarly.

Using the obtained values of the additional functions, we construct discrete Fourier series, similar to (10), whose

coefficients are the deficient amplitude values of the functions (13) at s = sk for system (11). Using the standard procedure of

determining the Fourier coefficients for a tabulated function, we find the numerical values of the Fourier coefficients of the

additional functions [9]. These coefficients are substituted into system (11) and the integration over s is continued, passing from

the point sk to the point sk + 1.

To solve the boundary-value problem (11), (12), we apply the stable discrete-orthogonalization method. At the

beginning and end of integration, the boundary conditions are satisfied.

As the number of points R at which the additional functions are calculated increases, the discrete Fourier series tends to

the continuous Fourier series. In practice, just few first terms of the trigonometric series are used since the Fourier coefficients
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and, hence, the influence of higher harmonics decrease rapidly. Obviously, the accuracy of Fourier-series approximation

essentially depends on the rate of decrease in the Fourier coefficients, which in turn is related to the differential properties of a

function continued to the whole interval (–∞,∞). There are approximate approaches that allow us to compare the coefficient of a

discrete Fourier series on a finite point set with the exact values of this and other coefficients of a Fourier series for the same

function defined analytically. For example, it was shown in [9] that if the number of terms in a discrete Fourier series is R = 12,

then it is necessary to retain only two to three terms. If R = 24, then acceptable accuracy may be expected to be achieved with

seven to eight terms.

3. Let us discuss the solutions of some problems obtained using our approach.

To illustrate the convergence of an approximate solution to an exact one, let us consider a cylindrical shell of thickness

varying in the circumferential direction as

h H= +( cos )1 β θ (0 ≤ θ ≤ 2π). (15)

The shell is subject to the load q q s Lγ π= 0 sin ( / ) and its ends are hinged, i.e.,

Ns = Ms = w = v = 0 at s = 0, s = L. (16)

The end conditions (16) allow us to solve the problem in two ways:

(i) using the approach based on discrete Fourier series and

(ii) separating longitudinal variables and solving a one-dimensional problem by the discrete-orthogonalization method.

The latter approach is considered to be exact.

661

TABLE 1

Method R N

WE/103q0 N θ/10q0

θ/π = 0 θ/π = 1 θ/π = 0 θ/π = 1

s/L = 0.1 s/L = 0.5 s/L = 0.1 s/L = 0.5 s/L = 0.1 s/L = 0.5 s/L = 0.1 s/L = 0.5

H = 0.25

1

12 3 0.654 2.117 1.887 6.108 0.794 2.569 0.794 2.571

16 5 0.770 2.492 2.098 6.788 0.963 3.115 0.891 2.884

24 8 0.745 2.411 2.146 6.945 0.917 2.968 0.917 2.969

36 12 0.749 2.424 2.157 6.982 0.926 2.997 0.926 2.998

2 — — 0.748 2.421 2.157 6.981 0.926 2.996 0.927 3.000

H = 0.5

1

12 3 0.326 1.055 0.943 3.053 0.791 2.561 0.794 2.570

16 5 0.385 1.245 1.049 3.393 0.962 3.112 0.891 2.884

24 8 0.374 1.211 1.073 3.472 0.917 2.966 0.917 2.969

36 12 0.372 1.206 1.079 3.491 0.925 2.995 0.926 2.997

2 — — 0.372 1.205 1.078 3.490 0.922 2.984 0.926 2.998



The problem has been solved for the following initial data: R = 30; L = 30; H = 0.25, 0.50; β = 0.5; and ν = 0.3. The

results of solution (deflection w and force Nθ) for some values of s and θ are summarized in Table 1, where R is the number of

terms of the discrete Fourier series and N is the number of terms retained in the series. It is seen that as R and N increase, w and Nθ
tend to their exact values. When R = 36 and N = 12, the results coincide up to the third or fourth significant digit, i.e., up to

several hundredths of a percent, which indicates that our approach is quite accurate.

Figure 1 shows the solution for a cylindrical shell of variable thickness (15) for two cases of end conditions: clamping

(dashed line) and hinging (solid line). The clamping conditions are expressed as

u = v = w = ϑs = 0 at s = 0, s = L. (17)

The initial data: R = 30; L = 30; H = 0.25; q q s L= 0 sin( / )π ; β = 0, 0.25, 0.40, 0.50; s = L/2; and ν = 0.3.

Figure 1 shows the influence of the end conditions on the deflection in the cross section s = L/2 when the thickness

varies and the mass remains constant.

Figures 2 and 3 show the solution for a cylindrical shell of thickness varying in two coordinate directions by the formula

( ) ( )h s
H s

L
,

/
cosθ

α
α β θ=

−
− −⎛

⎝
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⎠
⎟ +
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⎦⎥1 3
1

2
1 1

2

(0 ≤ s ≤ L, 0 ≤ θ ≤ 2π). (18)
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TABLE 2

β θ/π
WE/103q0

α = 0 α = 0.2 α = 0.4 α = –0.2 α = –0.4

0 0–1.0 3.310 3.091 2.872 3.529 3.748

0.2

0 2.848 2.660 2.470 3.037 3.225

0.2 2.925 2.732 2.537 3.119 3.312

0.4 3.153 2.944 2.735 3.362 3.570

0.6 3.501 3.269 3.038 3.733 3.964

0.8 3.859 3.604 3.350 4.115 4.370

1.0 4.020 3.755 3.490 4.286 4.552

0.4

0 2.531 2.364 2.195 2.699 2.866

0.2 2.650 2.474 2.298 2.826 3.000

0.4 3.029 2.828 2.627 3.229 3.429

0.6 3.730 3.484 3.237 3.978 4.224

0.8 4.681 4.373 4.065 4.991 5.300

1.0 5.214 4.871 4.529 5.559 5.903

0.6

0 2.307 2.153 1.999 2.460 2.613

0.2 2.459 2.296 2.132 2.622 2.785

0.4 2.940 2.745 2.550 3.135 3.328

0.6 4.011 3.745 3.480 4.276 4.541

0.8 6.021 5.624 5.228 6.419 6.817

1.0 7.551 7.054 6.557 8.050 8.548

TABLE 3

β θ/π
N θ/10q0

α = 0 α = 0.2 α = 0.4 α = –0.2 α = –0.4

0 0–1.0 2.993 2.993 2.992 3.026 3.024

0.2

0 3.040 3.039 3.038 3.080 3.076

0.2 3.031 3.031 3.029 3.072 3.068

0.4 3.009 3.008 3.007 3.046 3.043

0.6 2.981 2.980 2.980 3.007 3.006

0.8 2.960 2.959 2.960 2.968 2.969

1.0 2.952 2.952 2.952 2.951 2.953

0.4

0 3.089 3.088 3.087 3.112 3.107

0.2 3.074 3.073 3.072 3.101 3.096

0.4 3.028 3.027 3.026 3.064 3.060

0.6 2.969 2.969 2.968 2.992 2.991

0.8 2.927 2.927 2.928 2.909 2.911

1.0 2.912 2.912 2.913 2.874 2.877

0.6

0 3.129 3.128 3.127 3.134 3.133

0.2 3.121 3.120 3.119 3.121 3.118

0.4 3.050 3.050 3.049 3.081 3.076

0.6 2.955 2.955 2.954 2.987 2.985

0.8 2.890 2.891 2.892 2.863 2.864

1.0 2.852 2.852 2.853 2.822 2.824
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TABLE 4

β θ/π
WE/103q0

α = 0 α = 0.2 α = 0.4 α = –0.2 α = –0.4

0 0–1.0 1.684 1.572 1.458 1.795 1.905

0.2

0 1.453 1.358 1.261 1.548 1.641

0.2 1.493 1.395 1.295 1.590 1.686

0.4 1.607 1.500 1.393 1.712 1.816

0.6 1.776 1.658 1.537 1.894 2.010

0.8 1.945 1.814 1.681 2.075 2.203

1.0 2.019 1.883 1.745 2.154 2.288

0.4

0 1.283 1.199 1.114 1.366 1.448

0.2 1.345 1.257 1.168 1.432 1.518

0.4 1.542 1.441 1.339 1.642 1.742

0.6 1.890 1.764 1.637 2.015 2.139

0.8 2.334 2.177 2.018 2.491 2.647

1.0 2.580 2.405 2.230 2.754 2.928

0.6

0 1.160 1.083 1.005 1.236 1.313

0.2 1.234 1.153 1.071 1.315 1.395

0.4 1.493 1.396 1.299 1.590 1.686

0.6 2.038 1.904 1.768 2.171 2.304

0.8 2.990 2.790 2.590 3.190 3.390

1.0 3.748 3.498 3.251 3.998 4.250

TABLE 5

β θ/π
N θ/103q0

α = 0 α = 0.2 α = 0.4 α = –0.2 α = –0.4

0 0–1.0 3.027 3.025 3.018 3.026 3.024

0.2

0 3.084 3.085 3.082 3.080 3.076

0.2 3.075 3.076 3.072 3.072 3.068

0.4 3.048 3.047 3.043 3.046 3.043

0.6 3.006 3.004 2.997 3.007 3.006

0.8 2.966 2.962 2.954 2.968 2.969

1.0 2.949 2.944 2.936 2.951 2.953

0.4

0 3.116 3.118 3.118 3.112 3.107

0.2 3.105 3.107 3.107 3.101 3.096

0.4 3.067 3.068 3.066 3.064 3.060

0.6 2.992 2.990 2.985 2.992 2.991

0.8 2.906 2.901 2.894 2.909 2.911

1.0 2.870 2.865 2.858 2.874 2.877

0.6

0 3.134 3.133 3.131 3.134 3.133

0.2 3.123 3.124 3.124 3.121 3.118

0.4 3.085 3.088 3.090 3.081 3.076

0.6 2.988 2.988 2.986 2.987 2.985

0.8 2.860 2.858 2.855 2.863 2.864

1.0 2.820 2.818 2.818 2.822 2.824



For any values of α and β, the mass of the shell remains constant and equals that of a shell of constant thickness

H = const (α = β = 0).

The problem has been solved for the following initial data: R = 30, L = 30, H = 0.5, qγ = q0 = const, and ν = 0.3. The

shell ends are rigidly clamped. The values of β are indicated in the figures, which show the distribution of the deflections w along

the length of the shell on the interval 0 ≤ s ≤ L for θ= 0 (Fig. 2) and θ= π (Fig. 3) and for α= 0 (solid line), α= 0.4 (dashed line),

and α = –0.4 (dash-and-dot line). It can be seen how the thickness influences the deformation of the shell and how to obtain the

distribution and level of deflections by selecting the values of α and β at constant mass of the shell.

The circumferential deflections in the middle section s = L/2 of a shell with constant mass is given in Table 2 for

H = 0.25 and Table 4 for H = 0.5 depending on α and β. Table 2 demonstrates how the deflection of the shell depends on its

thickness. For example, for α = 0 the deflections in thicker (θ = 0) and thinner (θ = π) parts of the shell of varying thickness

(β = 0.2) are less than in the shell of constant thickness (β = 0) by factors of 1.16 and 1.21, respectively. Also, such factors are

equal to 1.31 and 1.57 for θ= 0 and θ= π, respectively, when β= 0.4 and to 1.43 and 2.28 for θ= 0 and θ= π, respectively, when

β= 0.6. With β= 0.2, the deflection in the middle section decreases (increases) for θ= 0 and increases (decreases) for θ= πwith

increase (decrease) in α. The same pattern is observed for β = 0.4 and β = 0.6, i.e., when β is fixed and α varies, the mid-section

deflection may either increase or decrease, the mass of the shell remaining constant.

The values of the force Nθ are given in Table 3 for H = 0.25 and in Table 5 for H = 0.5. As is seen from Tables 3 and 5,

Nθ depends insignificantly on α and β. From Tables 4 and 5 it follows that the qualitative pattern is similar to those represented

by Tables 2 and 3, but the deflection decreases by half and the force Nθ differs insignificantly from the values in Table 3.
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