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QUADRATICALLY NONLINEAR CYLINDRICAL HYPERELASTIC WAVES: DERIVATION
OF WAVE EQUATIONS FOR AXISYMMETRIC AND OTHER STATES

J. J. Rushchitsky UDC 539.3

A rigorous approach of nonlinear continuum mechanics is used to derive nonlinear wave equations that
describe the propagation and interaction of hyperelastic cylindrical waves. Nonlinearity is introduced by
means of metric coefficients, the Cauchy—Green strain tensor, and the Murnaghan potential and
corresponds to the quadratic nonlinearity of all basic relationships. Quadratically nonlinear wave
equations are derived for three states (configurations): (i) axisymmetric configuration dependent on the
radial and axial coordinates and independent of the angular coordinate, (ii) configuration dependent on
the angular coordinate, and (iii) axisymmetric configuration dependent on the radial coordinate. Four
ways of introducing physical and geometrical nonlinearities to the wave equations are analyzed. Six
different systems of wave equations are written

Keywords: nonlinear continuum mechanics, rigorous approach, nonlinear hyperelastic cylindrical waves,
quadratically nonlinear wave equations, geometrical and physical nonlinearities, axisymmetric
state

The nonlinear wave equations describing the propagation of hyperelastic waves have been derived in [6]. This paper
demonstrated a rigorous approach, passed over even in the textbooks [7, 9, 10, 16], to deriving nonlinear wave equations in
cylindrical (orthogonal) coordinates. The approach is based on the concepts of modern nonlinear continuum mechanics.
Nonlinearity was introduced by means of metric coefficients, the Cauchy—Green strain tensor, and the Murnaghan potential and
corresponds to the quadratic nonlinearity of all basic relationships. A configuration (state) of an elastic medium dependent on the
coordinates », ¥ and independent of the coordinate z was analyzed. This configuration is often called plane-strain state. For this
case, the corresponding equations of motion and analytical expressions for the stress tensor in terms of the deformation gradient
were derived. Four ways of introducing physical and geometrical nonlinearities to the wave equations were analyzed. For one of
the ways, the nonlinear wave equations were written explicitly.

The present paper extends the analysis performed in [6] to several partial configurations (states) omitted there.

State I. 1t is an axisymmetric configuration dependent on the coordinates » and z and independent of the coordinate ¥.
The Oz-axis is the axis of symmetry. This state is typical of, for example, a longitudinal torsional wave propagating along a
cylinder.

State I1. 1t is a configuration that depends only on the angular coordinate 9. Its axis of symmetry is Oz. This state is
typical of, for example, a transverse torsional wave propagating along a cylinder.

State I11. 1t is an axisymmetric configuration that depends only on the coordinate r. Its axis of symmetry is Oz. This
state is typical of, for example, a classical cylindrical wave or Volterra translational distortions in a hollow cylinder.

As in [6], we introduce a cylindrical (orthogonal) coordinate system: 8! =7, 62 =0, 83 = z. In this system, the length

of a vector is defined by the formula
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(ds)? =g, d0 do* =(dr)? +r2(d®)? +(dz)?.

The metric tensors have the components

10 10
lgwl=[0 2 o, |[lg*[=]0 1/r2
0 0 1 0 0 1

The lengths of the basis vectors (E1 ,€5,€3 ) and (El ,e2,e3 ) are defined by
lal=1 lal=r. lal=1 F'l=1  [2l=a/n, [e3|=1
dk=¢k.¢,.

Only three Christoffel symbols of the first kind I'; are nonzero:

Ty, =—r, D=3 =0/7.
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2)

€)
“4)
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Now our goal is to derive the nonlinear equations of motion for the above-mentioned configurations and to demonstrate

a method for calculating the nonlinear strain and stress tensors.
State I. The displacement vector u (91 ,6%.03 ) is defined by

L?(Bl .62 ,63)=L7(r,1‘), z)={u1 =ur(r, 2), uy =ruy =0, uy =uz(r,z)}.

(6)

The components of the nonlinear Cauchy—Green strain tensor are calculated using the covariant derivatives of the

covariant and contravariant components of the displacement vector [1, 4, 7]:

ou ;

jio

1 uk .
€ir ZE(V[uj-i-Vjui-‘rViuijuk), Viuk=§+u/l“k Viujz J.—

00’

— — 1_,1 1 2 —
Vlul—ul’l—uﬂl—uz =ty Viu —u,1+u}7{1+u)7/2r1—u,’r.

From here on, the crossed terms are equal to zero.
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1 1 1 2 1 2
11 =€, =V +§(V1”1V1u1)+5(V1”3V1143)Zur,r+§(”r,r) +5(uz,r) )
2 1 2 1 1 P m
82221” 8@@:V2u2+5(V2u2V2u )+E(V2M1V2u ): 62 —umF22
1(0 d d d
+5 giei —uml"znéj %92 +umriz]+[;64—uml"{gj[ o2 +um}7r1:12J
m 1 m mr2 1 2
==u,,I')) +E(—“mrzz)(” sz):“rﬂra(“r) ,

1 1 1 Ju
€33 =€ =V3u3+ (V3u3Vyul )+EW)+E (V3”1V3“1)=73—“m}73@

06°
8u3 aul m
893 /% ae3+u r m3 ﬁ m/é ae3+u /3 ZZ+ (ZZ) +7 (rz)
1
812zrerﬁ25(V1u2+V2u1+V1u1V2u1+V1u2V2u2)=0,
1
823:VQ.GZ=§(V2M3+V3u2+V2M3V3M3+V2M2V3I/I2+V2M1V3ul)=0,

1
€13 =€rz=§(V1M3+V3”1+V1M1V3M1+W+V1”3V3”3)
1] dus aul duy. ou'
=3 a01 *30n T 51T + | sgr =atl || Sg3 +" T
8u3 8u3 —| 1
(893 /uﬁrgj [891+M1 jJ=2 (uz,r +ur,z +”r,r”r,z +uz,r”z,z)'

State II. The displacement vector i (8!,02,03 )is defined by
ﬁ((-)] ,62 ,93)=ﬁ(r,ﬂ,z)={u1 =u, =0, u? =r-u,3(r,z), u’ =u, =O}.

The components of the nonlinear Cauchy—Green tensor are calculated in the same way,
1 1 oy, ] 1 2
€11 =€, = 1”1+5W+5(V1“2V1M )+5W):§(”ﬂ,r) ;
1 1 1 1 2
822zrzeﬁﬁzvzuz+§(V2u2V2u2)+5(V2u1V2u1)+5(V2u3V2u3)=5(uﬂ) ,
1 1 1 1 2
€33 =8zz=V3”3+§(V3”3V3M3)+§(V3”2V3M2)+§(V3M1V3”1)=5(”ﬁ,z) ,
1
812=r8rﬁ=5(V1u2+V2u1+V1u1V2ul+V1u2V2u2+V1u3V2u3)=ruﬁr—uﬁ,

1
€93 =T7€y, =E(V2M3 +V3u2 +V2M3V3M3 +V2u2V3u2 +V2u1V3u1)=ruﬁjz,
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1 1
€13 =€, ZE (V]Ll3 +V3u1 +V1u1V3u1 +V1u2V3u2 +V]u3V3u3 )25 uﬁ’ruﬂ’z. (18)
State III. The displacement vector i (8!,02,03) is defined by

ﬁ(Gl ,92,63):i2(r,13,z):{ul =u,(r), u? =ruy =0, ud=u, :O}. (19)

The components of the nonlinear Cauchy—Green tensor are calculated in the same way as in the previous cases,

d 0
811:“”%‘“% (agi o j[a;”f ) ’r%(um)z, (20)

€2 =”28ﬁf} =%92 —uml“z”; +5 %92 —umrz’gj %92 +umrm2

1 2 1 2
==, U3y +5 (T35 ) (uTy ) =5 (u, )7, 1)
o s [0 ’
€33 =€, = ﬁ+u r, @+u l—‘m3 =0, (22)
1[ou? oul! 2 omel
812 :8}”13:2 $+$ u le—u sz =0, (23)
1| 0u® ou! L 1
€13 =€,z =7 o +$ u F Ir,;|=0 (24)
1[ou? ou’ ) m
823 :S‘ﬁz =— > $+872 T m3 —Uu F =0 (25)

Following the approach of [6], we return to the general nonlinear equations of motion
Vi [ok (87 +V,un)]=pi. (26)

In many instances, it is convenient to analyze Egs. (26) as those for displacement components alone. Therefore, we
should determine the stress components

1 1
=0, o2=—0c", o¥=0%, o¢2=-06", o =¥ 27)

}”2 7 r

oll

as nonlinear functions of strain components using the formula ¢, = (E)W /0 i )

Remark 1. We additionally assume that these functions are quadratically nonlinear, thus neglecting higher
nonlinearities. Such an assumption was earlier adopted in nonlinear acoustics to analyze nonlinear elastic waves in Cartesian
coordinates [2, 3, 5, 11-15].

The deformation of a hyperelastic medium is described by the Murnaghan potential

1., 1 1 5
W([l,lz,[?) ):EMI +M]2 +§A[3 +BIIIZ +§C[1 5 (28)
where the first three algebraic invariants are defined by

1
I (e )=€ g™ =€) - 1+e - 2+833L (29)
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1) 1) 1)
Iy (€5 )=€ i€ g F g™ = (1) - 1) +(822 j +(E€33-1)? +[€12 ) +(823'rj +(€13 12, (30)
im kn 3 1 ’ 3 1
I3(€j )=€ pm€in€ i gP1g"™ =(€11)° + €2 5 +(€33)° +(€ 13D | €138 +€23€ 2 2 TR13E33

1 1 1 1
€125 ||€12811 1€ 12820 5 TE€13€23 | T (€23 75 ||€12€13 T€23820 5 T€23E33 |, (1)
r r r r

and A and p are the Lamé constants (second-order constants) and A, B, and C are the Murnaghan constants (third-order
constants).
The components of the stress tensor necessary for further discussion are

Hyy O O 1 o (A A e 2 oI,
o= 18811+M8811+3 3811+ 18811+ 2 8811 8811
—M1+2H’311+A[(€11) +— (€1p)% +3 (813) }'3(2‘31111 +1, )+CI7, (32)
1 ol al, 1 dlx ol, ol ol
2 _ b 2
© _I"2 |:M1 8822 +H8€22+3A8£22 +B 8822 +12 8822 3 Cl aSkk
1 11 ), ! 2
= | Mj+2ue0 +4— 2 (€20)2+3 (312) —5 (€x3)* |+B 82211”2 +CIf (33)
r r 3r
4 ol 1 oI o/ 4 ol
633 =M -t A=t B| [ =+, —— |+CIE
8833 8833 3 8833 8833 8833 8833
) | ) 1 2 2 2
=M +2ue33+4| (€33) +§(€23) +3€13)7 |(€33) +B (22331, +1,)+CI7, (34)
. ol Lo, 9 On ) o 9k
= +U +—= + —+ +
1%912 depp 37 deyy diy C9ep ' oep,
1 2 2
:riz 2“8124— 3A+ZB 812]1+3 A€13823 (35)

) ol, 1 dI dl, ) 9
o3 =\ A Ut A=+ B | I =41, A |+CrP
deis Oep3 37 ey g3 €13 €13

2 2
:|:2u£13 +(3A+28j81311+3 A€12823:| (36)

o, a1, 1 dy al, o 14
63 =\ U +- 4 +B|1 +1 +CI?
! ;77(8 23 O€x3 3 deEp 10eyy 2 %923 ! gk s

1 2 2
=7 2]1823 +| - A+2B 823[1+ A812€13 (37)
r2 3 3r2

where
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A, a, 1 ol a, A, ol

) - P =1, = = =0,
8811 a€22 }"2 8833 8812 8813 8823
al, a, 2 oI, a, 2 A, 2 oI,
7=% b 7=78 s 7=% b 7=78 E 7=7% B 7=% b
oe 11 1 oe 22 r2 22 oe 33 33 oe 12 7'2 12 oe 23 I"2 23 oe 13 13

ol oy 3 1\ ol
——=3)%, ——=lep 5|, —=3@Es)%
. (&11) ey 12 ( 2 rg) % 13 (e33)

oy 2 1 ol4 2[ ( ) 1 }
= || €11+ 5E [+€13E83 |, T =2|ez(e11+E33 )+ €€ |,
dey, o2 |FR(EnT 2t 13€23 %€ 13 13\&11+€33 5 €12€23

r
ol; 2 1
9 3 272 €23 72322%33 +€12813 |-

As follows from Eqgs.(32)—(37), the procedure of expressing the stress components in terms of the displacement
components begins with determining (/; )2, (e Kk )2, and (e i€ 1m Y up to quadratically nonlinear terms.

Let us write the equations of motion for each of the three states.
State I. The second equation degenerates into an identity, and the first and third equations have the form

1 1 1 u,
Grr,r +Grz,z +; (Grr _Gﬂf} ) —pu, :_; (ur,r +rur,rr) Gy _; (zur,zr +”r,z) G,z _ur,zzczz _ﬁcﬁﬁ

“Up Oy U 2Opz p ~Up yOpz 2 =Up 20 2z 2> (38)
1 o 1
Oy 10, +;6rz —pu, =_; (uz,r +r”z,rr) Gy _; (2uz,zr +uz,z) Gy, —U; ;0
“UzyOppp ~Uz 20z “Uz yOpz 2 ~U; 027 2 (39)

State I1. The third equation degenerates into an identity, and the first and second equations have the form

(150, ),, Hiy Oy~ (10, ),z tily Oy = Uy Mz ) =0, (40)
2 )
O+ 0yz,2+7 0 ~Ply

1 1
== [”ﬁ,rr oy, jcrr T,z Orz Tl 22022 T 5 UgOpy THy Oy THy Oz Tl 202z 2 (4D

Remark 2. The left-hand side of Eq. (41) includes a linear part that corresponds to linear theory. With Eq. (40), however,
this linear part (without the crossed term) no longer corresponds to classical theory. This situation is unusual and should be
commented on.

State I11. The last two equilibrium equations are satisfied identically, and the first equation has the form

1 1 1
O r +; (Grr ~Oyo ) —Pu, == (ur,rr +; Uy y jcrr _riz UGy —Ur 4Oy - (42)

Remark 3. The nonlinear equation (42) is simpler than the previous ones; therefore, it is pertinent to comment on exactly
this equation. Our comment is concerned with the conditional separation of physical and geometrical nonlinearities in such
equations (i.e., Eqs. (38)—(41)). In fact, before the stress tensor expressed in terms of the displacement vector (constitutive
relations) is substituted into these equations, their right-hand sides display only geometrical nonlinearity. Physical nonlinearity is
introduced by the constitutive relations. Our experience of analyzing similar equations in Cartesian coordinates suggests that
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four cases are possible here: (i) the linear Cauchy—Green tensor in the nonlinear constitutive relations and nonlinear right-hand
sides neglected in Eqs. (38)—(41) (nonlinearity is purely physical); (ii) the nonlinear Cauchy—Green tensor in the nonlinear
constitutive relations and nonlinear right-hand sides neglected in Eqgs. (38)—(41) (nonlinearity is purely physical); (iii) the
nonlinear Cauchy—Green tensor in the nonlinear constitutive relations and nonlinear right-hand sides present in Egs. (38)—(41)
(all nonlinearities are taken into account); and (iv) the nonlinear Cauchy—Green tensor in the linear constitutive relations and
nonlinear right-hand sides present in Eqgs. (38)—(41) (nonlinearity is purely geometrical). Cases 1 and 2 were used in nonlinear
acoustics and in the analysis of nonlinear waves in microstructural materials. We will further show the difference among the
cases for state [V.

Let us now calculate the necessary stress components as functions of displacement components for each of the states.

State I. The algebraic invariants are

Iy =gy +%+8 33 = Uy, +u7r+uz,z +% () )? +# (u,)? +% (u.)? +% (2 )?. (43)

Remark 4. The first three terms are the linear part of the invariant and the other terms are quadratically nonlinear ones of

five types. Since the strain tensor is quadratically nonlinear, the first invariant does not include higher nonlinearities,

1 1
I2 = (811 )2 +(822 )2 +(£33 )2 +(813 )2 :(ur,r )2 +7‘7 (ur )2 +(uz,z )2 +Z (ur,z +uz,r )2' (44)
Let us write some necessary expressions
1
([1 )2 = (”r,r )2 +(”z,z )2 +2”z,zur,r’ (811 )2 = (ur,r )2’ (e 33 )2 = (uz,z )25 (813 )2 =Z (ur,z tu;, )2,

2411, :2ur,r (ur,r tuz - )y 2l :2uz,z (ur,r tu; - ) 3= (ur,z Tuz, )(ur,r tuz; )

and expressions for the stress components
ur
611 =0 :(7»+2H) Uy,p +A 7""”2,2

E T el ()’ )11
+L2(k+2u)+A+3B+CJ(u,,,) + 27L+B+C '. 2 +(uy ) J+6(A+3B)u“zuz”

1 1 1 1
1 [6(A+20)+4+3B] (u, . )? 1 [6h+A4+3B1(u,,)? +2C [u,,ruz,z Uy Ul ) (45)
1 u
02 =3 049 =(h+2u) 7r+x (u,,+u,..)
1 1 , (1 5 1.1
+ 5(l+2u)+A+3B+C ﬁ(”r) + EK+B+C [(u,’,,) +(uz ) ]+§Bu,,zuz,r
1 2 2
+Z(2}»+B)[(u,,z) +(u,, 2 |+2cu, u, ., (46)
ur
033 =0, =(7"+2“)uz,z +A Uy r +7

[1 1o 2. (L PRI
+L2(7»+2u)+A+3B+CJ(uZ,Z) |G MB+C | (uy,)) () |+ A+3B u, cu,
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r-r,r 7 r=z,z

1 1 1 1
+E[6(k+2p)+A+3B] (uz’,)2+ﬁ[&+A+3B] (u,.)>+2C (u,ﬁ,uz,z+ru Uy, +— U )

1 1
613 =0, =U (ur,z +uz,r)+ u+§ A+B (ur,rur,z +uz,ruz,z) + g A+B (ur,ruz,r +ur,zuz,z

(47)

(43)

Remark 5. These expressions include 12 types of nonlinearity: 1) (u,., )2; 2) (s, )2 3) (4 - )2 4) (s, )2;

1 1 1
5)(ur,rur,z ), 6) (”r,ruz,r % 7) (ur,zuz,z ) 8) (uz,ruz,z ) 9) (ur,ruz,z ) 10) 7’7 (u, )2§ 11) (1”2 ur”r,r} 12) (7’2 u,u

State I1. The algebraic invariants are

2
1 1 Uy
I :Elz(”ﬂ,r )? +r7 (g )? +(”§,z )2:|, I, :[”ﬁ,r _FJ +(u§,z )%
We also need the following expressions:

2 1 2 2 1 2 2
([1) 20, Skkllzo, €11 Zi(uﬁ’r) —)(811) ZO, 82225(1413) —)(822) 20,

1 2 2 2 2

€33 =75 (U )" = (€33)" =0 e =(uy, —uy) > (€12)" =ty , —t15)",

1
€3 =ruy . = (€23)> =1 (uy ,)*, €13 =5y plhy ., = (€13 )2 =0

and the expressions for the stress components

1 1 1
611=0, = [3(A+20)+2(4+3B) | (g, )2+ [3A+2(4+3B) |5 (uy)?
6 ) "6 )

2 1 A )
+g(A+3B);uﬁuﬁjr+ §+B (ug,,)7s

1 1 1 1
G2 =30 = [3(h+2u)+2(4+3B)] 5 )2 e [3h+2(4+3B)] (uy,)?
1 2 1
e [3h+2(4+3B)] (uy,)? +3 (4+3B) " ugung .

1 Ao 1 1 1
033 =0 = [3(h+20)+2(4+3B) | (uy ,)? +(2+BJL(%J g )? [+2B~ uguy, .

1 1]

2 1 |
cuzzrcm)=r2Lmlﬁﬂ&r—”ﬁ)+3f4(”ﬂfuﬁz_ruﬁxuﬁly

1 2 2 1
073 :;Gﬂz :ﬁuuﬁ,z’ G113 =0,, :(u+3AJuﬂ’ruﬂ,z —gA;uﬂ’Zuﬂ.

(49)

(50)

G2

(52)

(53)

(54

(55)

Remark 6. As follows from (51)—~(55), this state is characterized by six types of nonlinearity: 1) (uy )2:2) (uy )2;

3)(”13,2 )% 4) (”ﬁ,r”ﬁ,z ) 5) (“ﬁ”@’r ), 6) (”13“19,2 )

1
State I11. Let us calculate the components of the stress tensor 611 =6, and 65y =5 Gy,
r
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G111 =0, :Ml +2”,€11 +A4 (811 )2 +B (2811]1 +[2)+C112, (56)

1 1l 1) 2 1
(%)) Zﬁcﬁﬁ Zﬁtx[1+2u822 +A4 [822 ”‘2) +B( 822]1 +[2j+C11 J (57)

To this end, we write the expressions of the algebraic invariants
(u,)*

u, 1 1
Iy=u,, +7’”+5 (“r,r )2 +E (u, )2’ I, :(ur,r )2 +I’72 (58)

and some necessary expressions

2
u; Uply p
(2 = (245427 o) =, ),

2 1 2
Zply=2| (e )"+ Uy ey |, 2’32211=2[(”r) +rur,r”r]'
Finally, we get

1 “r
¢''=06""=\|u,,+— [+2uu,,
T .

1 22
+[5(X+Zu)+A+3B+C}(u,’, )2+ ( x+B+CJ( tr) + B+ u, ., (59)
622,2 =500 =k(urr+wj+2u‘”
’ r r
)2
(7“+3B+Cj(“”)2+L (x+2u)+A+B+cJ + (B+C)u (60)

Remark 7. Since this state is the simplest of those mentioned above, the number of nonlinearities in Egs. (59), (60) is
minimum: 1) (u,., )25 2) (,)%5 3) Gty 10, )

Thus, we have derived wave equations in terms of the stress tensor and displacement vector and second-order
representations of the stress tensor in terms of the displacement vector for three states: Egs. (38), (39), and (45)—(48) for state [;
Eqgs. (40), (41), and (51)—(55) for state II; and Egs. (42), (59), and (60) for state III.

However, the wave equations expressed only in terms of displacement components are more customary. Let us also
write such equations for cases 2, 3, and 4 (see Remark 3).

State I, Case 4 (geometrical nonlinearity is taken into account):

1 1 1 1 .
Wbttty 2 +;ur,r 7 +(>"+M) Uy pr uz,zr+;ur,r_r7ur —pu,

1
= ].LAM,, +(7\'+u) Il,r _pﬁr =-2 (7¥+2l~l) Uy y Uy pr _2(}\'4’2“) ; (ur,r )2
_(7\""2“) (u, ) _(7"+2|J~) Up zUz 2z (7"+2M) Uz Uy 2z (7‘+H) Uy pUzrz
1
_(}\'+2M) Up pUp, zr —(7~+H) ; (ur,z )2 _(}"'H'l) Uy pUp 2z _3uur,rur,zr

1 1
_2Muz,rur,zr —Wuy U _IJ'; Uy Uz p _}"ur,ruz,z _7"; Uplly, zz
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1 1 1
_7\’; Uplty pr _kriz Upltty _}\‘ﬁ Uz, z _xuz,zur,rr _xur,zur,rz’ (61)

1 1 .
u[uz,rr+uz,zz+r ) (7"+“) [ Up pz uz,zz +rur,zJ_puz
. 1
= Au, +(7\‘+u)[1,z —pit, =2 (7\+2H) Uz,zUz, 22 —(7~+2M) ;ur,ruz,r
_(7""2“) ur,r”z,rr _(7‘+2“) uz,rur,rr _3“'uz,ruz,zr _2M”r,zuz,2r

1 1
—(7»+H) Uz Uy yz _(}"'H'L) P Uz Uz —(kﬂl) ;uz,ruz,z

1 1
_Huz,rur,zz _“; Uz zUp,z _xur,ruz,zz _}L; Upl; pp
1 1 1
_7\'; Uz pUpp _7"; Uz zUp,z _7\’; UplUz, 2z _;\'ur,ruz,zz _kuz,ruz,zr' (62)

State 11, Case 4 (geometrical nonlinearity is taken into account).

Since all the stress components appearing on the right-hand side of Eq. (39) have only quadratically nonlinear
components (no linear components), case 4 leads to zero right-hand side of Eq. (39). Therefore, there is no quadratically
nonlinear equation, yet there is a cubically nonlinear equation. Hence, in quadratic approximation, case 2 coincides with case 3.

Sate 11, Case 2 (physical and partially geometrical nonlinearities are taken into account):

1 1 2 1
2u (uf),rr +; Uy, r _I’T Uy +u15,zz J_puﬁ :_g 4 17 [2(1"13,1’”'6,2 )+(uﬁ,rz Uy )+ (uﬁ,rruﬁ,z )+ (uﬁ,rz Uy,z )] ) (63)

Remark 8. The classical linear solution for a cylindrical wave (when the right-hand side of Eq. (63) is equal to zero) has
the form wuy (7, z,¢)= ug -J (Br)- et (ke=ot) (ug =const ) [5, 10, 13]. Therefore, in view of the form of the nonlinear right-hand

side, it is easy to solve the nonlinear wave equation (63) by the method of successive approximations and to predict that the
second harmonic will appear and the form of amplitude will become more complex.
State I11, Case 3 (physical and geometrical nonlinearities are taken into account):

rrrr

(x+zu)(ur,,+”r’) —pit, =—[3(A+2u) +2(4+3B+O)] u, ,u,, —(+2B+20) u
S

A

1
——zu,,u,—[zx+3u+A+zB+2c];(u )—[2x+3u+A+2B+C] (u,)?. (64)
r

Remark 9. The first row in (64) is the linear part of the equation and can be calculated from (42) as follows:

u, 1[ u, Uy u, |
A Upy+ " r+2u(ur’r)jr+;t7\. Uyt +2Uu, . —M | uy . + 27J pit,

u ur,r u . u R
=) [u” +rr] r +20 ( Uy —r;j— pit, =(A+2u) (u,’, +:) —pit,..

N

State I11, Case 2 (physical and partially geometrical nonlinearities are taken into account):

I’VVI"

(k+2u)(u”,+u:j —pit, = [A+2u+2(4+3B+O] u, u, . _2(B+C) u

N

A

1
— [u+A+ZB+2C] L, )2—[A+M+A+ZB+C]F—3(u, )2. (65)
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State I11, Case 4 (geometrical nonlinearity is taken into account):

(ev2) (1,2 ) —pit

I

1 A 1 1
=2 (7\+2l~l) Up oy lly =N~ Uy T Uy Uy _2(}\'+M) ~(u,, )2 —(7#211) 3 (u, )2- (66)
) , P p , F s ”

Thus, we have derived systems of nonlinear wave equations in cylindrical (orthogonal) coordinates. Three special
configurations (states) of an elastic medium have been considered:

(1) axisymmetric configuration dependent on the coordinates » and z and independent of coordinate ¥ with symmetry
axis Oz;

(i) configuration dependent only on the angular coordinate O with symmetry axis Oz;

(iii) and axisymmetric configuration dependent only on the coordinate » with symmetry axis Oz.

We have used a rigorous approach based on the concepts of modern nonlinear continuum mechanics. Nonlinearities,
corresponding to the quadratic nonlinearity of all basic relationships, have been introduced by means of metric coefficients, the
Cauchy—Green tensor, and the Murnaghan potential. Four ways of introducing physical and geometrical nonlinearities to the
wave equations have been considered. We have written six different systems of wave equations corresponding to different states
and cases.
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