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The influence of the curving and twisting of an elongated blade on its vibrations during complex rotation

is studied. It is shown that these geometrical factors may cause additional resonant vibrations
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Introduction. The blades of turbines in aircraft engines, helicopters, and windmills usually work in intensive

centrifugal force fields and suffer the pressure and impacts of high-speed and high-temperature gas flows. Studies of curved and

twisted beams in statics have resulted in a new formulation for the problem of optimizing the initial deflections of turbine blades

to cancel the gas and centrifugal forces and reduce their mutual effect (momentless blades) [7, 10]. The theory of curved and

twisted beams was applied in [9, 10, 12] to study the vibrations of blades. The operating conditions of blades are even more

complicated in the case of complex rotation, when the rotation axis is forced to turn, which gives rise to periodic gyroscopic

forces perpendicular to the plane of primary rotation. These forces may induce additional flexural stresses, which could reach

high levels under resonant vibrations. Since the frequency of additional flexural vibrations coincides with the angular velocity of

the blade, such resonances may occur only if its natural frequency is equal to the angular velocity.

By way of example of straight cantilever beams rotating with an angular velocityω, the author of [4] has established that

the fundamental natural frequency ω1
rot of straight untwisted blades determined with regard for the longitudinal centrifugal

forces can be estimated by the Southwell theorem:

ω ω ω1 1
2 2rot = + a , (1)

where ω1 is the frequency of natural flexural vibrations of a stress-free blade and a is a constant of proportionality equal to unity

for the first vibration mode. According to this formula, for flapping (out-of-plane) motions of a blade, the frequency ω1
rot is

always higher than the frequency of forced vibrations equal to the angular velocityω. This precludes the possibility of resonance

at this frequency during complex rotation.

However, the dynamic behavior of an elongated blade will drastically change if it is precurved and pretwisted. In this

case, the centrifugal forces induce complex stress fields, which distort the frequency spectra and natural modes of the blade.

Moreover, the frequencies of some modes (especially torsional) may even decrease, thus diminishing the dynamic resistance of

the blade to external periodic forces. As will be shown below, the complex rotation of such blades may be accompanied by

resonant vibrations.

1. Problem Formulation and Original Relations. Let us model the complex rotation of elongated twisted blades.

Consider an elastic blade (Fig. 1). Initially, its centerline is a plane curve with a constant radius of curvature R and its cross

sections are twisted about this line. The blade is attached to a rigid disk of radius a. The disk rotates about its axis of symmetry

with a constant angular velocity ω. The symmetry axis turns with an angular velocity ω 0 about a fixed straight line that passes

through the center of the disk and is perpendicular to the rotation axis.
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Let us introduce the following right-hand coordinate systems:

(i) rectangular inertial system OXYZ with the origin at the disk center and the OY-axis coinciding with the vector ω 0 ;

(ii) coordinate system OX1Y1Z1 with the OZ1-axis coinciding with the rotation axis of the disk and turning with the

angular velocity
�
ω 0 about the OY1-axis coinciding with the OY-axis;

(iii) disk-fixed coordinate system Oxyz with the Oz-axis coinciding with OZ1 and the Ox-axis directed along the tangent

to the blade centerline at the blade root;

(iv) local coordinate system (u v w, , ) with the origin at the center of gravity of the blade’s cross section, the w-axis

directed along the tangent to the elastic centerline, and the u- and v-axes running along the principal central axes of inertia of the

cross section;

(v) coordinate s running along the elastic centerline of the blade and a natural trihedral of this line with unit principal

normal
�
n, binormal

�
b, and tangent

�
τ.

We will describe the small vibrations of the elongated curved blade excited by distributed inertial forces
�
f using the

dynamic equations of flexible curved bems [1, 8, 11]

~
/dF ds F f

� � � �
= − × −ωχ ,

~
/dM ds M F m

� � � � � �= − × − × −ω τχ , d ds Kn
� �τ / = ,

dn ds K b T
� � �

/ /= − +τ , db ds n T
� �

/ /= − , d ds
� �
ρ τ/ = ,

M A p pu = −( )0 , M B q qv = −( )0 , M C r rw = −( )0 , (2)

where
�
F and

�
M are the vectors of internal forces and moments with components F F Fu v w, , and M M Mu v w, , , respectively;

�
ωχ

is the Darboux vector; T is the radius of torsion; K is curvature;
� � � �
ρ = + +xi yj zk is the position vector of points on the centerline in

the coordinate system Oxyz with unit vectors
�
i ,

�
j, and

�
k; A, B, and C are parameters of flexural and torsional stiffness; p, q, and r

are the curvatures of the projection of the element ds onto the planes (v, w) and (u, w) and the torsion of the centerline; and
�
mis the

vector of distributed moments of inertial forces.

To close Eqs. (2), we need to determine the distributed inertial forces
�
f and moments

�
macting on the blade in complex

rotation. To this end, we use the formula for the absolute acceleration of an element of the blade following from the Coriolis

theorem [1, 5, 13, 14]:

� � � �
a a a ae r c= + + ,

where
�
a e ,

�
ar , and

�
ac are the vectors of translational, relative, and Coriolis accelerations, respectively, defined by the formulas
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� � � � � �
a e = × + × ×ε ρ ρΩ Ω[ ] ,

� � � �
a xi yj zkr = + +�� �� �� ,

� � �
a Vc r= ×2Ω ,

where
� � � �

V xi yj zkr = + +� � � is the vector of relative velocity of the element and
� � �
Ω = +ω ω 0 and

� � �
ε ω ω= ×0 are the vectors of absolute

angular velocity and acceleration of the moving coordinate system Oxyz.

In calculating the components of the vector
�
f in the coordinate system Oxyz, we consider that ω ω>> 0 and neglect the

terms containing ω 0
2 and the product of ω 0 and small elastic displacements. Finally, we obtain

f x t y t xx = − ∂ ∂ − ⋅∂ ∂ −γ ω ω( / / )2 2 22 ,

f y t x t yy = − ∂ ∂ + ⋅∂ ∂ −γ ω ω( / / )2 2 22 ,

f z t x t y tz = − ∂ ∂ − +γ ωω ω ω[ / ( sin cos )]2 2
02 . (3)

To determine the vector of distributed moment
�
mdue to the inertia of deflection of the beam, we will write the vector of

angular velocity of its element in terms of its projections onto the axes of the natural trihedral [1]:

� � � �ω ω ω τ ωτ
m

b
m m

n
mb n= + + , (4)

where
�
ω m is the vector of total angular velocity corrected for the elastic deflections of the blade.

Let us differentiate expression (4) with respect to time:

d dt b db dt d dt nm
b
m

b
m m m

n
m

� � � � � �ω ω ω ω τ ω τ ωτ τ/ � / � / � �= + + + + +ω n
m dn dt

�
/ . (5)

If d dt m
� � �
τ ω τ/ = × , db dt bm

� � �
/ = ×ω , and dn dt nm� � �

/ = ×ω , then

d dt b nn
m

b
m� � �τ ω ω/ = − + , db dt nm

n
m/ = − +ω ω ττ

� �
, dn dt bb

m m� � �
/ = − +ω τ ωτ . (6)

Multiplying scalarwise the left- and right-hand sides of Eqs. (6) by
�
n,

�
τ, and

�
b, respectively, we obtain

ω τ τ τ τb
m

x x y y z zd dt n n n n= ⋅ = + +
� �

/ � � � ,

ω τ τ τ τn
m

x x y y z zdb dt b b b= ⋅ = + +
� �

/ � � � ,

ωτ
m

x x y y z zdn dt b n b n b n b= ⋅ = + +� �
/ � � � .

In calculating the vector of angular acceleration
�
ε m , we assume that the distributed moments due to the translational

angular accelerations are much less than the distributed moments due to the relative elastic angular accelerations and can be

neglected. Then
� � �
ε ε ωm r md dt= = / . Let us determine the projections of this vector onto the axes of the natural trihedral using

formulas (5) and (6):

ε ω ωb
r m

b
md dt b= ⋅ =

� �
/ � , ε ω τ ωτ τ

r m md dt= ⋅ =
� �

/ � , ε ω ωn
r m

n
md dt n= ⋅ =

� �
/ � .

Since the contribution of the inertia of turn of cross sections about the u- and v-axes to the total balance of moments is

insignificant, the engineering theory of beams usually neglects it. Therefore, we will consider only the inertia of turn of an

element about the w-axis, which affects the torsional vibrations of the blade. Then [2], we obtain

m Iw w w
r= −λ ε , (7)

where λ is the density of the blade material, I w is the moment of inertia of its cross section about the w-axis, and

ε ετw
r r

x x y y z z x x y y z zn b n b n b n b n b n b= = + + + + +�� �� �� � � � � � � .
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2. Numerical Method. Let the vibrations of the blade under the inertial forces be steady. The conditionω ω>> 0 allows

us to study the relative (elastic) vibrations of the blade in two stages [1, 2]. At the first stage, the rigid disk simply rotates with

angular velocity
�
ω, centrifugal forces act on the blade, and there are no vibrations. At the second stage, the prestressed blade

executes small elastic vibrations about the equilibrium position with given angular velocitiesω 0 andω under additional periodic

inertial forces generated in complex rotation. To describe the vibrations, we derive the equations of small vibrations by

linearizing, using Newton’s method, Eqs. (2) about the state of simple rotation [1]:

d F ds F F f∆ ∆ ∆ ∆
� � � � � �

/ = − × − × −ω ωχ χ ,

d M ds M M F F m∆ ∆ ∆ ∆ ∆ ∆
� � � � � � � � � �

/ = − × − × − × − × −ω ω τ τχ χ ,

d ds K n Kn∆ ∆ ∆
�
τ / = + , d n ds K K b T b T T∆ ∆ ∆ ∆ ∆� � � � �

/ / /= − − + −τ τ 2 ,

d b ds n T n T T∆ ∆ ∆
� � �

/ / /= − + 2 , d ds∆ ∆
� �
ρ τ/ = . (8)

This system of six vector equations is equivalent to a system of eighteen scalar equations. To derive this system, we

project the first two equations onto the u-, v-, and w-axes and the remaining four equations onto the Ox-, Oy-, and Oz-axes. To

calculate the components of the vector of intensity of inertial forces and their moments, we will linearize relations (3) and (7):

∆ ∆ ∆ ∆f x t y t xx = − ∂ ∂ − ⋅∂ ∂ −γ ω ω( / / )2 2 22 ,

∆ ∆ ∆ ∆f y t x t yy = − ∂ ∂ + ⋅∂ ∂ −γ ω ω( / / )2 2 22 ,

∆ ∆f z t x t y tz = − ∂ ∂ − +γ ωω ω ω( / ( sin cos ))2 2
02 ,

∆ ∆ ∆ ∆ ∆ ∆m I n b n b n b n b n bw w x x x x y y y y z z= − + + + + +λ ( �� �� �� �� �� ��n bz z∆

+ + + + + +∆ ∆ ∆ ∆ ∆ ∆� � � � � � � � � � � � )n b n b n b n b n b n bx x x x y y y y z z z z . (9)

Since the load acting on the blade during complex rotation is periodic in time, we can represent the scalar components of

the unknown variables as

∆ ∆ ∆F s t F s t F s tu u
s

u
c( , ) ( )sin ( )cos= +ω ω ,

∆ ∆ ∆F s t F s t F s tv v
s

v
c( , ) ( )sin ( )cos= +ω ω ,

∆ ∆ ∆F s t F s t F s tw w
s

w
c( , ) ( )sin ( )cos= +ω ω ,

……………………………………………

∆ ∆ ∆x s t x s t x s ts c( , ) ( )sin ( )cos= +ω ω ,

∆ ∆ ∆y s t y s t y s ts c( , ) ( )sin ( )cos= +ω ω ,

∆ ∆ ∆z s t z s t z s ts c( , ) ( )sin ( )cos= +ω ω . (10)

Now, considering the functionssin ωt andcos ωt as coordinate ones and using the projection method, we obtain from (8)

a system of ordinary differential equations of the 36th order for the unknown variables ∆F su
s ( ), ∆F su

c ( ), ∆F sv
s ( ), ∆F sv

c ( ), …,

∆z ss ( ), and ∆z sc ( ) with s as a unique independent variable.

Written in general form, this system reads

dX ds A s X f s/ ( ) ( )= +ω 0 , (11)
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where X(s) is the vector of unknown variables of length 36, A(s) is the matrix of coefficients defined by (8), and f s( ) is the given

vector of right-hand sides determined by the inertial forces acting on the blade. System (11) is supplemented with the following

boundary conditions: the blade is rigidly fixed at s = 0 and free at s = S.

System (11) is solved by the method of initial parameters; the equations of this system are integrated using the

fourth-order Runge-Kutta method. Since some elements of the matrix A contain the coefficients ω 2 quickly increasing with ω,

system (11) is stiff and has rapidly increasing functions among partial solutions. Therefore, the orthogonalization method [1, 2]

is additionally used to numerically integrate the system.

3. Discussion of the Results. The method outlined above has been implemented in algorithms and software to analyze

the influence of the curving and twisting of blades on the interaction of flapping (out-of-plane) and lagging (in-plane) motions of

blades during complex rotation. The blades are assumed to have constant cross section, twist, and curvature. The length (S) and

cross-sectional dimensions (a, b) of the blades are the following: S = 0.8 m, a = 0.005 m, and b = 0.1 m. The elastic modulus, the

shear modulus, and the density of the blade material are the following: E = ⋅2 11 1011. Pa,G = ⋅7 9 1010. Pa, andλ = ⋅7 8 103. kg/m3.

The range of variation in the angular velocity of the rotor 0 2500≤ ≤ω sec–1, and the angular velocity of the rotation axis

ω 0 1= sec–1.

We have examined two cases where the centerline of the blade has a constant radius of curvature in the planes xOy and

xOz. The analysis has revealed that torsional vibrations occur in the former case (blade curved in the plane xOy), since the inertial

forces are directed along the Oz-axis and generate not only bending moments in the plane xOz but also moments about the

Ox-axis, which twist the blade. Figure 2 shows the amplitude–frequency response ∆z t( )of the end of a blade curved in the plane

xOy and twisted through an angle of 10° at the end s = S. Curves 1, 2, 3, and 4 correspond to the following radii of curvature:

R = 0.3, 1, 1.5, 2 m. It can be seen that all the amplitude–frequency curves have discontinuities representing resonant vibrations.

According to the Southwell theorem, a straight untwisted blade does not resonate during complex rotation. Therefore, we may

conclude that the resonant states displayed by curves 1–4 are due to the curving and twisting of the blade.

We have also established that curves 2–4 group near a skeleton curve that turns out to be the amplitude–frequency

response of the straight untwisted blade. Resonances in the neighborhood of the angular velocity ω = 560rad/sec occur in both

pretwisted and untwisted blades, whereas additional narrow resonance bands appear at high angular velocities in twisted blades

anole.

An analysis of the vibration modes of the blade has revealed that the amplitudes of flapping motions are an order of

magnitude larger than those of lagging motions. Figure 3 shows the curvature increment ∆p s( )due to the flapping deflection of a

blade with R = 2 m versus the axial coordinate s. Curves 1–4 correspond to ω = 500, 1000, 1500, 2500 rad/sec. As is seen, ∆p

(together with the bending moment ∆ ∆M A pu = ⋅ ) in the root section s = 0 increases with ω. However, the amplitude values of

∆p s( ) do not increase with ω within the interval 0≤ ≤s S . The greater the angular velocity ω, the more abrupt the variation in

∆p s( )at the blade root and the larger the value ∆p( )0 , though the remaining portion of the blade bends insignificantly. This effect

is attributed to the fact that the rotating blade is prestressed by the longitudinal inertial forces, which considerably increase its

flexural stiffness. Therefore, as ω increases, the blade vibrates as a rigid body and experiences local bending at the root.
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The forced motions of the untwisted blade curved in the plane xOz are purely flapping. Additional twisting of this blade

results in excitation of lagging motions of very small amplitude. Note that these curving and twisting are responsible for resonant

vibrations at some angular velocities.

REFERENCES

1. V. I. Gulyaev, V. V. Gaidaichuk, and V. L. Koshkin, Elastic Deformation, Stability, and Vibrations of Flexible Curved

Beams [in Russian], Naukova Dumka, Kiev (1992).

2. V. I. Gulyaev and R. V. Domaretskii, “Vibrations of a bladed elastic disk during complex rotation,” Probl. Prochn.,

No. 6, 71–81 (1996).

3. V. I. Gulyaev, I. L. Solov’ev, and S. N. Khudolii, “Precession of a twin-blade rotor with elastic imponderable shaft

during complex rotation,” Probl. Prochn., No. 2, 73–81 (2002).

4. J. P. Den Hartog, Mechanical Vibrations, Dover, New York (1985).

5. A. I. Lur’e, Analytical Mechanics [in Russian], Nauka, Moscow (1962).

6. R. A. Mikheev, Strength of Helicopters [in Russian], Mashinostroenie, Moscow (1984).

7. A. N. Podgornyi, V. P. Sukhinin, G. M. Mellerovich, and V. I. Ingul’tsov, Stress and Strains in Components of Steam

Turbines [in Russian], Naukova Dumka, Kiev (1978).

8. V. A. Svetlitskii, Mechanics of Beams [in Russian], Ch. 1, Vyssh. Shk., Moscow (1987).

9. B. F. Shorr, “Fundamentals of the theory of twisted and curved blades,” Prochn. Dinam. Aviats. Dvig., 2, 292–315

(1966).

10. L. A. Shubenko-Shubin, D. M. Gerner, N. Ya. Zel’des, et al., Strength of Steam Turbines [in Russian], Mashinostroenie,

Moscow (1973).

11. K. V. Avramov, “Bifurcations at combination resonance and quasiperiodic vibrations of flexible beams,” Int. Appl.

Mech., 39, No. 8, 976–982 (2003).

12. V. I. Gulyaev, “Measurement of fracture parameters in three-dimensional cracked-body problems,” Int. Appl. Mech., 39,

No. 5, 503–524 (2003).

13. V. I. Gulyaev, P. Z. Lugovoi, and I. L. Solov’ev, “Elastic vibrations of a single-support thin-walled rotor (compound

shell) during complex rotation,” Int. Appl. Mech., 39, No. 8, 969–975 (2003).

14. V. I. Gulyayev, I. L. Solovjov, and P. Z. Lugovyy, “Analysis of precession vibrations of thin-wall elastic shells in

compound rotation,” J. Sound Vibr., 246, No. 3, 491–504 (2001).

454




