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The small elastoplastic deformation theory and the finite-element method are used to analyze the

behavior of a compound disk under axisymmetric impulsive loading. Numerical results are presented,

which describe the development of plastic deformation, the effect of hardening and the duration of the

loading impulse on the oscillatory elastoplastic deformation of the disk
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A method for solving the axisymmetric dynamic problem for isotropic elastoplastic solids of revolution with arbitrary

meridional section under impulsive thermomechanical loading was proposed in [11]. The method is based on small elastoplastic

deformation theory [1, 2, 8, etc.] and involves the finite-element approximation of unknown displacements in spatial coordinates

and finite-difference representation of time derivatives. The nonlinear problem is linearized by the method of variable

parameters. In the present paper, this method is extended to compound solids of revolution of finite dimensions. By a compound

solid is meant a discretely inhomogeneous solid of revolution whose constituents are solids of revolution. For the entire body and

for its parts, there is a common axis of revolution coinciding with the z-axis of a cylindrical coordinate system z, r, ϕ. The

constituents of the body are made of dissimilar isotropic materials characterized by different (real) limit σ–ε relationships and

are in perfect mechanical contact with each other.

1. Solution Method. Let the basic unknowns be the axial (Uz(z, r, t)) and radial (Ur(z, r, t)) displacements. We will use a

triangular ring finite element with linear approximation of the displacement vector to partition the meridional section of the solid

into triangles by a technique described in [4]. If the meridional section is approximated by N nodes and M triangles with node

numbers i, j, and k, then we have the following recurrent formulas of the explicit scheme for computing the displacements at the

time (t + ∆t) in terms of the displacement at the previous times t and (t – ∆t):
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where the superscript (m) refers to the mth triangular element, M1 is the number of elements that have the node i, and ∆t is the step

of integration over time. It should be remembered that aii
m( )

, ..., a i
m

1
( )

, cii
m( )

, ..., bii
m( )

, and M m
i appearing in the sums in (1.1)

depend on the material properties of the triangular elements around the node i. The quantities with the superscripts i, j, and k

correspond to their values at the nodes of an isolated triangular element with nodes i, j, and k. On each time interval, the

numerical solution of the elastoplastic problem is obtained by the iterative method of variable parameters. The convergence

criterion for the iterative process is the same as that used to solve quasinonstationary elastoplastic problems [5, 7]. Unloading is a

linear process. At each step of integration after the first iteration, the conditions of active loading and unloading are tested. To

trace the history of the process, the intensity of total shear strain Γ = (0.5eijeij)
0.5, the intensity of plastic strain Γp = (0.5e eij

p
ij
p

)0.5,

the components of the plastic-strain tensor, and a parameter specifying the direction of active loading or unloading are stored for

each finite element at each time step.
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TABLE 1

ε, % 0 0.20 0.22 0.25 0.30 0.40 0.60 0.90 3.00

σ, ÌPa

0 140 143 148 154 162 172 180 220

0 140 145 150 158 170 186 200 260

0 140 150 160 170 186 214 246 346

TABLE 2

ε, % 0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

σ, MPa 0 200 292 340 380 440 486 510 522



We used this method to study the behavior of a compound disk with a central hole under an impulsive mechanical load

causing elastoplastic strains. In what follows, we will discuss the computed results describing the development of plastic strains,

the influence of hardening and impulse duration on the oscillatory processes of elastoplastic deformation.

2. Example. We have solved numerically the elastoplastic stress–strain problem for a hollow compound disk whose

half the meridional section and loading scheme are shown in Fig. 1. The geometrical parameters of the disk are: outer radius

R3 = 0.0508 m, inner radius R1 = 0.0254 m, thickness h = 0.004 m, and radius of the cylindrical interface between the constituents

R2 = 0.0381 m. The lateral and outer cylindrical surfaces of the disk are free from loads, and the inner cylindrical surface is

instantaneously subjected, at t = 0, to a uniform surface load P0 = 80 MPa, which remains constant for t > 0. Part 1 of the disk

(Fig. 1) is made of an aluminum alloy and part 2 of steel. Three limit σ–ε relationships are given in Table 1 for the aluminum

alloy and in Table 2 for the steel. The mechanical characteristics of the materials are the following: Poisson’s ratio ν = 0.3,

Young’s modulus E = 2·105 MPa, density ρ = 8·103 kg/m3 (for the steel) and ν = 0.3, E = 7·104 ÌÏà, and ρ = 2.82·103 kg/m3 (for

the aluminum alloy).

Owing to symmetry, we analyzed just a quarter the meridional section of the disk, specifying symmetry conditions in

the plane z = 0. The step of integration over time was selected considering both stability conditions and the results of a numerical

experiment with mesh refinement in both coordinates and time. The integration step ∆t = 0.1·10–7 sec.

The computed results are plotted in Figs. 2–6.

Curves 1 and 2 in Fig. 2 show the time dependence of the radial displacement ur of a point on the disk surface (z = 0)

where the external load is applied in the elastic and elastoplastic cases, respectively. For the aluminum alloy, the limit

stress–strain relationship in the first row of Table 1 is used. The maximum elastoplastic displacements are larger than the elastic

displacements. However, when plastic strains are allowed for, the amplitude of oscillation is much less than in the elastic case.
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Figure 3a, b shows how the axial displacements uz of points on the inner cylindrical surface at a distance of 0.34 mm

from the symmetry plane z = 0 vary with time in the elastic and elastoplastic cases, respectively. It can be seen from Fig. 3a that

the elastic solution leads to a complex oscillatory process of deformation along the disk thickness with almost constant amplitude

that is superimposed on the process of radial deformation. The ratio of the frequencies of these two processes is determined by

the ratio of the radius of the disk to its half-thickness.

The plastic strains (occurring at t ≥ 0.12⋅10–4 sec) reduce by half the amplitudes of oscillatory variation in the

displacements caused by wave processes along thickness. The maximum elastoplastic displacements along thickness decrease

by 30–40%.

Figure 4 shows the accumulation of the intensity of plastic strains Γp = (0.5e eij
p

ij
p

)0.5 with time at a point of the inner

cylindrical surface. Lines 1–3 refer to the three limit stress–strain relationships (Table 1) for the aluminum alloy. The value of Γp

strongly depends on the limit stress–strain relationship. The less the hardening of the material, the greater the intensity of plastic

strains Γp. Since Γp is nondecreasing with time (a linear law of unloading is adopted), it follows from Fig. 4 that the plastic strains

accumulate mostly on the time interval 0.12·10–4 ≤ t ≤ 0.25⋅10–4 sec, i.e., until the first maximum of radial displacements

(Fig. 2). When the second maximum of displacements occurs at t = 0.8⋅10–4 sec, the intensity Γp slightly increases. It can also be

seen from Fig. 4 that irrespective of the limit stress–strain relationship used (they are characterized by the same limit of

proportionality), Γp increases at the same time points (steps of curves 1–3 in Fig. 4). Note that the curves have been plotted for the

time interval during which an elastic wave travels a distance equal to 20 radii of the disk.

Figure 5 shows how the radial displacements Ur of points on the inner cylindrical surface vary with time in a

homogeneous disk made of aluminum alloy (curve 1) and in a compound disk (curve 2). The dashed curve refers to a point on the

outer cylindrical surface of the compound disk. Comparing curves 1 and 2, we see that in the compound disk there are waves

reflected from the interface of the materials and from the outer cylindrical surface, which changes significantly the displacement

pattern, compared with the homogeneous disk. Since the velocities of elastic waves in the aluminum alloy and steel are almost

equal (C0 = 5000 m/sec for the steel and C0 = 4982 m/sec for the aluminum alloy) and the interface is equidistant from the inner

and outer surfaces, the wave reflected from the interface reaches the inner surface and the elastic wave reaches the outer surface

at the same time. This time is the moment of origin of the dash-and-dot curve in Fig. 5 and the moment of the first break of curve 2

for the compound disk. Similar breaks are also observed at later times, and these breaks are more pronounced than for the

homogeneous disk.

To ascertain the influence of the impulse duration on the stress–strain state, we have carried out two more computations

for two values (2·10–5 and 2·10–6 sec) of the duration of the load P = 80 MPa instantaneously applied to the compound disk at

t = 0, i.e., the load was instantaneously removed at t1 = 2⋅10–5 and t2 = 2⋅10–6 sec. For the aluminum alloy, the first limit

stress–strain relationship (Table 1) was used. The solid curves in Fig. 6 show how the radial displacements of the inner surface
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change with time for constant impulse (curve 1) and impulses of durations t1 (curve 2) and t2 (curve 3). The dashed curve

represents the elastic solution for a load impulse of duration t1. It follows from Fig. 6 that the impulse duration strongly

influences the behavior of the radial displacements. Note that plastic strains do not occur under impulses of durations t2. The

displacements are positive under constant impulse load (curve 1) and both positive and negative in the other two cases of load

duration.

The above results allow us to conclude that the plastic strains, the interface between dissimilar parts, and impulse

duration strongly affect the wave processes in the disk.

In summary, it should be emphasized that the quantitative and qualitative results obtained above are based on small

elastoplastic deformation theory that has been justified, both theoretically and experimentally, for processes of loading along

rectilinear or nearly rectilinear strain paths [3, 6, 9–11]. It is of interest to validate the obtained results by analyzing paths

(processes) of deformation in a compound disk under step impulse loading and to compare them with those produced by the

theory of plasticity.
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