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The Bogolyubov–Mitropolsky method is used to find approximate periodic solutions to the system of

nonlinear equations that describes the large-amplitude vibrations of cylindrical shells interacting with a

fluid flow. Three quantitatively different cases are studied: (i) the shell is subject to hydrodynamic

pressure and external periodical loading, (ii) the shell executes parametric vibrations due to the

pulsation of the fluid velocity, and (iii) the shell experiences both forced and parametric vibrations. For

each of these cases, the first-order amplitude–frequency characteristic is derived and stability criteria

for stationary vibrations are established
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Introduction. The problem of dynamic interaction between elastic cylindrical shells and the fluid they contain attracted

the attention of many noted scientists in the field of mechanics. The most significant results in this area have been obtained by

V. V. Bolotin [2], A. S. Vol’mir [4], J. Gorachek and I. A. Zolotarev [6], M. A. Il’gamov [7], N. A. Kil’chevskii and his disciples

[10], and other authors. Most studies were devoted to the buckling of shells under the nonconservative hydrodynamic forces

exerted by the fluid flow. As a rule, two qualitatively different types of buckling were examined: static (divergent type) and

dynamic (flutter type). The moment of buckling of one type or another was determined from an analysis of the corresponding

linearized equations of shell deformation.

Much less attention was given to the dynamic deformation of these shells after buckling, i.e., postbuckling deformation.

The complexity of the associated problems is in the necessity of accounting for nonlinear factors such as geometrical

nonlinearity and nonlinear damping and of using multidimensional design models of shells [2, 4]. The nonlinearities limit the

increase of vibration amplitudes after buckling, and the multidimensionality is necessary for the adequate description of

nonconservative (or, to put it differently, pseudo-gyroscopic [2]) forces, which are the major cause of buckling. M. Amabili,

F. Pellicano, and M. P. Paidoussis [11, 12, etc.] set forth several modern approaches to the analysis of multimode (seven modes)

free and forced nonlinear vibrations of cylindrical shells containing a flowing fluid. They also briefly reviewed scientific papers

devoted to the stability and large-amplitude vibrations of shells with fluid. In most cases, the nonlinear problems mentioned

above were solved by the following scheme:

(i) geometrically nonlinear equations of the classical theory (such as the Donnell–Mushtari–Vlasov equations) are used

as the original equations describing the motion of shells;

(ii) hydrodynamic pressure of the fluid is determined by the linearized theory of potential flow along the shell;

(iii) the Bubnov–Galerkin method is used to reduce the dynamic (partial differential) equations of shell with fluid to a

finite-dimensional system of ordinary differential equations;

(iv) this system is solved by numerical methods (collocation, Runge-Kutta, etc.) because of the difficulty of applying

analytical methods of nonlinear mechanics.

International Applied Mechanics, Vol. 41, No. 4, 2005

1063-7095/05/4104-0405 ©2005 Springer Science+Business Media, Inc. 405

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya

Mekhanika, Vol. 41, No. 4, pp. 75–84, April 2005. Original article submitted July 14, 2004.



In the present paper, we outline a method for finding single-frequency periodic solutions of the system of differential

equations describing the multimode nonlinear vibrations of cylindrical shells conveying a fluid. The method is based on the

asymptotic Bogolyubov–Mitropolsky method intended for analysis of the single-frequency vibrations of quasilinear

multidegree-of-freedom systems [1]. Applying this method, we can derive analytical expressions for the amplitudes and

frequencies of vibrations depending on the velocities of fluid flow, the physical and geometrical parameters of the shell,

waveformation parameters, and external load. We will obtain expressions for the following three practically important cases: (i)

the shell is subject to an external periodic force (the velocity of the fluid is constant), (ii) the shell interacts with the fluid moving

with a variable (pulsing) velocity, and (iii) both factors (external load and varying velocity) act simultaneously.

1. The original dynamic equations of a shell conveying a fluid have a mixed form [3, 4]:
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where w = w (x, y, t) is the radial deflection of the shell (positive toward the center of curvature); Φ is the function of stresses in

the median surface; h and R are the thickness and radius of the shell; D Eh= −3 212 1/ ( )µ is cylindrical stiffness (E is the elastic

modulus and µ is Poisson’s ratio); ρ is the density of the shell material; ε k are the damping factors (generally different for

different vibration modes); q = q (x, y, t) is the external load of the form q(x, y, t) = q0 (x, y) cos Ωt, where q0 is some function of

spatial coordinates x and y; and Ph is the hydrodynamic pressure on the shell walls. The fluid is perfect and incompressible; its

motion is potential.

The pressure Ph and the velocity potential ϕ = ϕ (õ, r, θ, t) are related by the following approximate formula [2, 4, 11]:

P
t

U
x

r R
h = −

∂
∂

+
∂
∂

⎛
⎝
⎜ ⎞

⎠
⎟⏐
⏐
⏐

=
ρ

ϕ ϕ
0 , (1.2)

where ρ0 is the density of the fluid; U is the velocity of the fluid; and x, r, and θ are the cylindrical coordinates. The potential ϕ
should be determined by solving the following boundary-value problem [3, 11]:
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(0 ≤ r ≤ R, 0 ≤ x ≤ l, 0 ≤ θ ≤ 2π, l is the length of the shell).

Assuming the shell is simply supported, we represent the dynamic deflection w by truncated two-parameter series:
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where f nm
1 2, are some functions of time having the sense of generalized coordinates; s n Rn = / and λ πm m l= / are the

waveformation parameters; and N1 and N2 are the number of axial and circumferential modes retained in the expansion of the

deflection function.

Substituting (1.5) into (1.4) and using (1.3), we obtain
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where ²ï are the modified Bessel functions of the nth kind.

Substituting (1.5) into the second equation in (1.1), we determine the stress function Φ. Applying then the

Bubnov–Galerkin method to the first equation in (1.1), taking (1.2)–(1.6) into account, we derive a system of equations for f nm
1 2,

appearing in (1.5):
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where ωnm are the natural frequencies of the shell–fluid system, and [11, 15]
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(∆(a, b) = (a2 + b2)2 is an operator); αnm and β k
nm are constant coefficients,
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ε 0 1 2F nm
, are nonlinear functions up to the third power in ( )f p N q N

pq
1 2 21 1, , ; ,= = [8, 9], ε0 is a small positive parameter.

The system of equations (1.7) is used to analyze the stability and nonlinear dynamic deformation of shells conveying a

fluid. Here we will outline a method for finding the periodic solutions of this system corresponding to single-frequency forced,

parametric, and combined vibrations of shells. It is convenient to represent system (1.7) in the form
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where the index k is used instead of m and n in (1.7).

Before constructing periodic solutions, it is necessary to analyze the shell for stability, using the linear system (1.11)

with ε0 = 0. Assuming that Qk = 0 (k N= 1, ), we set up a characteristic equation for this system. Let
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Then we obtain the equation

| | ( ) | |ω α λ ε λ δ β λj j j jk jkU i Ui2 2 2 0− − + + = (1.13)

(j = 1, 2,…, N; δjk is the Kronecker delta).

The nondisturbed mode shape of the shell is stable if all the characteristic exponents s0 = iλ in (1.12) fall onto the left

half-plane of the complex variable [2]. If at least one of the exponents is in the right half-plane, then either static or dynamic

(oscillatory type) instability may occur. The exponent s0 passes to the right half-plane through the origin of coordinates

(Im [s0] = 0) in the former case and through the point at which Im [s0] ≠ 0 in the latter case. We will consider the second type of

instability (flutter), which is of practical importance for the dynamic design of piping systems [4, 11]. This type of instability

occurs at the minimum velocity Umin = U* at which one of the exponents s0 passes to the right half-plane, remaining complex.

Thus, U* is a critical velocity of the fluid at which flexural vibrations with increasing amplitudes are excited in the shell. The

frequency of these vibrations, λ = λ*, is determined from Eq. (1.13) where U = U*. Note that the flexural modes corresponding to

the frequency λ* are characterized by certain values of m and n [2, 6, 11].

2. To find the single-frequency periodic solutions of the general system (1.11) (in the case of different damping factors

εk, this system satisfies all the existence conditions for single-frequency vibrations [1]), we assume that the fluid velocity U

(U = const) is close to the critical value U* and, moreover, the frequency of external excitation Ω is close to the natural frequency

λ* of the shell–fluid system. Thus, we are considering the worst (from the dynamic-strength viewpoint) situation where the shell

is about to buckle and is at principal harmonic resonance (Ω ≈ λ*). The corresponding periodic solution can be represented,

according to [1], as follows (hereafter the subscript k takes integer values from the interval 1≤ ≤k N):
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ϕ k are the complex conjugate eigenfunctions; and a and θ are slowly varying functions of time, which define the amplitude and

phase of single-frequency vibrations and are determined as a first approximation from the equations
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whereε λ0 0∆ Ω= −* ; ε0À and ε0Â are functions constructed by a special procedure [1]. Let us determine these functions. To this

end, we find the following derivatives:
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where the omitted terms correspond to higher harmonics (±2³ψ, ±3³ψ, etc.) of the Fourier series.

Substituting (2.1), (2.3), and (2.4) into (1.11) and collecting the terms with e³ψ, we obtain the system of equations
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where ε 0 1∆ = −U U* andU U2 2− * ≈ 2 0 1U*ε ∆ .

Similar equations will result if we equate the coefficients of e–³ψ.

Since Eq. (2.2) where ϕ j j N≠ =0 1( , ) is valid, for the existence of the periodic solutions fk and the unique definition of

the functions A and B in (2.3), it is necessary and sufficient that the orthogonality condition [1]
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then from Eq. (2.7) with (2.6) we obtain the following expressions for A(a, θ) and B(a, θ):
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Returning to system (2.3) and assuming that da dt/ = 0and d dtθ / = 0, we derive the amplitude–frequency characteristic

of steady-state vibrations of the shell with flowing fluid:
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Whether the stationary solutions a = a(Ω) found from (2.12) are stable can be established from an analysis of the

corresponding variational equations for (2.3). The stability criteria will be the following [5, 8]:
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Analyzing Eqs (2.12) and (2.13), we can study the nonlinear prebuckling deformation of the shell, i.e., at U ≈ U*. It is

significant that the deformation mode of the shell may be either “standing” waves with a complex spatial pattern or bending

waves “traveling” in the circumferential direction. Which of these modes occurs depends on the relationship between the phases

of the functions f nm
1 and f nm

2 in (1.5) [8, 9, 12–16]. In particular, the waves in the shell are traveling if � ( )α nm t ≠ 0 in the

deflection function w (1.5) represented in a wave form [9]:
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Otherwise (αïò = const), each term in (1.5) will characterize a standing wave.

3. Let us consider the case where the velocity U1 of fluid is not constant but “pulsing” in time by the formula

U U t1 0 01= +( cos )ε µ ν , (3.1)

where ν and ε µ µ0 0 0( )= const are the frequency and small amplitude of pulsations. As in the previous section, we assume that

U ≈ U* and, moreover, λ ν* /≈ 2, which is a precondition for excitation of parametric vibrations.

If no lateral force acts on the shell (i.e., q ≡ 0), then the periodic solution of system (1.11) can also be represented in the

form (2.1) [5, 8], where ψ ν θ= +t / 2 . In view of (2.11), Eqs. (2.3) take the form
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The amplitude–frequency characteristic of the steady-state vibrations of the shell is
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and the stationary solutions a = a(ν) found from (3.5) are stable if
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4. When the shell is simultaneously subjected to both factors mentioned above (external periodic load and pulsation of

fluid velocity), of practical importance is the case where both frequencies Ω and ν are close to the natural frequency λ* of the

shell–fluid system [5, 8, 9], i.e., Ω ≈ λ* and ν ≈ 2λ*. In this case, the periodic solution of system (2.1) can be represented, as a first

approximation, in the form (2.1), where ψ = Ωt + θ (without loss of generality, we hereafter assume Ω = ν/2). To determine the

amplitude a and the phase θ of single-frequency resonant vibrations of the shell, we derive from (2.7) the following equations:
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and the notation (2.11), (3.3) is used.

To derive the amplitude–frequency characteristics, we will eliminate (assuming that da dt/ = 0and d dtθ / = 0) the phase

θ from Eqs. (4.1). As a result, we obtain the amplitude–frequency equation
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2 2 2 2

1
2

2
2

1
2

2
2 2 2

1
2

2
2

14 4 [ ]) ( )a S G a− 1
2 , (4.3)

where T a G a H a a( ) ( ) ( )= +2 2 2 .

The solutions a = a(Ω) found from this equation will be stable if

d

da
G a a[ ( ) ]< 0,

( )d

da

G a

a a
R S G a R

( )
cos sin ( ) cos

⎛
⎝
⎜ ⎞

⎠
⎟ − +

⎡
⎣⎢

⎤
⎦⎥

+ +
1

2
2 1 1 1θ θ θ( )[ ]S1 sin θ

( )[ ] ( )+ + − − −
⎡
⎣⎢

⎤
⎦

2
1

1 1 2 1 1aH a S R
dH a

da a
S R( ) cos sin

( )
cos sinθ θ θ θ ⎥ > 0, (4.4)

where

( )cos
( ) ( )

, sin
( ) (

θ θ=
− +

+
=

−T a K K a

a R R S S

R H a a S G1
2

2
2 2

1 2 1 2

1 1

2

a

T a K a

)

( )− 2
2 2

. (4.5)
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Conclusions. We have outlined a method for analysis of the single-frequency nonlinear vibrations of cylindrical shells

interacting with the fluid flowing inside them. The method can be used to analyze the dynamic stability and nonlinear vibrations

of elastic shells conveying a fluid in specific cases.
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