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A dynamic problem for reinforced ellipsoidal shells under nonstationary loads is formulated and solved

numerically. The results obtained are analyzed
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The forced axisymmetric vibrations of reinforced shells of revolution of canonical shapes (cylindrical, spherical, and

conical) under nonstationary loads [2, 4, 9–11] have been investigated adequately. The axisymmetric vibrations of reinforced

shells of revolution were studied in [4] in geometrically nonlinear formulation. The physical nonlinearity of rib-reinforced

cylindrical shells was accounted for in [5]. The dynamic processes in reinforced laminated shells under nonstationary loads were

considered in [9, 10]. The complexity of original problems and associated physical processes necessitates the use and

development of numerical approaches for their solution [2, 4].

The present paper studies forced vibrations of discretely reinforced ellipsoidal shells. Variational and differential

formulations of the corresponding problem will be given. The numerical algorithm to be used is based on the approximation of

the original variational functional. Numerical examples will be given.

Problem Formulation. Consider an ellipsoidal shell. The geometry of its median surface is defined by the following

relations [3]:

x R= sin sinα α1 2 , y R= sin cosα α1 2 , z kR= cos α1, (1)

where α1 and α 2 are the Gaussian curvilinear coordinates (meridional and circumferential, respectively) on the shell surface,

and k a b= / is the aspect ratio of the ellipse (a and b are the ellipse semiaxes).

In view of (1), the components of the metric and form of the median surface are
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According to formulas (2), the coefficients of the first quadratic form and curvature of the median surface are
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The inhomogeneous shell structure under consideration consists of an ellipsoidal shell and a system of rings (ribs)

rigidly bound to it (the ribs are assumed to be aligned along the coordinate line α 2 ). As a mathematical model describing the
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forced vibrations of this structure, we will use the hyperbolic system of nonlinear differential equations of the theory of shells

and curvilinear Timoshenko-type rods. The variation of the displacements across the shell thickness is described by the formulas

u s z u s z sz
1 1 1( , ) ( ) ( )= + ϕ , u s z u sz

3 3( , ) ( ),= (4)

where u1, u3 , and ϕ1 are the components of the generalized displacement vector, and s A= α1 1.

To determine the strain state of the jth rib, we will use the generalized displacement vector of the center of gravity of its

cross sectionU u uj j j j= ( , , )1 3 1ϕ . The contact conditions relating the components of the vectorsU u u= ( , , )1 3 1ϕ andU j have

the form

u t u s t h s tj j cj j1 1 1( ) ( , ) ( , )= ± ϕ , u t u s tj j3 3( ) ( , )= , ϕ ϕ1 1j jt s t( ) ( , )= , (5)

where s is the coordinate of the point of contact between the jth rib and the shell; t is the time coordinate; and h h bcj j= +0 5. ( ), h

is the thickness of the shell and bj is the height of the jth rib.

To determine the stress–strain state of the structure, we will use the quadratically nonlinear theory of shells [6]. In this

case, the deformation relations for the shell and jth rib are
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To derive the equations describing the vibrations of the shell structure, we will use the Hamilton–Ostrogradskii

variational principle:

[ ( ) ]δ δΠ− − =∫ K A dt

t

t
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2

0, (7)

where Π and K are the total potential and kinetic energies of the structure and A is the work done by external forces.

We will also use the contact conditions for the shell and the jth rib in the following integral form [1]:
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where δ( )s s j− is the Dirac delta function.

After standard transformations of (7) using (5) and (8), we reduce the variational equation to the form
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where ρand ρ j are the densities of the materials of the shell and jth rib, F j and I crj are the geometrical parameters of the jth rib,

and P1, P3 , and m1 are the components of the generalized load vector.

The forces and moments are expressed in terms of the strains as follows:

T B11 11 11 21 22= +( )ε ν ε , T B22 22 22 12 11= +( )ε ν ε , T B k13 13
2

13= ε ,

M D11 11 11 21 22= +( )κ ν κ , M D22 22 22 12 11= +( )κ ν κ , T Bj j j22 22 22= ε , (10)
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E1, E2 , G13 , ν12 , and ν21 are the physicomechanical parameters of the shell material; k 2 is the integral coefficient of transverse

shear in the theory of plates and shells; and E j and F j are Young’s modulus and the cross-sectional area of the jth rib.

By virtue of the independence of the variations δu1, δu3 , and δϕ1, Eqs. (9) yield the differential vibration equations
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which should be supplemented with boundary conditions (for forces or displacements) and zero initial conditions.

Numerical Algorithm. The algorithm is based on the finite-difference approximation of the variational equation (9):
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Evaluating the integrals using explicit approximation in time coordinate, we obtain the following three groups of

difference equations.

1. Difference vibration equations in the smooth domain
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2. Difference vibration equations on the jth discontinuity line
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3. With the following boundary conditions at s s= 0 :
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the difference vibration equations
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The functions and derivatives in (12)–(14) are denoted as in [8].

Numerical Example. Consider an ellipsoidal shell with symmetric openings at α π1 0 12, /= and α π α1 1 0, ,N = − . The

shell is subjected to a nonstationary normal internal load. The free edge of each opening is reinforced with a ring rib at s s1 0≈
(the edge of the rib is flush with the free edge of the shell, and the center of gravity of the rib’s cross section is projected into an

internal point of the median surface, i.e., s s bj j= +0 0 5. , where bj is the rib width). The boundary conditions at s s= 0 are:T11 =0,

T13 = 0, and M11 = 0. The initial conditions are zero.

The nonstationary load is defined by

[ ]P A
t

T
t t T3 = ⋅ − −sin ( ) ( )

π
η η ,

where A and T are the amplitude and duration of the load (A = 106 Pa and T = ⋅ −50 10 6 sec).

The geometrical and physicomechanical parameters are: a b/ /= 2 3 (for a = 0.3 m and b = 0.45 m), a b/ = 1(for a b= =
0.45 m), a b/ /= 3 2(for a =0.45 m and b =0.3 m), h h j/ =0.5, F j = ⋅ −2 10 4 m2, α π1 0 12, /= , E1

107 10= ⋅ Pa, ρ = ⋅27 103. kg/m3,

E Ej = 1, and ρ ρj = .
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The numerical results obtained allow us to analyze the stress–strain state of the shell at any instant of time (on the

interval 0 100≤ ≤t T). In particular, Figs. 1 and 2 show the dependences of u3 and σ22 , respectively, on the spatial coordinate α1

at fixed instants (time points at which the plotted quantities peak). In Fig. 1, curve 1 corresponds to a b/ /= 2 3, a h/ = 30 at

t = 8.5T; curve 2 to a b a h/ , /= =1 45(spherical shell) at t = 6T; and curve 3 to a b a h/ / , /= =3 2 45at t = 6T. In Fig. 2, curves 1, 2,

and 3 correspond to t = 8.5T, 6T, and 14.5T and the same geometrical parameters as in Fig. 1. Figure 3 shows the dependence of

u3 on time on the interval 0 20≤ ≤t T at the edge of the opening (α α1 1 0= , ) for the three above-mentioned cases. The curves allow

us to estimate the effect of the geometry and ribs on the distribution of the displacements u3 and stressesσ22 over the meridional

section of an inhomogeneous ellipsoidal shell.
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