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The bifurcations of a thin-walled shell rotor during simple and complex rotation are analyzed. The

similarity and difference of the problem formulations and solution techniques are pointed out. In both

cases, the buckling mode is described by the first circumferential harmonic. The dependence of rotor

bifurcations on natural frequencies is studied
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Introduction. It was established in [2–4, 10, 11, 15] that bifurcations (in the sense defined in [1, 6, 7]) of rotating

conical, spherical, paraboloidal, and compound shells occur under centrifugal forces as static buckling if the rotation is simple

and as precession resonance if the rotation is complex. It was shown that the critical states of simply rotating shells are due to

instability of dynamic equilibrium, resulting in buckling caused by inertial forces, which depend on the position of the elastic

element relative to the axis of rotation.

The second type of bifurcations of a rotating shell mounted on a carrier body may occur when the body changes its

attitude, forcing the rotation axis to move. In this case, the shell experiences precessions that may become resonant (bifurcation)

at certain natural frequencies and angular velocity.

We will demonstrate below that the natural frequencies and critical angular velocities of a thin-walled elastic rotor are

in certain relationships during simple and complex rotations. The rotation of the rotor changes substantially the natural

frequencies and modes, since multiple frequencies split and vibration modes transform into waves traveling (precessing) in the

circumferential direction. In this case, one of the split frequencies corresponds to a wave running in the direction of rotation

(direct regular precession) and the other to a wave running in the opposite direction (retrograde regular precession).

The angular velocities at which the split frequencies combine and take zero values are the velocities of static (in the

rotating coordinate system) buckling. During complex rotation, the rotor reaches critical states when the frequency of retrograde

precession becomes equal to the velocity of rotation.

It is of interest to find out which of the bifurcations of a compound shell occurs earlier and how they are related to the

natural frequencies. The features of bifurcations of elastic shells during simple and complex rotation can be used to analyze the

dynamic behavior of thin-walled rotors in the engine of a maneuvering aircraft.

1. Equations of Complex Rotation of a Shell Element. According to [8, 9, 13, 14], the natural vibrations of rotating

shells turn out to be precession. To analyze the relationship between these vibrations and critical states occurring during simple

and complex rotations, we will select natural modes in which precession occurs in the first circumferential harmonic. Since the

equation of static buckling and natural precessions are special cases of the equations of precessions during complex rotation of a

shell, let us first determine the precession resonances of thin axisymmetric shells in complex rotation, analyzing natural

vibrations and static buckling as simpler cases.

Assume that one end of a thin compound shell rotor is rigidly fixed to a perfectly rigid carrier body rotating together

with its coordinate system Oxyz at a constant angular velocity
�
ω about the symmetry axis Oz, which, in turn, is forced to turn with

a constant velocity
�
ω 0 in a plane (Fig. 1). The other end of the shell is free from external forces and constraints. Let us now

introduce right coordinate systems: an inertial coordinate system OX Y Z* * * with the origin at the center of the support contour
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of the rotor and the OY-axis collinear to the vector
�
ω 0 and a rotating coordinate system OXYZ with the fixed OY-axis coinciding

with theOY * -axis and the OZ-axis coinciding with and moving together with the Oz-axis. On the median surface of the shell, we

introduce an orthogonal curvilinear coordinate system Îx x x1 2 3 with the coordinate line x1 lying in the generating section, x2

directed in the circumferential direction, and x3 running along the inward normal to the shell surface.

Initially, the rotor is stressed by stationary axisymmetric centrifugal forces and does not vibrate. Let us examine the

possibility of instability of dynamic equilibrium or forced precessions in the form of a harmonic wave precessing with a

frequency
�
ω relative to the initial stress state.

Let us use the geometrically nonlinear equations of dynamic equilibrium of a shell element in general form [3, 12]:

∇ + =α
α� �

T p 0, ∇ + ×α
α

α
α� � �

M e T( ) a = 0 (α = 1 2, ), (1)

where
�
T α is the vector of internal forces,

�
M α is the vector of internal moments, ∇α denotes covariant derivative, and

�
p is the

vector of intensity of external forces.

Using the relations between the contravariant components of the functions of internal forces
�
T ij and moments

�
M ij and

the covariant components of the functions of strain ε ij and changes of curvatures µ ij ,

T Eh a a a aij ij i j= + − −ε ν ναβ
αβ α β( ( ) ) / ( )1 1 2 ,

M Eh a a a aij ij i j= + − −3 21 12 1µ ν ναβ
αβ α β( ( ) ) / ( ), (2)

expressing these functions in terms of the covariant components u1, u2 , and u3 of the displacement vector
�
u and angles of

rotation ϑ i

ε ij ie u= ⋅∂ ∂( /
�

x j +
� �
e uj ⋅∂ /∂ + ⋅xi

i jϑ ϑ ) / 2, ϑ i u= ∂( /
� ∂xi )

�
e3 ,

µ ij
k ik j k jk ic x c x= ⋅∂ ∂ + ⋅∂ ∂( / / / / ) /

� � � �
e e� � 2,

� �
�= =c i j kij

i jϑ e ( , , , )1 2 (3)

and considering, in expanding the vector operations in (1), the change of the parameters bi
j

of the second quadratic form during

deformation, we obtain nonlinear equations of dynamic equilibrium.

The only active forces acting on the shell are inertial forces. They are determined from the equality
�
p =−γha

�
, where γ is

the density of the shell material, h is the shell thickness, and
�
a is the vector of absolute acceleration defined by the formula
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� � � �
à à à à= + +t r C. To calculate the vectors of translational (

�
àt ), relative (

�
àr ), and Coriolis (

�
àC) accelerations, we use the kinematic

relations describing the complex motion of a point [5]:

� � � � � �
àt = × + × ×� � � � �( ),

�
ar = d 2 �

� /dt 2 ,
� �
aC = ×2� (d dt

�
� / ), (4)

where
� � �
� � �= +0 and

� � �
� � �= ×0 are the vectors of absolute angular velocity and angular acceleration of the moving coordinate

system Oxyz, and
�
� is the position vector of a shell element in this system.

Performing the vector operations (4) and neglectingω 0
2 , we determine the contravariant components of the acceleration

vectors:

a r a r t x a ut
1 2

11 0
2

11
2

1
22= − + + −ω ϕ ω ω ω ϕ ω ϕsin / sin( )cos / sin / a11 +ω ϕ ϕ2

3 11u asin cos / ,

a u at
2 2

2 22= −ω / ,

a r r t x u a ut
3 2

0
2 2

1 11 32= + + + −ω ϕ ω ω ω ϕ ω ϕcos sin( )sin ( sin / cos )cosϕ ϕ ,

a u a aC
1

2 11 222= − ω ϕ� sin / ,

a u a a u a a u aC C
2

1 11 22 3 22
3

22 2 2= − =ω ϕ ω ϕ ω ϕ� sin / � cos / , � cos / 22 ,

a u a a u a a ur r r
1

11 11
2

2 22
3

3= = =�� / , �� / , �� . (5)

These accelerations, except for the terms depending on the independent variable t alone, include terms with dependent

variables u u u u u1 2 3 1 2, , , � , � , and �u3 brought in the left-hand sides of the governing equations. This leads to restructuring of the

equations and the possibility of their degeneration in critical states.

The equations of complex rotation follow from relations (1)–(3) transformed using (4) and (5). However, the equalities

containing large ω 2 account for changes in the geometry of the shell due to loading and include the quantities r r+ ∆ and ϕ ϑ+ ∆ 1
*

instead of r andϕ, which are the distance from the rotation axis to the section of interest and the angle between the tangent and the

generatrix.

The factorssin( )ωt x+ 2 on the right-hand sides of these equations are associated with the type of the inertial load, which

is harmonic in x2 and t and runs around the shell with frequency ω, generating precessions with the same frequency. In

simulating precessions excited by these forces, we assume they are small since ω >> ω 0 . Therefore, we first consider the

stress–strain state of the rotor simply rotating with frequency ω and then analyze the precessions using the equations of motion

linearized about the first state [10]:

∂ ∂ +∂ ∂ + + + −∆ ∆ Γ Γ ∆ Γ ∆ ∆T x T x T T b11 1 12 2
11
1

21
2 11

22
1 22

1
12/ / ( ) T 13

− − −γ ω ϕ ω ϕ ϑh r a r a[ sin / cos /*2
11

2
1 11∆ ∆

− + = +2 22 11 22 1 11 0
2ω ϕ γ ω ω ωsin � / �� / ] sin( )cos∆ ∆u a a u a h r t x ϕ / a11 ,

∂ ∂ +∂ ∂ + + −∆ ∆ Γ Γ ∆ ∆T x T x T b T12 1 22 2
12
2

11
1 12

2
2 233/ / ( )

− − + −γ ω ϕ ϑ ω ϕ ω ϕh r a u a a u[ cos / sin � / cos � /*2
2 22 1 11 22 32 2∆ ∆ ∆ a22 + − =∆ ∆�� / / ]u a u a2 22

2
2 22 0ω ,

∂ ∂ +∂ ∂ + + + +∆ ∆ Γ Γ ∆ ∆ ∆T x T x T b T b T13 1 23 2
12
2

11
1 13

11
11

11
1/ / ( ) 1

22
22+ b T∆

+ − − + +∆ ∆ ∆ϑ ∆ ∆b T h r r u a22
22 2 2

1 2 222γ ω ϕ ω ϕ ω ϕ[ cos sin cos � / �* � ]u3 = +2 0
2γ ω ω ϕ ωh r t xsin sin( ). (6)
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From the structure of these equations, it follows that the unknown functions vary assin( )ωt x+ 2 if they are odd in x2 and

t and vary as cos( )ωt x+ 2 if they are even in these variables. This fact allows us to eliminate the variables x2 and t from Eqs. (6)

and to reduce partial differential equations to ordinary differential equations with the axial coordinate x1 as an independent

variable. The resulting system of equations is solved using the initial-parameter and Runge-Kutta methods [3].

2. Free Vibrations of Simply Rotating Shells. In the case of simple rotation, the inertial forces acting on the shell

include terms that do not have the factor ω 0 . Since we are considering the critical states of simply and complexly rotating shells

in the minimum-energy deformation mode described by the first circumferential harmonic in x2 , we will approximate the

unknown functions by the first harmonics sin( )ct x+ 2 and cos( )ct x+ 2 , where ct x+ 2 is a phase coordinate and c is the natural

frequency [13, 14]. With this simplification, we can derive from (6) equations describing a partial mode of free vibrations:

dT dx T T T b T( ) ( ) ( ) ( ) (/ ( )11 1 12
11
1

21
2 11

22
1 22

1
12− + + + −Γ Γ Γ 13)

− − − +γ ω ϕ ω ϕ / ω ϕ ϕh r a u a u2
1 11

2
1

2
11

2
3cos / sin sin cos( ) ( ) ( )ϑ( )/ sin / /( ) ( )a cu a a c u a11 2 11 22

2
1 112+ −ω ϕ = 0,

dT dx T T b T( ) ( ) ( ) ( )/ ( )12 1 22
12
2

11
1 12

2
2 233+ + + −Γ Γ

− − + − −γ ω ω ϕ ω ϕh u a c u a a c u a2
2 22 1 11 22 3 222 2( ) ( ) ( )/ sin / cos /( )c u a r a2

2 22
2

2 22( ) ( )/ cos /−ω ϕϑ = 0,

dT dx T T b T T( ) ( ) ( ) ( )
( )/ ( )13 1 23

12
2

11
1 13

11
11

11 0− + + + −Γ Γ µ 11
22

22
22 0

22+ −b T T( )
( )µ

− − + −γ ω ϕϑ ω ϕ ϕ ω ϕh r a u a u2
1 11

2
1 11

2
3

2sin / sin cos / cos( ) ( ) ( )( )− −2 2 22
2

3ω ϕcu a c u( ) ( )cos / = 0. (7)

The free vibrations described by these equations have the form of a harmonic wave running in the circumferential

direction with the angular velocity c. When ω = 0, each of the frequencies is double and the corresponding waves are standing.

When ω ≠ 0, the multiple frequencies split into two and the two modes start precessing in the direction of rotation (direct regular

precession) if the frequency ñi is negative and in the opposite direction (retrograde regular precession) if the frequency ñi is

positive.

3. Instability of the Dynamic Equilibrium of Rotating Shells. Assume that the rotating shell buckles in a

minimum-energy mode described by the first circumferential harmonic in x2 . Since the shell does not vibrate in this case, only

positional forces of inertia act on its elements during buckling:

a r a a rt
1

t= − =ω ϕ ω ϕ2
11

3 2sin / , cos . (8)

Using these equalities in (1)–(3) and linearizing them about the states of simple rotation with angular velocity ω, we

derive a homogeneous system of equations of neutral equilibrium:

∂ ∂ +∂ ∂ + + + −∆ ∆ Γ Γ ∆ Γ ∆ ∆T x T x T T b11 1 12 2
11
1

21
2 11

22
1 22

1
12/ / ( ) T 13

− − − +γ ω ϕ ϑ ω ϕ / ω ϕ ϕh r a u a u a2
1 11

2
1

2
11

2
3cos / sin sin cos /*∆ ∆ ∆[ ]11 0= ,

∂ ∂ +∂ ∂ + + − +∆ ∆ Γ Γ ∆ ∆T x T x T b T h r12 1 22 2
12
2

11
1 12

2
2 23 23/ / ( ) γ ω cos *ϕ ϑ∆ 2 0= ,

∂ ∂ +∂ ∂ + + + +∆ ∆ Γ Γ ∆ ∆ ∆T x T x T b T b T13 1 23 2
12
2

11
1 13

11
11

1
1 1/ / ( ) 1

22
22

22
22+ +b T b T∆ ∆

[ ]− − + − =γ ω ϕ ϑ ω ϕ ϕ ω ϕh r u a u2
1

2
1 11

2
3

2 0sin sin cos / cos*∆ ∆ ∆ . (9)

In contrast to Eqs. (6) and (7), these equations are referred to the coordinate systemOx x x1 2 3 fixed to the shell, the phase

variables ωt x+ 2 and ct x+ 2 are not used, and the unknown variables are approximated using the function sin x2 or cos x2 ,

depending on whether the variable being approximated is odd or even. Such substitutions reduce Eqs. (9) to a system of

homogeneous ordinary differential equations. Their partial solutions are found by the initial-parameter method. The critical
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values ω cr of the angular velocity at which this system has a nontrivial solution are found by enumerating the values of ω from

some range. A critical state is considered to set in when the matrix of the corresponding equations, which follow from the

boundary conditions, degenerate.

4. Identifying the Critical States of a Rotating Rotor from Its Frequency Curves. Consider a thin-walled rotor

consisting of cylindrical and conical shells and a shell of negative Gaussian curvature (Fig. 1). Its geometrical and mechanical

characteristics are given in [11]. We used the equations of free vibrations from Sect. 2 to plot the dependence of the natural

frequency ñi on the angular velocity ω of simple rotation (Fig. 1). Let us now analyze the deformation modes described by the

first harmonics. As indicated above, they are forced-precession modes of a complexly rotating shell and minimum-energy static

modes of a simply rotating shell. First, we determined, by enumeration, the natural frequencies ñi
+ −,

of a nonrotating rotor

(ω = 0). For each value of c obtained by adding a small increment ∆ñ, we evaluated the determinant of the matrix of the

corresponding system of algebraic equations, which follows from the boundary conditions of the initial-parameter method. The

values of c at which the determinant vanishes are eigenvalues. It turned out that the frequencies come in pairs where they are

equal in absolute value and opposite in sign, | |ñ ci i
− += (i = 1, 2, 3). Such frequencies may be considered multiple, since they

correspond to standing (nonprecession) modes that differ only in phase in x2 . After that, for each pair of frequencies

ñ ñi i
− +( ), ( )0 0 , we plotted characteristic curves ñi

− ( )ω and ñi
+ ( )ω (i = 1, 2, 3) by varying the angular velocityω. The curves located

in the right-hand quadrant (ñi
+ > 0) represent retrograde precession and the curves in the left-hand quadrant (ñi

− < 0), direct

precession. Since the dependence of c on ω is strong, the method, sometimes used in rotor design, of determining the resonant

frequencies of rotating rotors from the natural frequencies of the corresponding nonrotating shells may produce significant

errors.

As ω increases, the curves ñi
− ( )ω and ñi

+ ( )ω cease to be symmetric about the ordinate axis, i.e., multiple frequencies

split. Therefore, at the same ω, the velocities c of direct and retrograde precessions are different.

The curves ñi ( )ω originating at the points c1 0− ( ) and c2 0− ( ) close each other, crossing the ordinate axis at the points

ω1
cr = 314 señ–1 and ω 2

cr = 3770 señ–1 when ñ ci i( ) ( )ω ω1 2
cr cr= = 0. This fact indicates that the rotor does not vibrate at these

angular velocities, i.e., divergent buckling occurs. A numerical analysis of static buckling performed by the method from Sect. 3

confirmed this conclusion with adequate accuracy. Figure 2 shows buckling modes of the rotor’s free end in the rotating (Oxyz,

Fig. 2a) and inertial (OX Y Z* * * , Fig. 2b) coordinate systems. The mark A allows us to trace the orientation of the section relative

to the coordinate system chosen.

The curves ñi ( )ω originating at the points c1 0+ ( ) and c2 0+ ( ) also close each other, crossing the bisector in the first

quadrant. At the intersection points: ñ1 1 1 1432+ = =( )ω ωres res sec–1 and ñ1 2 2 1675+ = =( )ω ωres res sec–1. These angular velocities are
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resonant, because the precession frequency is equal to the angular velocity of the rotor and to the natural frequency at each of the

intersection points. A numerical analysis performed by the method from Sect. 1 reliably confirmed this effect.

Figure 3a, b shows the modes of preresonant vibrations of the rotor’s free end in the coordinate systems Oxyz and OXYZ

coordinate systems.

Thus, the frequency curves in Fig. 1 describe the vibratory motion of the rotor. They may be used to establish critical

states of the rotor during simple and complex rotation.
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