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The monoharmonic radial vibrations and dissipative heating of an infinite hollow piezoceramic cylinder

are studied in dynamic formulation, taking into account the temperature dependence of the complex

electromechanical characteristics over a wide range of temperatures, including depolarization

temperatures. The influence of the heat exchange conditions, the level of electric load, and geometry on

the thermoelectromechanical characteristics is studied in the case of forced vibrations at the first

resonance
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Piezoelectric elements are widely used in modern technology as energy converters, transducers, exciters, etc., operating

in the mode of harmonic oscillations. Dissipation causes heating of piezoelectric elements. Under real loading and

heat-exchange conditions, the heating temperature may reach critical levels (Curie point) when the material is depolarized. The

influence of inhomogeneities due to structural features or depolarization phenomena on the electromechanical behavior of

piezoelectric elements under harmonic vibrations was studied in [4–6, 8–10, etc.]. Publications on the subject are reviewed in

[3, 11].

The extended area of application and complicated operation conditions of piezoelectric elements require further

in-depth research into the laws governing their electromechanical behavior, especially in the range of resonant frequencies. The

present paper addresses the dynamic problem on monoharmonic vibrations and dissipative heating of a radially polarized infinite

piezoceramic cylinder with temperature-dependent electromechanical properties over a wide range of temperatures, including

depolarization temperatures.

Problem Formulation. Consider a hollow cylinder infinite along the z-axis. Its inner and outer radii are denoted by r1
and r2 . The cylinder is made of a viscoelastic radially polarized piezoceramics. The radial surfaces are covered with solid

electrodes. A harmonically varying potential difference ( ) ( ) ( )~
,

~
, Reψ ψ ωr t r t V ei t

2 1 02− = (V0 = const, ω is circular frequency,

and t is time) applied to the electroded surfaces induces radial axisymmetric electromechanical vibrations and plane strain state

( )ε z = 0 , with the electric induction components Dz and Dθ perpendicular to the polarization direction being negligible [2]. The

cylindrical surfaces (r r r r= =1 2, ) are free from stresses and participate in convective heat exchange with an ambient medium of

temperature Tc . The dissipative properties of piezoceramics are described by the concept of complex electromechanical

characteristics known over a wide range of temperatures, including depolarization temperatures.

The problem on monoharmonic radial vibrations and dissipative heating of the cylinder reduces to the following

equations (the factor ei tω is omitted):

the equations of mechanical vibrations and electrostatics
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simplified (in view of the plane strain condition) electroviscoelastic relations
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the period-averaged heat-conduction equation
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with the following dissipative function:
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the electromechanical and thermal boundary conditions
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( ) ( )ε ε ε ε δε
33 33 33 33 331 1 3T i i m n= ′ − ′′ = ′ − =, ,... , (9)

are the temperature-dependent complex compliances, piezoelectric moduli, and electric permittivity, respectively; u u iu= ′ + ′′,
σ σ σr r ri= ′ + ′′ , and σ σ σθ θ θ= ′ + ′′i are the complex amplitudes of displacement and stresses; D D iDr r r= ′ + ′′, E E iEr r r= ′ + ′′, and

ψ ψ ψ= ′ + ′′i are the induction, strength, and potential of the electric field, respectively; ρ• is the specific density of piezoceramics;

λ and a are the thermal diffusivity and thermal conductivity; and α1 and α 2 are the heat exchange factors. The prime and double

prime mark the real and imaginary parts of complex quantities, respectively.

Solution. To solve the electrothermoviscoelastic problem (1)–(8), we write the electromechanics relations (1)–(4) as a

system of ordinary differential equations
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Since the electromechanical characteristics (9) are temperature-dependent, system (10) with (7) should be solved

simultaneously with the heat-conduction equation (5), (6) with (8), as a coupled nonlinear problem. A way to do this is to use the

time-stepping method [2]. To this end, we will first split the electromechanics equations (10), (7) into real and imaginary parts to

be solved by the orthogonalization method [7] at each time step, then calculate the dissipative function (6), and finally integrate

the energy equation (5), (8) using an explicit finite-difference scheme. The temperature field found is used to calculate the

electromechanical characteristics at the next time step ∆t. At the first step, the electromechanics problem is solved for constant

electromechanical characteristics. The time-stepping process runs until the heating temperature become steady-state. When the

frequency ω or amplitudeV0 of excitation changes during the solution, the parameter continuation method is used to reduce the

time the temperature reaches the steady-state value and to improve the convergence of the solution. This method suggests using

the previous solution when the load parameter changes again, which represents the case where the load acts on the body with

temperature observed at the previous step of loading.

Computed Results. The computations were based on an experimental temperature dependence of the

electromechanical characteristics of TsTStBS-2 piezoceramics [1], which are approximated by the following dependences over

a temperature range from 20 to 160 °C:
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The coefficients in (11) corresponding to the reference temperature of the body ( )T TR= have the following values:
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The remaining coefficients in (11) have the following values for the temperature range ( )20 160≤ ≤T °C:

A a P p e B Bmn mn mn mn= = = = = = = ⋅ =−
1 1 11

3
331 0 3077 10 0 8085δ , . , . ⋅ −10 3 ,
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In the range ( )160 180≤ ≤T °C where the piezoelectric moduli drop abruptly with increase in temperature, the following

coefficients should be used:
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The characteristics of the piezoceramics are ρ• = 7520 kg/m2 and λ = 1.25 W/(cm⋅°C), and the geometrical parameters

of the cylinder are r2 = 0.05 m and H r r= − =2 1 0.02 m.

The numerical results cited below have been obtained on the assumptions that the surfaces are free from mechanical

stresses (7), the inner boundary (r r= 1) is heat insulated (α1 0= ), and T Tc0 = = 20 °C.

Curves 1, 2, and 3 in Fig. 1 have been plotted for γ α λ2 2= =H / 10, 0.5, 0.1 on the surface r r= 2 andV0 =10 V in view

of thermomechanical coupling. These curves are the frequency dependence of the peak steady-state temperature τ = =at H/ .1 5

(solid lines) and the amplitude of hoop stresses | | ( ) /σ σ σθ = ′ + ′′2 2 1 2 (dashed lines) on the inner surface of the cylinder. The “×”
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symbol on the abscissa axis indicates the frequency of mechanical resonance in radial mode determined for the isothermal

characteristics ( )T TR= of the piezoceramics. In numerical experiments, the amplitude– and temperature–frequency

characteristics on the section ABC (curves 3) have been obtained for both increasing frequency, ω ω≥ A , and decreasing

frequency, ω ω≤ C . The high-temperature state corresponding to the section BDE was achieved with the help of the parameter

continuation method only for decreasing frequency starting at the point A.

Curves 1–3 and computations reveal that intensive heat exchange on the cylinder surface (curves 1) is accompanied by a

moderate increase in the heating temperature (solid lines) at a considerable radial gradient and by significant increase in the

amplitudes of mechanical stresses (dashed lines), which reach the limit of proportionality of piezoceramics σ p = ⋅2 107 N/m2.

The better the heat insulation of the cylinder surface (curves 2 and 3), the higher the heating temperature and the less the stress

amplitudes. This process results in stronger nonlinearity of the temperature– and amplitude–frequency characteristics and wider

frequency ranges for the low- and high-temperature modes. For small coefficients γ 2 ≤ 0.1 (curves 3), the temperature of the

high-temperature mode reaches critical values T ≥160 °C (solid lines) with decreasing frequency. In this case, radial smoothing

of heating temperature and frequency stabilization of stress amplitudes (dashed lines) are observed.

Figure 2 shows the peak steady-state temperatureTr r= 1
(solid lines) and the amplitude of hoop stresses | |σθ r r= 1

(dashed

lines) versus the electric potentialV0 for near-resonance frequency ω = ⋅0 9294 105. sec–1 of loading and heat-exchange factors

γ 2 =5.0, 0.05 (curves 1 and 2). The curves have been plotted with the help of the continuation method withV0 as a continuation

parameter. From Fig. 2 it is seen that forV0 ≤10 V heating temperature and stress amplitudes increase first impetuously and then

monotonically. With intensive heat exchange on the outer surface (curves 1), the increase in the stress amplitudes, which reach

the limit of proportionality already for small values of V0 (dashed line), predominates over the increase in the heating

temperature (solid line). Curves 1 and 2 and numerical experiments show that possible loss of functionality of a piezoelectric

element with increasing electric load is due mainly to mechanical failure (stresses reach the limit of proportionality) in the case of

intensive heat exchange and due to thermal depolarization in the case of weak convective heat exchange.

Figure 3 shows the complex components of the electric potential ψ ψ'," '," /= V0 , V0 = 1 V (solid lines) and induction

ADr
',"

[F⋅V/m] (dashed lines) versus the dimensionless coordinate x r r H= −( ) /1 for a thick-walled cylinder (H r/ /2 2 5= ,

r2 = 0.05 m) at ω = ⋅0 9294 105. sec–1 and a thin-walled cylinder ( / / )H r2 1 25= at ω = ⋅0 7280 105. sec–1, both made of

piezoceramics with temperature-independent properties. The scale coefficients for these cylinders are A = 104 and A = 103 ,

respectively. Curves ′1 , ′′1 , and ′2 , ′′2 in Fig. 3 and numerical experiments reveal that as the thickness of the cylinder decreases,

the distribution of the electric potential tends to be linear and the induction tends to be constant. The latter fact agrees with the

assumption adopted in the theory of thickness-polarized piezoceramic shells that the component of the electric induction

coinciding with the polarization direction is independent of the thickness coordinate.
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