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Some characteristics of an initially anisotropic aluminum alloy are investigated. The coefficients of

transverse elastoplastic and plastic strain are calculated. It is established that the coefficients of

transverse plastic strain are much different from 0.5 in directions that are not in the plane of isotropy. It

is also shown that the material is plastically incompressible. The possibility of using Hill’s theory of flow

with isotropic hardening to describe the inelastic behavior of the material is examined
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Introduction. The hypotheses that the yield point is independent of the mean normal stress and that the material is

plastically incompressible are among the most important initial assumptions made in many theories of anisotropic plasticity. The

former hypothesis underlies Hill’s and Mises’ theories of anisotropic plasticity [14, 19]. Because of this assumption, the plastic

strains following from the associate flow rule satisfy the plastic-incompressibility condition. The nonquadratic Hill criterion

later formulated in [15] is also based on this assumption. Developing methods for description of anisotropic plasticity, many

authors assumed that the yield point is independent of the mean normal stress, referring mainly to Bridgeman’s experiments. The

authors of [23] pointed to the importance of the assumptions that yield is independent of hydrostatic pressure and plastic

incompressibility in the theory of plasticity. The relationship between the effect of hydrostatic pressure on the yield point and

plastic compressibility was analyzed in [21, 24], where it was revealed for various steels and polymers that the yield point

strongly depends on pressure, without the corresponding plastic change in volume. Using experimental data for aluminum alloys

and carbon steels, the authors of [16] confirmed the hypothesis that during inelastic deformation the volume of a material does

not change while the strains are less than 4%. The authors of [12] experimentally detected the plastic compressibility of flat

aluminum-alloy samples and attributed that to plastic anisotropy.

Many publications describe anisotropic plasticity using various assumptions, including the hypothesis that the material

is plastically compressible. A theory of anisotropic plasticity for plastically compressible materials was addressed in [10,

26–29]. The paper [10] proposed a generalized potential for anisotropic materials that accounts for the Bauschinger effect and

plastic compressibility (a special case of this potential is the Hill potential) and showed, based on experimental data for a

titanium alloy, that the behavior of yield locus is essentially dependent on the compressibility parameter introduced by the

author.

Deformation-type equations describing the inelastic behavior of an anisotropic material under proportional loading

were derived in [22]. There are many publications that propose deformation-type equations to describe anisotropic plasticity

(see, e.g., [1, 3, 5, 6]). The equations in [22] have been derived without assumptions (as to plastic potential, hardening, plastic

incompressibility, etc.) usually used by other authors. These equations have the form of stress–strain relations as a generalization
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of Hooke’s law for an orthotropic body where elastic constants are replaced by shear strain intensity functions determined from

uniaxial tension tests on flat samples. The matrix of coefficients of the resulting constitutive equations turned out to be

asymmetric beyond the elastic limit, as the analogous matrix in [2]. In the elastic domain, these coefficients turn to the elastic

constants and the matrix becomes symmetric. After determining these coefficients from uniaxial tension tests on flat samples,

the authors of [22] applied the equations to describe the deformation of thin-walled tubular samples under proportional loading

by tension, internal pressure, and torsion. The theoretical and experimental results turned out to be in good agreement.

We will use the experimental data obtained in [22] to analyze the plastic incompressibility of an aluminum alloy over a

range of strains up to 4%. These data were partially used in [7–9, 13] to solve boundary-value problems of the theory of shells.

We will also calculate the coefficients of transverse plastic strain, since many authors (such as those of [11, 18, 20, 25, 30]) use

them to determine anisotropic yield criteria. The possibility of describing inelastic deformation by Hill’s theory of flow with

isotropic hardening will be discussed too. The results to be cited below might be useful for deriving constitutive equations that

describe anisotropic plasticity.

1. Material, Samples, and Experimental Data. Experimental data have been obtained for D16T aluminum alloy

samples in the form of a bar 5 mm in diameter. The chemical composition of the material is given in Table 1. The bar has been hot

die pressed, but has not been annealed. Owing to the manufacturing technique, we may assume that the material of the bar is

transversely isotropic and its axes of anisotropy coincide with the axes of a cylindrical coordinate system r, ϕ, z (the z-axis

running along the bar). The principal axes of anisotropy were checked by compressing solid cylindrical samples, as indicated in

[22]. Also, the homogeneity and anisotropy of the material were tested. To this end, flat samples had been cut out of the bar along

its axis and radius. The samples with dimensions are shown in Fig. 1. The samples were subjected to tension at a constant

temperature of 20 °Ñ on a TsDM-5 testing machine. A pneumatic stain-gauge [4] was used to measure the longitudinal and

transverse strains in the direction of the major lateral dimension.

To check whether the material is homogeneous, four groups of flat samples (a, b, c, and d) were cut out of the bar, in

parallel to and at different distances from its axis (Fig. 2). The test data for the samples of groups a, b, and c were averaged, since

their range of variability did not exceed 5%. The test data for the group d samples differed from those for the samples of groups a,

b, and c by more than 5%. Thus, it was established that the material is homogeneous within the limits of ∅40 mm and that

samples should be cut out so that their test portion is within these limits. The results of testing the samples of groups a, b, and c

were plotted (σ zz vs. ε zz curves) and are summarized in Table 2.
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TABLE 1

Element Cu Mg Mn Al

Percentage 4.1 1.6 0.6 93.7

Fig. 1
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To check whether the material is anisotropic, flat samples of two types were cut out of the bar along its radius (Fig. 3).

The major lateral dimension of the type 1 samples lies in the plane rϕ and of the type 2 samples is aligned along the z-axis. These

samples were subjected to tension, and the longitudinal and transverse strains were measured. The transverse strains were

measured in the direction of the major lateral dimension at the same stress σrr , i.e., the strain εϕϕ was measured on the type 1

sample and the strainε zz on the type 2 sample at the same tensile stressσrr . The test data were averaged over 12 samples of each

type. After that, the σrr vs. ε rr curves were plotted and the results obtained collected in Table 3.

To check whether the cross section of the bar is isotropic, thin-walled tubular samples 21 mm in diameter were made

from the bar so that their axes coincide with the bar axis. The tubular samples were subjected to internal pressure and measured.

The measurement results were used to plot the σϕϕ vs. εϕϕ curves, which turned out to coincide with the σrr vs. ε rr curves. This

confirms the assumption of isotropy of the bar’s cross section. Figure 4 showsσ zz versusε zz (curve 1) andσrr versusε rr (curve
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Fig. 2 Fig. 3
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TABLE 2

σ zz , ÌPà ε zz ⋅102 ε rr ⋅ 102

172.1 0.195 –0.065

378.0 0.429 –0.143

420.1 1.07 –0.456

429.2 1.30 –0.569

439.5 1.62 –0.725

444.8 1.80 –0.816

452.6 2.11 –0.969

455.8 2.25 –1.04

462.5 2.57 –1.20

470.4 2.97 –1.40

485.7 3.86 –1.84

488.0 4.00 –1.91

TABLE 3

σrr , ÌPà ε rr ⋅ 102 ε ϕϕ ⋅ 102 ε zz ⋅ 102

166.1 0.199 –0.063 –0.063

276.1 0.420 –0.190 –0.106

312.1 1.02 –0.682 –0.200

320.0 1.24 –0.855 –0.244

328.9 1.54 –1.09 –0.304

332.5 1.68 –1.20 –0.331

340.5 2.01 –1.46 –0.398

344.3 2.20 –1.61 –0.436

349.1 2.45 –1.81 –0.487

355.7 2.83 –2.11 –0.563

367.5 3.65 –2.76 –0.729

369.3 3.79 –2.87 –0.758



2). As is seen, the properties of the material in the r- and z-directions differ insignificantly in the elastic domain and significantly

in the plastic domain.

2. Basic Assumptions. Consider a homogeneous orthotropic body described in an orthogonal coordinate system r z, ,ϕ
with axes coinciding with the principal axes of anisotropy. Let the inelastic strain tensor ε ij be defined by

ε ε εij ij ij= +( ) ( )e p
, (1)

where ε ij
( )e

and ε ij
( )p

are the elastic and plastic components. Assume that the elastic strains ε ij
( )e

are related to the stresses by the

generalized Hooke’s law for an orthotropic body:

ε
σ

ν
σ

ν
σ

ϕ
ϕϕ

ϕ
rr

rr

r
r rz

zz

zE E E

( )e = − − , ε
σ

ϕ
ϕ

ϕ
r

r

rG

( )e =
2

( , , )r zϕ , (2)

where Ei are the elastic moduli along the principal axes of orthotropy, G Gij ji= are the shear moduli between these axes, ν ij are

Poisson’s ratios characterizing the strains along the i-axis due to tension along the principal axis j, and σ ij are the components of

the stress tensor in the principal axes of orthotropy. The symbol ( , , )r zϕ denotes cyclic permutation of indices (the other

expressions can be obtained by replacing r by ϕ, ϕ by z, and z by r). For the transversely isotropic material under consideration,

the r- and ϕ-directions are equivalent: E E G Gr rz z rz z r r= = = =ϕ ϕ ϕ ϕ ϕν ν ν ν, , , , and ν νϕz zr= .

3. Coefficients of Transverse Strain. Plastic Incompressibility Condition. Consider flat samples under uniaxial

tension. Their planes coincide with the plane of orthotropy. When a sample is stretched in the direction of orthotropy r, the strains

in the ϕ- and z-directions can be expressed in terms of its strain ε rr in the r-direction:

ε ν εϕϕ ϕ= − r rr
* , ε ν εzz zr rr= − * ( )r z, ,ϕ , (3)

where ν ij
* are the coefficients of transverse strain. When the tensile strains of a sample are elastic, these coefficients are ordinary

Poisson’s ratios for an orthotropic body, i.e., ν νij ij
* = .

By analogy with (3), the plastic strains are

ε ν εϕϕ ϕ
( ) ** ( )p p= − r rr , ε ν εzz zr rr

( ) ** ( )p p= − ( )r z, ,ϕ , (4)

where ν ij
** are the coefficients of transverse plastic strain. If the material is plastically incompressible, then
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Fig. 4 Fig. 5
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ε ε εϕϕrr zz
( ) ( ) (p p p)+ + = 0. (5)

And if (4), then

1 0− − =ν νϕr zr
** ** ( )r z, ,ϕ . (6)

Let us calculate the coefficients of transverse strain and transverse plastic strain and test conditions (6) using Tables 2

and 3. The first rows of Tables 2 and 3 correspond to the elastic state of the material. From these values, we can determine the

elastic moduli and Poisson’s ratios: Er = 834673 MPa, E z = 882564 MPa, ν ϕr = 0.317, νrz = 0.335, and ν zr = 0.317; and from

Tables 2 and 3, the coefficients of transverse plastic strain. Figure 5 shows how these coefficients depend on the longitudinal

strains (curves 1, 2, and 3 correspond to νϕr
* , νrz

* , and ν zr
* , respectively). It is seen that the larger the longitudinal strain, the less

intensively the functions νϕr
* , νrz

* , and ν zr
* vary.

Let us determine the plastic strains induced by uniaxial tension. Using formulas (2) and Table 2 (tension in the

z-direction), we get

ε
σ

rr
rr

rE

( )e = , ε ν εϕϕ ϕ
( ) ( )e e= − r rr , ε ν εzz zr rr

( ) ( )e e= − , (7)

and then from (1) and (7), we obtain

ε ε εrr rr rr
( ) ( )p e= − , ε ε εϕϕ ϕϕ ϕϕ

( ) ( )p e= − , ε ε εzz zz zz
( ) ( )p e= − . (8)

Using (8), we determine the coefficients of transverse plastic strain ν
ε

ε
ϕ

ϕϕ
r

rr
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( )

( )
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⏐

⏐
⏐⏐

⏐

⏐
⏐⏐

p

p
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zz
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( )
=

⏐

⏐
⏐

⏐

⏐
⏐

p

p
. Following a similar

procedure and using Table 3 (tension in the r-direction), we can determine the coefficient of transverse plastic strain νrz
** . The

values of the coefficients are summarized in Table 4.
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TABLE 4

νϕr
** ν zr

** νrz
**

0.956 0.014 0.292

0.872 0.126 0.500

0.856 0.143 0.499

0.843 0.156 0.500

0.839 0.160 0.500

0.831 0.168 0.500

0.828 0.171 0.500

0.825 0.175 0.500

0.821 0.178 0.500

0.816 0.184 0.500

0.815 0.184 0.500

TABLE 5

∆ 1 ∆ 2 ∆ 3

–1.16 –6.93 –2.00

–1.24 –5.14 –2.01

–1.24 –5.11 –1.99

–1.25 –5.10 –2.01

–1.25 –5.09 –2.00

–1.25 –5.07 –2.00

–1.25 –4.97 –2.00

–1.25 –5.06 –2.01

–1.25 –4.99 –2.00

–1.25 –4.97 –1.95



Based on the data of Table 4, we test the three conditions (6), considering that ν νϕ ϕr r
** **= , ν νϕz zr

** **= , and ν νϕz rz
** **= for

the material under consideration because ( , )r ϕ is the plane of isotropy. As is seen, the conditions (6) are satisfied for all rows of

Table 3, except for the first one. The reason is that the first row contains the minimum plastic strains commensurable with the

gauge error.

4. Isotropic (Proportional) Hardening Condition. We will use the above results to test the isotropic (proportional)

hardening condition of Hill’s theory of flow [14]. For an orthotropic material under uniaxial tension, these conditions are

d d d H G H Grr zzε ε εϕϕ
( ) ( ) ( )

: : : :
p p p = + − −0 0 0 0 (9)

in the r-direction,

d d d F H H Frr zzε ε εϕϕ
( ) ( ) ( )

: : : :
p p p = + − −0 0 0 0 (10)

in the ϕ-direction, and

d d d G F G Fzz rrε ε εϕϕ
( ) ( ) ( )

: : : :
p p p = + − −0 0 0 0 (11)

in the z-direction, where F G0 0, , and H0 are constants related to the anisotropy parameters F G, , and H as F F h= 0
2/ ,

G G h= 0
2/ , and H H h= 0

2/ , and h ≥ 1 is the constant of proportionality. If the material is transversely isotropic and ( , )r ϕ is its

plane of isotropy, which is the case here, then F G0 0= . Using the values of plastic strains calculated above, we determine their

increments and incremental ratios according to (9)–(11). The incremental ratios of ( ) / ( ) ( ) / ( )
( ) ( )∆ ∆ ∆ε εϕϕrr
p p

H G H= + − =0 0 0 1,

( ) / ( )
( ) ( )∆ ∆ε εrr
p

zz
p = + − =( ) / ( )H G G0 0 0 2∆ , and ( ) / ( ) ( ) / ( )

( ) ( )∆ ∆ ∆ε εzz
p

rr
p

G F G= + − =0 0 0 3 are collected in Table 5. The table

demonstrates that beginning with the second row (ε rr > 1%, ε zz > 1%), the incremental ratios of plastic strains may

approximately be considered constant, since they differ from the mean value by no greater than 2%. For Hill’s theory of flow

with isotropic hardening to describe plastic behavior adequately, it is not sufficient, according to [17], that the parameters

F G0 0= and H0 be constant, as the theory requires. It is necessary to establish the relationship between the equivalent stressσeq

and the equivalent plastic strainε eq
p

. Toward this end, we use Table 5 and the uniaxial tension curve (σrr versusε rr
( )p

) to calculate

σeq and ε eq
p

by the formulas

σ ασeq = rr , ε
ε

αeq
p

p

= rr
( )

,
( )

( )α =
+

+ +

3

2

0 0

0 0 0

G H

F G H
.

After that, using the uniaxial tension curve (σ zz versusε zz
( )p

), we again plot theσeq vs.ε eq
p

curve, whereσ βσeq = zz and

ε
ε

βeq
p

p

= zz
( )

,
( )

( )β =
+

+ +

3

2

0 0

0 0 0

F H

F G H
.
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If the material is described by Hill’s theory, then these two curves (σeq versus ε eq
p

) must coincide. Figure 6 shows both

curves: σrr versus ε rr
( )p

(curve 1) and σ zz versus ε zz
( )p

(curve 2). As is seen, these curves do not coincide. What this means is that

Hill’s theory of flow with isotropic hardening can describe the elastoplastic behavior of the material only approximately. It

should be noted that the equations from [22] describe well the inelastic behavior of the material.

5. Conclusions.

1. The transversely isotropic material examined is plastically incompressible.

2. The coefficients of transverse plastic strain vary with increase in longitudinal strain and tend to constant levels.

3. The coefficients of transverse plastic strain in directions that are not in the plane of isotropy are much different from 0.5.

4. Despite the fact that Hill’s proportionality condition is satisfied for the material, the σeq vs. ε eq
p

curves derived from

the curves of uniaxial tension in two principal directions of anisotropy differ significantly. To describe the plastic behavior of the

material approximately based on Hill’s theory of flow with isotropic hardening, the averaged σeq vs. ε eq
p

curve can be used.
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