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The paper addresses a compressive-failure theory for polymer-matrix nanocomposites in the case where

failure onset is due to microbuckling. Two approaches based on the three-dimensional linearized theory

of stability of deformable bodies are applied to laminated and fibrous nanocomposites. According to the

first approach (continuum compressive-failure theory), nanocomposites are modeled by a homogeneous

anisotropic medium with effective constants, including microstructural parameters. The second

approach uses the piecewise-homogeneous model, three-dimensional relations for fibers (CNT) and

matrix, and continuity conditions at the fiber–matrix interface. The compressive-failure theory is used

to solve specific problems for laminated and fibrous nanocomposites. Some approximate failure theories

based on the one- and two-dimensional applied theories of stability of rods, plates, and shells are

analyzed
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Introduction. Today’s literature on the fracture mechanics of composites considers the paper [17] to be the first to

describe, in 1960, fiber microbuckling as a compressive failure mechanism for unidirectional fibrous composites. In the years

that followed, several authors set forth different approximate models for the quantitative and qualitative description of this

mechanism. These models are based on a number of assumptions and hypotheses, of which the following are worth mentioning:

no (neglected) subcritical stresses in the matrix, use of applied one- and two-dimensional theories of stability of rods and plates

to study microbuckling, modeling of the matrix by a one-dimensional elastic object, etc.

The paper [14] was apparently the first to propose, in 1965, a highly approximate model for the quantitative description

of microbuckling in composites within the framework of a plane problem (in fact, the fibrous composite was modeled by a

laminated composite), using the above-mentioned assumptions and hypotheses (the same results were reported in [14]). Despite

the highly approximate model, the results from [14] were used in many publications, including the seven-volume collective

monograph [13], and are generally recognized and widely cited. In the literature on the fracture mechanics of composites (see,

e.g., [15]), these results are named the Dow–Gruntfest–Rosen–Schuerch theory, after the authors of the first publications [14, 17,

45, 46].

Thus, to describe the failure mechanism in question [17], we need a stability theory for unidirectional fibrous

composites (Fig. 1) or laminated composites (Fig. 2) subjected to axial compression. The paper [17] addressed a fibrous

composite; thus, it is expedient to construct a stability theory for the material represented in Fig. 1. In this connection, a stability

theory for laminated composites (Fig. 2) is to be developed to attain two ends (two different cases). In the first case, a stability

theory is needed to describe the failure mechanism for compressed laminated composites, which is likely to be related to the

failure mechanism for compressed fibrous composites observed in [17]. Moreover, structural elements made of fibrous

composites are formed as a laminated composite whose layers, which are monolayers of a unidirectional fibrous material, are
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stacked so that the fibers of neighboring layers are directed at a certain angle to each other. In the second case, a stability theory

for laminated composites is needed to describe the failure mechanism for the initial compressed unidirectional fibrous

composite, with a plane problem model applied to fibrous composites. Such an approach was implemented in [14], where the

failure mechanism for fibrous composites was analyzed within the framework of the plane problem for laminated composites. It

should be noted that the fibers in a fibrous composite (Fig. 1) interact in much more complex fashion than in a laminated

composite (Fig. 2). Hence, an analysis of the failure mechanism within the framework of the plane problem for laminated

composites cannot reveal all features of the failure mechanism for fibrous composites, which is primarily true of the results

from [14].

It should also be noted that an analysis of complex phenomena in solid mechanics would produce reliable and accurate

data only if the three-dimensional formulation was used. Since the phenomenon under consideration [17] is rather complex and

pertains to the stability of nonthin bodies, reliable and accurate data can be obtained using the three-dimensional linear theory of

stability of deformable bodies (see, e.g., [4, 6, 19, etc.]).

Independently of and almost simultaneously with [14], the papers [2, 3], published in 1969, proposed to describe the

failure mechanism [17] or related failure mechanisms or microbuckling using the three-dimensional linear theory of stability of

deformable bodies (TLTSDB). The results based on [2, 3] were extended in [7] to fibrous (Fig. 1) and laminated (Fig. 2)

composites of various structures with polymer matrix (modeled by a linear elastic body) and metal matrix (modeled by an

elastoplastic body), with the generalized concept of continuous loading [6, 19] applied in the latter case. In fact, the papers [2, 3]

proposed two approaches, each based on the TLTSDB [4, 6, 19], for modeling composites taking their microstructure into

account. The first approach [2] employs the continuum approximation where a homogeneous anisotropic body with effective

constants (homogenized) is used as a model. The parameters characterizing the composite microstructure appear in the

expressions for the effective constants of the homogeneous anisotropic body. With such an approach, the theoretical

compressive strength and the nature of failure (propagation of fracture) are determined from an analysis of internal or surface

instability (transition of the governing system of equations from elliptic to hyperbolic) and related situations. The results

obtained in [7] concern the internal failure of composites (failure of the whole sample or a structural element) or the surface

failure of composites (failure of near-surface layers) under uniaxial, biaxial, and triaxial compression. The second approach [3]

employs the piecewise-homogeneous model, where the TLTSDB is applied separately to the reinforcement (fibers and layers)

and to the matrix (see, e.g., [4, 6, 19]), with continuity conditions for stresses and displacements satisfied at the

reinforcement–matrix interface. The second approach is certainly more accurate; therefore, the results it produces may be used to

estimate the results obtained by the first approach and by other approximate (including highly approximate) models [14]. It

should be noted that the results produced by the approach [3] and reported in [7] are exactest among those that can be obtained in
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solid mechanics. In this situation, the results from [7] can only be improved by refining the matrix–reinforcement interface

conditions and the equations of state describing the properties of the reinforcement and matrix.

In succeeding years, the approach [2, 3, 7] was used to construct a failure theory for composites with interfacial cracks

(see [9–12, 21, 24] and references therein). The corresponding exact solutions were analyzed in [22]. The approach [2, 3, 7] was

also used to develop the two-level theory of compressive failure near stress concentrators in composites. The first results in this

area were reported in [5] and analyzed in [20].

Constructing a compressive-failure theory for composites based on the microbuckling mechanism is a nonclassical

problem of fracture mechanics. Some other nonclassical problems of fracture mechanics were analyzed in [8].

The above-mentioned results pertain to the mechanics (including micromechanics) of composites, which actively

developed in the second half of the 20th century. The late 20th century and the early 21st century witnessed the creation and

investigation of carbon nanotubes (CNT). Some approaches to problems of nanomechanics and mechanics of nanocomposites

were addressed in [23]. Since CNTs are of high modulus and high strength, they may potentially be used as a reinforcement in

nanocomposites.

Considering the aforementioned, we will address a compressive-failure theory for polymer-matrix nanocomposites

developed based on the microbuckling mechanism and the three-dimensional linear theory of stability of deformable bodies (see,

e.g., [2–4, 6, 7, 19]).

1. Properties of CNT-Reinforcement and Polymer Matrix. In this section, we will briefly analyze some data on the

mechanical properties of CNTs and polymer matrix needed for further discussion.

1.1. Mechanical Properties of CNT. There are a great number of publications on the mechanical properties of single-

and multi-layer CNTs. These properties have been determined both theoretically and experimentally (see [30, 38, 41, 47, 54,

etc.] for reviews of the results obtained in the area).

Figure 3 (borrowed from [54, p. 978]) shows Young’s modulus E (TPa = 1000 GPa) for single-layer CNTs (the

left-hand half of the figure) and for multilayer CNTs (the right-hand half of the figure). These results have been obtained using

three experimental methods: thermal vibration (■), bending (●), and tension ( ). The numbers in square brackets indicate the

publications (see References herein) where the corresponding value was reported (the numbers in square brackets in [54, p. 978]

refer to publications in the list of references therein). From Fig. 3 it follows that Young’s moduli (measured along the CNT-axis)

of single- and multi-layer CNTs differ insignificantly (which confirms that the results pertain to a nanotube material) and that

Young’s moduli experimentally determined by other authors differ significantly. In this connection, there is good reason to use

the following mean Young’s modulus to evaluate the theoretical compressive strength for CNTs:

E ≈ (1.00–1.20) TPa. (1)

Today’s scientific literature includes more theoretical data on Young’s modulus for nanotubes than experimental.

Moreover, theoretical methods have made predictions on a wider range of mechanical properties. An example is the theoretical

results obtained in [30] by the method of molecular dynamics simulations for single-, two-, and three-layer CNTs with
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LD–1 = 4.5 and LD–1 = 9.1 (L and D are the CNT length and diameter). The publication [30, pp. 2523, 2524] also presents

uniaxial-tension curves (σ versus ε) such as those in Fig. 4 for four-layer CNT of chirality (5, 5), (10, 10), (15, 15), and (20, 20)

(LD–1 = 4.5) and in Fig. 5 for single-layer CNT of chirality (10, 10) (LD–1 = 9.1). In Figs. 4 and 5, the points R, S, and M

correspond to the elastic limit, yield stress, and failure stress, respectively. Since the curves in Figs. 4 and 5 are nonlinear, the

CNTs are concluded in [30] to have plastic properties. This conclusion requires further checking, since only the case of active

loading has been examined, leaving unloading aside. The results from [30] agree well with those obtained by other authors (see

Table 1 [30, p. 2523], which compares dimensionless Young’s moduli for single-layer CNTs of different chirality with LD–1 = 9.1).

According to Figs. 4 and 5, we introduce the following notation: the elastic limit σl and the corresponding strain εl

(point P), the yield stress σ and the corresponding strain ε (point S), the ultimate (failure) stress σstr = σfr and the corresponding

strain εfr (point M), and the maximum elastic strain ε el
max . This notation is used in Table 2 (borrowed from [30, p. 2525])

collecting mechanical properties of different CNTs. Table 2 also contains the values of A and B appearing in the nonlinear

relation

σ ε ε= +( )A B , ε ε εl yield≤ ≤ , (2)

and describing deformation due to uniaxial tension between the elastic limit σ l and the yield point σT .

From Table 2 [30], it follows that:

(i) Young’s moduli for single-, two-, three-, and four-layer CNTs differ insignificantly;

(ii) Young’s moduli for relatively short CNTs (LD–1 = 4.5) and relatively long CNTs (LD–1 = 9.1, twice longer) differ

insignificantly;

(iii) the “mean” Young’s modulus is defined by expression (1) derived to analyze the experimental results in [54]; and

(iv) the relationship between stresses and strains under uniaxial tension is linear while ε ≤ 6%.

In the case of axial compression, according to [52], the stress–strain relationship is linear while the strain is less than 5%.
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TABLE 1

Chirality

Young’s modulus

[30] other authors

(4, 4) 55.3 56.4

(7, 0) 55.7 56.3

(7, 7) 56.0 56.5

(12, 0) 56.4 55.2



Along with experimental values of axial Young’s moduli for CNTs, the publication [54] discusses Young’s moduli

determined by different theoretical methods. Figure 6 (borrowed from [54, p. 980]) shows Young’s modulus (in TPa = 1000 GPa)

obtained theoretically by different authors for single-layer CNTs (the left-hand half of the figure) and for multilayer CNTs (the

right-hand half of the figure). These results have been obtained by three different methods (see the upper portion of the figure for

the method names and the symbols representing them). The numbers in square brackets indicate the publications (see References

herein) where the corresponding value was reported (the numbers in square brackets in [54, p. 980] refer to publications in the list

of references therein). From Fig. 6, it follows that Young’s moduli E (measured along the CNT-axis) for single- and multi-layer

CNTs differ insignificantly and that Young’s moduli obtained theoretically by other authors differ significantly. In this

connection, there is good reason to use the mean Young’s modulus (1) to evaluate the theoretical compressive strength for CNTs.

We have briefly discussed mechanical properties of CNTs. The results cited above indicate that Poisson’s ratios v for

CNT have been studied inadequately. Therefore, we cannot adequately investigate (in developing a compressive-failure theory

for nanocomposites) the influence of the difference between Poisson’s ratios of the matrix and CNT on the failure mechanisms

under consideration.

Since we are addressing nanocomposites, the failure mechanisms depend not only on the mechanical properties of

CNTs but also on their geometry. In this connection, we will briefly discuss the geometrical parameters of CNTs, namely

thickness and diameter. The geometry of CNTs was partially described in [23] and references therein. Let us consider some of

these results, using the following notation: D for diameter, L for length, and h for thickness. The minimum diameter of

single-layer CNTs mentioned in the literature is D = 0.4 nm (the carbon atom’s diameter is considered about 0.15 nm). Thus, the

carbon atoms in 0.4-nm CNT may be thought of as interacting not only along the CNT surface but also along the diameter. In this

connection, after continualization [23], such CNTs can be modeled by a circular solid cylinder with D = 0.4 nm. This case is the

exception rather than a rule for CNTs. In most cases, CNTs are expediently modeled (continuum approximation) by a hollow

circular cylinder. Multilayer CNTs described in the literature have D ≈ 4–30 nm. Note that CNTs can be very long: LD–1 ≈ 1000.

Ensembles of CNTs may have diameters D ≈ 30–50 nm and can be very long (LD–1 ≈ 1000). CNTs can form nanoropes with

D ≈ 10–20 nm, which can also be very long (LD–1 ≈ 1000). Obviously, CNTs, ensembles, and nanoropes may be modeled by

infinite circular cylinders. For multilayer CNTs, a more adequate model is an infinite hollow circular cylinder.

Today, relatively short single- and multi-layer CNTs are actively studied too. As already mentioned, extensive data on

relatively short CNTs (LD–1 = 4.5, 9.1) can be found in [30].
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TABLE 2

CNTs
L

D

E,

TPa

σl ⋅ −10 4,

MPa

σ yield ⋅ −10 5,

MPa

σ fr ⋅ −10 5,

MPa
ε l ⋅ 10 ε el

max ε fr
A,

TPa

B,

TPa

Single-layer

(10, 10)

4.5 1.043 6.103 1.369 1.404 0.585 0.231 0.280 –2.625 1.211

9.1 1.031 6.271 1.421 1.485 0.594 0.236 0.279 –2.522 1.190

Two-layer

(5, 5) and (10, 10)

4.5 1.161 7.231 1.614 1.624 0.627 0.247 0.279 –2.543 1.259

9.1 1.175 7.287 1.633 1.685 0.621 0.242 0.281 –2.810 1.362

Three-layer

(5, 5), (10, 10)

and (15, 15)

4.5 1.000 6.068 1.430 1.434 0.605 0.238 0.281 –2.358 1.160

9.1 0.972 5.645 1.381 1.414 0.611 0.246 0.282 –2.275 1.120

Four-layer

(5, 5), (10, 10),

(15, 15), and (20, 20)

4.5 0.932 6.075 1.343 1.382 0.654 0.235 0.281 –2.234 1.103

9.1 0.872 5.784 1.278 1.327 0.633 0.241 0.280 –2.132 1.023



Let us analyze some recent results from the estimation of the thickness of single- and multi-layer CNTs. For example,

the following values of CNT thickness were reported in [30]: h = 0.335 nm for single-layer (10, 10) CNTs, h = 0.67 nm for

two-layer (5, 5) and (10, 10) CNTs; h = 1.005 nm for three-layer (5, 5), (10, 10), and (15, 15) CNTs; and h = 1.34 nm for

four-layer (5, 5), (10, 10), (15, 15), and (20, 20) CNTs. These are close to the thicknesses of single- and multi-layer CNTs

determined by other authors.

Though the published data on the mechanical properties and geometry of CNTs are few in number, we can nevertheless

use them to develop a failure theory for nanocomposites.

1.2. Mechanical Properties of Polimer Matrix. The mechanical properties of polymer matrix (different polymer

compounds) may be thought of as well understood. They were studied during the creation and investigation of traditional

composite materials. We will hereafter consider only brittle and quasibrittle compressive failure involving microbuckling [17].

In this connection, the mechanical properties of the matrix at the elastic stage of deformation will be of our main interest.

Polymeric matrices exhibit the following properties: viscoelastic deformation under long-term external loads and

essential temperature dependence of the mechanical properties at relatively high temperatures. These properties may be

neglected for two reasons:

(i) since we study the phenomenon of buckling under certain level of load (at certain temperature and viscous strains),

we can fix mechanical properties (at certain temperature and viscous strains) and examine the bifurcation buckling mode using

the elastic model with such mechanical properties, i.e., so to speak an “instantaneous” elastic model; and

(ii) the use of the elastic model may be attributed to the cases of short-term external loads (the effect of viscous strains is

insignificant) and moderate temperatures (the temperature dependence of mechanical properties is insignificant).

In both situations described in (i) and (ii), the buckling process is studied in much the same way, using the elastic model.

We use such an approach here to develop a compressive-failure theory for polymer-matrix nanocomposites. Let us now briefly

analyze data on the elastic properties of polymer matrices.

Table 3 collects the values of E, σl, v, and εfr for the most-used polymer matrices (the data from Table 3 can be found in

[7] and many other publications). The table demonstrates that the values of E, v, σl, and εmax are somewhat different for different

matrices. Therefore, in evaluating the theoretical compressive strength (while developing a compressive-failure theory), it is

appropriate to use the following mean values of Young’s modulus and Poisson’s ratios, according to [7, p. 30]:

E ≈ 3.5 GPa; v = 0.4. (3)

Note that the mean Young’s modulus (1) introduced in the previous section is based on other considerations.

This concludes our discussion of the mechanical properties of CNTs (as potential reinforcements) and polymer matrices

as applied to the compressive failure of nanocomposites with microbuckling as a failure mechanism.

2. Fundamentals of Compressive-Failure Theory for Nanocomposites. Let us discuss the fundamentals of failure

theory for unidirectional fibrous nanocomposites (Fig. 1) and laminated nanocomposites (Fig. 2) subject to axial compression

along fibers and layers. Let the reinforcement be single- or multi-layer CNTs that are quite long, i.e., they can be modeled by
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infinite circular cylinders. Such a modeling is acceptable due to the values of LD–1 cited at the end of Sect. 1.1. For laminated

nanocomposites (Fig. 2), we will consider two cases of result interpretation mentioned at the beginning of Introduction.

Following [7], we will use the subscripts “r” and “m” to refer to reinforcement (CNT) and matrix, respectively. We will consider

brittle or quasibrittle fracture in the form of microbuckling. The reinforcement and polymer matrix will be modeled by elastic

bodies, taking into account the two considerations stated in Sect. 1.2.

We will also assume that Poisson’s ratios of the reinforcement and matrix are equal:

vr = vm. (4)

For laminated nanocomposites, assumption (4) is not needed. For fibrous unidirectional nanocomposites (Fig. 1),

assumption (4) substantially simplifies the formulation and solution of problems by making the subcritical stress–strain state

homogeneous. In this case, using the three-dimensional linear theory of stability of deformable bodies [4, 6, 19] leads to

eigenvalue problems for partial differential equations with constant coefficients in the corresponding coordinate systems, and we

can employ the general solutions [4, 6, 19] produced by this theory.

Assumption (4) is appropriate for two reasons:

(i) it, in fact, disregards mechanical effects or quantities of the order of the difference of Poisson’s ratios of

reinforcement and matrix (vr–vm) compared to unity (these effects may be considered secondary and can be accounted for later);

and

(ii) as already mentioned in Sect. 1.1, there have been only isolated data on Poisson’s ratios for CNT (vr) published in

the scientific literature; therefore, neither the compressive-failure theory for nanocomposites nor any other theory of the

mechanics of nanocomposites can produce quantitative results when reliable values of vr are needed.

Let us now address the development of the compressive-failure theory for fibrous (Fig. 1) and laminated (Fig. 2)

nanocomposites based on the approaches from [2, 3], the TLTSDB [4, 6, 19], and the results from [7] (and references therein). In

formulating and solving specific problems, we will take into account the considerations stated at the beginning of this section.

2.1. Continuum Approximation. Let us analyze the results obtained in modeling, according to [2], a nanocomposite by

a homogeneous anisotropic elastic body with effective constants. The Cartesian coordinate axes in Figs. 1 and 2 coincide with

the axes of symmetry of the composites. In this case, the nanocomposites are modeled by a homogeneous orthotropic elastic

body. Since the orthotropic materials are loaded (axially compressed) along their axes of symmetry, the most probable and

apparently unique failure mechanism is microbuckling. Here we have a complete analogy with the mechanics of structural

members axially compressed along the axis of symmetry, where structural failure is due to buckling.

We will consider a nanocomposite compressed along the axis of symmetry. Its failure will be associated with

microbuckling in continuum approximation. The TLTSDB will be used. All these constitute the approach from [2, 7]. Thus, the
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TABLE 3

Matrix E, GPa σl, MPa v εfr, %

Epoxy 2.80–4.20 28–91 0.34–0.40 2.6

Polyester 2.10–4.60 42–70 0.35–0.42 < 6

Phenolformaldehyde 2.80–4.60 42–63 0.35 1.5–2

Organic silicon 2.90–4.00 28–35 — —

Epoxy phenolic-butyral 3.50 41.0 0.40 2.5

Epoxy aniline furfural 5.10 120 0.40 2.5–3

Epoxy maleic 3.15 75 0.38 2.2–2.5



onset of failure can be identified with the moment in the loading history when the governing system of equations [4, 6, 19] ceases

to be elliptic and becomes hyperbolic. The theoretical compressive strength is also determined from this condition, and fracture

propagates along the characteristic planes and surfaces. According to the approach [2, 7], the theoretical compressive strength

(resistance to compression along the Oxi-axis) is defined by*

( )Πi T ijG− = 〈 〉 , i j≠ , (5)

where ( )Πi T
− is the theoretical compressive strength, and 〈 〉Gij , for i j≠ , is the effective shear modulus for an orthotropic

homogeneous material with effective constants. In this case, fracture turns out to propagate at an almost right angle to the loading

direction. Let us now concretize the above results for unidirectional fibrous and laminated nanocomposites.

2.1.1. Laminated Nanocomposites. Continuum Approximation. According to Fig. 2, we are dealing with a plane

problem (plane x1Ox2) for laminated nanocomposites compressed along the Ox1-axis. Therefore, from (5) we obtain

( )Π1 12
− = 〈 〉T G . (6)

Substituting the well-known expression for 〈 〉G12 into (6), we obtain [7] a relation for the theoretical compressive

strength:

( ) ( )Π1
1− −= +T G G S G S Gr m r m m r , (7)

where Gr and Gm are the shear moduli of the reinforcement and matrix and Sr and Sm are the volume concentrations of the

reinforcement and matrix.

If additionally (4), then (7) turns into

( )Π1

1

1− −
−

= +
⎛
⎝
⎜

⎞
⎠
⎟T G S

S

S

E

Em m
1 r

m

m

r

, G
E

vm
m

m

=
+2 1( )

. (8)

Expressions (7) and (8) enable us to evaluate the contraction along the Ox1-axis (Fig. 2) at failure. According to Fig. 2,

the subcritical (from the standpoint of stability theory) deformation of laminated nanocomposite is such that

〈 〉 = = = 〈 〉ε ε ε ε11
0

11
0

11
0r m

fr , (9)

where 〈 〉ε11
0 is the microbuckling strain of the nanocomposite along the Ox1-axis (Fig. 2), ε11

0r and ε11
0m are the microbuckling

strains of the reinforcement (CNT) and matrix along the Ox1-axis (Fig. 2), and 〈 〉ε fr is the failure strain. Note that the

microbuckling is the beginning of the failure process, according to the failure mechanism under consideration.

Young’s modulus 〈 〉E1 measured along the Ox1-axis can easily be determined from the equilibrium condition using the

homogeneous orthotropic model with effective constants:

〈 〉 = +E S E S E1 r r m m , (10)

where Er and Em are Young’s moduli of the reinforcement (CNT) and polymer matrix. By virtue of (4), transverse effects in

nanocomposites are accounted for approximately. In this connection, we will adopt a one-dimensional model to approximate

〈 〉ε fr . Thus, we can determine 〈 〉ε fr from (8)–(10) for the mean mechanical properties of the reinforcement and matrix (1), (3),

(4). Table 4 collects the values of the limit strain corresponding to the theoretical compressive strength (8) for 5 ≤ Sr ≤ 50% (Sr is

the CNT concentration). According to Table 4, we have

〈 〉ε fr < 1% for Sr ≥ 15%. (11)
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* From here on, we will omit the minus sign of the theoretical compressive strength and corresponding limit strain, which are always
negative.



From Table 3, it follows that the strain εl corresponding to σl is somewhat greater than 1% for the overwhelming

majority of matrices and is 1.5% and even 2% for some types of matrices. As already mentioned in Sect. 1.1, the stress–strain

relationship for axially compressed CNTs considered in [52] remains linear while the strains are less than 5%. This means that

the stress–strain relationship for CNTs and polymeric matrices is linear when the strains induced by axial compression are of

order 1% (condition (11)). Thus, the principal conclusion is that elastic linear models can be applied to study microbuckling as a

compressive failure mechanism for nanocomposites.

It should be noted that this conclusion has been drawn from an analysis of a plane problem for a laminated

nanocomposite. Actually, we are considering the failure mechanism [17] for a fibrous nanocomposite, and the plane problem for

laminated nanocomposites is inadequate to fibrous nanocomposites. This situation has already been discussed in Introduction,

and, obviously, the conclusion formulated above calls for further study on the basis of a model for fibrous nanocomposites

(Fig. 1). As already mentioned in Introduction, a fibrous composite was modeled by a laminated composite in [14], and these

results have been generally recognized, though they had been obtained using a highly approximate model. Here, we are also

considering results from a plane problem for laminated composites obtained based on the TLTSDB and continuum

approximation. Let us now compare these results and those from [14].

The analytical results from [14] are fundamental in the Dow–Gruntfest–Rosen–Schuerch theory. Using the notation

adopted above, we can express the theoretical compressive strength found in [14] as

( ) [ ]Π1 14
1− −=T G Sm m . (12)

Comparing expression (8) corresponding to the continuum theory under consideration and expression (12)

corresponding to the Dow–Gruntfest–Rosen–Schuerch theory, we draw the following three conclusions.

1. The following inequality always holds:

( ) ( ) [ ]Π Π1 1 14
− −<T T . (13)

Hence, the Dow–Gruntfest–Rosen–Schuerch theory [14] overestimates the theoretical compressive strength compared

with the continuum theory. Thus, the result (8) is closer to the experimental results, since all theoretical compressive strengths

are as a rule higher than the corresponding experimental values.

2. For composites with small matrix concentration,

S m → 0, S r → 1, (14)

the Dow–Gruntfest–Rosen–Schuerch theory produces a physically inconsistent result. For example, (12) with (14) yields

( ) [ ]Π1 14
− → ∞T . (15)

Contrastingly, the continuum theory produces a physically consistent result for a homogeneous material. For example,

(8) with (14) yields

( )Π1
− →T Gr . (16)

3. The theoretical compressive strength (12) predicted by the Dow–Gruntfest–Rosen–Schuerch theory follows from the

theoretical compressive strength (8) predicted by the continuum theory if
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TABLE 4

Sr, % 5 10 15 20 25 30 40 50

〈 〉ε fr , % 2.4 1.4 0.98 0.78 0.67 0.59 0.52 0.50
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i.e., for reinforcement of high rigidity and matrix of high concentration.

The above qualitative analysis indicates the continuum theory is preferred over the Dow–Gruntfest–Rosen–Schuerch

theory.

This concludes the analysis of the continuum compressive-failure theory for laminated nanocomposites.

2.1.2. Fibrous Nanocomposites. Continuum Approximation. According to Fig. 1, we are dealing with a spatial problem

for fibrous unidirectional nanocomposites compressed along the Ox3-axis. The CNTs are parallel and quite long and are modeled

by infinite circular cylinders. Therefore, from (5) we obtain:

( ) min{ , }Π3 31 32
− = 〈 〉 〈 〉T G G , (18)

where ( )Π3
−

T is the theoretical compressive strength measured along the Ox3-axis and determined using the continuum

compressive-failure theory for fibrous nanocomposites based on the TLTSDB, and 〈 〉G31 and 〈 〉G32 are the shear moduli

determined using the homogeneous orthotropic linearly elastic model.

We will restrict ourselves to fibrous nanocomposites that do not have preferential reinforcement directions in the

cross-sectional plane (x3 = const), i.e., no regular structure provides orthotropy in the plane x3 = const. In this case, a fibrous

nanocomposite can be approximated by a transversely isotropic body with axis of isotropy coinciding with the Ox3-axis (the

plane x3 = const is the plane of isotropy). For the indicated case from (18) we obtain the expression

( ) ,Π3 31 31 32
− = 〈 〉 〈 〉 = 〈 〉T G G G . (19)

Expression (19) can be applied to relatively short CNTs only if 〈 〉G31 is known for a nanocomposite reinforced with

such CNTs (cylinders of finite length).

In the case of infinitely long CNTs (modeled by infinite hollow circular cylinders), the quantity 〈 〉G31 can be

determined from the expression in [1, p. 97]. Substituting this expression into (19), we obtain
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m r
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, (20)

where Gr and Gm are the shear moduli of the reinforcement (CNTs) and matrix; Sr and Sm are the volume concentrations of the

CNTs and matrix; q r r= −
2 1

1, and r2 and r1 are the inner and outer radii of the hollow CNT.

If (4), then (20) reduces to

( )

( )
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. (21)

Expression (21) applies to CNTs with different wall thicknesses that can be modeled by hollow and solid cylinders.

Setting q = 0 in (21), we obtain an expression for the theoretical compressive strength of a fibrous nanocomposite with CNTs

modeled by solid cylinders:

( )

( )

Π3

1

1

− =
+ +

+ +
T G

S S
E

E

S S
E

E

m

r m
m

r

m r
m

r

. (22)
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Expression (22) coincides with expression (2.66) in [7, p. 96] in view of (4).

For thin-walled CNTs, expression (21) can be simplified by adopting the approximation

1 11
1+ ≈−hr , hr1

1 1− << , (23)

where r1 and h are the outer radius and wall thickness of the hollow CNT. In view of (23), expression (21) reduces to

( )

( )

Π3
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+ +
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m r
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, (24)

where D is the CNT diameter. Table 5 collects the values of the parameter hr hD1
1 12− −= appearing in (22) for different values of

D and h, according to the data presented in Sect. 1.1. From Table 5, it follows that there are CNT that meet the second condition in

(23) and allow expression (24) to be used. In most cases, it is appropriate to apply expression (21).

Expression (20) can be rearranged as

( )Π3
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. (25)

Comparing (12) and (25) reveals that the theoretical compressive strength (12) predicted by the Dow–Gruntfest–

Rosen–Schuerch theory does not follow from that (25) for fibrous nanocomposites under any conditions, including conditions

(17). This conclusion appears to follow from the fact that fibers in a fibrous nanocomposite interact in a more involved manner

than in a laminated nanocomposite. Therefore, a plane analysis of the failure mechanism for laminated nanocomposites cannot

describe all specific features of the failure mechanism for fibrous nanocomposites, which was indicated in Introduction. It is

worth repeating here that the fundamental results [14] in the Dow–Gruntfest–Rosen–Schuerch theory have been obtained within

the framework of a plane problem for laminated composites.

As with laminated nanocomposites (Sect. 2.1.1), expressions (21), (22), (24), and (25) for fibrous nanocomposites

(Fig. 1) enable us to determine the limit strain 〈 〉ε 33
0 along the Ox3-axis at failure due to microbuckling. According to Fig. 1, the

subcritical deformation of fibrous nanocomposites is described by

〈 〉 = = = 〈 〉ε ε ε ε33
0

33
0

33
0r m

fr , (26)

where 〈 〉ε 33
0 is the microbuckling strain measured along the Ox3-axis; ε 33

0r and ε 33
0m are the corresponding microbuckling strains

of the reinforcement and matrix along the Ox3-axis; and 〈 〉ε fr is the failure strain.
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TABLE 5

h, nm CNT

D, nm

4 5 10 15 20 25 30

0.35 single-layer 0.167 0.134 0.067 0.045 0.034 0.027 0.022

0.670 two-layer 0.335 0.268 0.134 0.089 0.067 0.054 0.044

1.005 three-layer 0.502 0.402 0.201 0.134 0.100 0.080 0.067

1.340 four-layer 0.670 0.530 0.268 0.179 0.134 0.107 0.089



Young’s modulus 〈 〉E3 can easily be determined from the equilibrium condition using the homogeneous orthotropic

model with effective constants:

〈 〉 = +E S E S E3 r r m m . (27)

Expression (27), as well as (10), has been derived using one-dimensional models for the matrix and reinforcement,

since by virtue of (4), transverse effects in nanocomposites are accounted for approximately. The scientific literature associates

expressions (10) and (27) with mixture theory. In (27), as in (10), Er and Em are Young’s moduli of the reinforcement and

matrices. Since transverse effects in nanocomposites are accounted for approximately here, we will use a one-dimensional model

to estimate 〈 〉ε fr . Thus, (21) and (27) yield

〈 〉 =
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Expression (28) can be simplified in two special cases, by analogy with (22) and (23).

As an example, we will use expression (28) to calculate 〈 〉ε fr for a three-layer CNT with h = 1.005 nm and D = 10 nm.

According to Table 5, hr hD1
1 12− −= = 0.201. Thus, the second condition in (23) is not satisfied, simplification (24) cannot be

applied, and expression (28) should be used. Table 6 includes values of 〈 〉ε fr for different reinforcement concentrations in

fibrous nanocomposite. The reinforcement concentrations (Sr) are selected the same as in Table 4 for laminated composites, the

mean Young’s moduli (1) for CNT and (3) for polymeric matrix are used, and condition (4) is taken into account. Comparing

Tables 4 and 6 shows that the limit strains in fibrous nanocomposites are somewhat larger than in laminated nanocomposites.

Let us compare the microbuckling strain 〈 〉ε fr (determined using the linearly elastic model) for fibrous nanocomposite

and the elastic limit strain ε l
m for polymer matrix. Using the values of Em and σ l

m in Table 3 for different matrices, we obtain:

ε l
m = 1–2.1% (epoxy), ε l

m = 1–1.5% (polyester), ε l
m = 1–1.3% (phenolformaldehyde), ε l

m = 1–0.9% (organic silicon),

ε l
m = 1.3% (epoxy phenolic-butyral), and ε l

m = 2.4% (epoxy maleic). Note that the values of 〈 〉ε fr for fibrous nanocomposite in

Table 6 are equally valid for the matrix, by virtue of (26). Comparing the values of 〈 〉ε fr from Table 6 and the above-mentioned

values ofε l
m for different matrices reveals that the linearly elastic model is applicable to a fibrous nanocomposite with Sr ≥ 20%

in studying microbuckling as a compressive-failure mechanism for nanocomposites. A similar conclusion has been formulated

in Sect. 2.1.1 for laminated nanocomposites. Let us now formulate a general conclusion as to the compressive-failure theory for

fibrous and laminated nanocomposites.

General Conclusion. In developing a compressive-failure theory for a wide range of nanocomposites, the linearly

elastic model can be applied when the failure mechanism is microbuckling.

This conclusion pertains to the continuum-failure theory based on the TLTSDB.

This concludes the analysis of the continuum compressive-failure theory for fibrous composites.

2.1.3. Surface Failure. Continuum Approximation. Sections 2.1.1 and 2.1.2 addressed the continuum

compressive-failure theory for laminated and fibrous nanocomposites in the case where failure extends throughout the entire

material. Since the material is considered infinite, this type of failure is internal failure of the entire material or structural

member. The theoretical compressive strengths for this type of failure are defined by (6)–(8) and (18)–(21). Along with this type
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TABLE 6

Sr, % 5 10 15 20 25 30 40 50

〈 〉ε fr , % 2.52 1.54 1.12 0.94 0.83 0.77 0.73 0.71



of failure, surface failure was addressed in [7]. Surface failure is a process that localizes near the boundary surfaces and

diminishes with depth.

For a wide range of composites, it was strictly proved in [7] that the theoretical compressive strengths corresponding to

surface failure are somewhat less than those defined by (6)–(8) and (18)–(21) and corresponding to internal failure. This

conclusion is equally valid for laminated and fibrous nanocomposites.

Thus, the continuum compressive-failure theory under consideration suggests that the failure process goes as follows:

Failure sets in under stresses that are slightly less than the theoretical compressive strengths (6)–(8) and (18)–(21) and localizes

near the surface. After the stresses reach the levels (6) – (8) and (18) – (21), the failure extends avalanche-like throughout the

entire material.

This concludes the analysis of the continuum compressive-failure theory based on the approach from [2, 7].

2.2. Piecewise-Homogeneous Model. Let us discuss the basic results obtained in developing the compressive-failure

theory for fibrous unidirectional (Fig. 1) and laminated (Fig. 2) nanocomposites in the case where composites are modeled,

according to [3], by a piecewise-homogeneous material, and the reinforcement (CNT) and polymeric matrix are described by the

three-dimensional linear theory of stability of deformable bodies [4, 6, 19] with continuity conditions for the stress and

displacement vectors satisfied at the reinforcement–matrix interface. As in the previous section, the subscripts “r” and “m” will

refer to the matrix and reinforcement (CNT), respectively. We will assume that the acting loads are dead, which is sufficient [4,

6, 19] for the applicability of the static formulation. The reinforcement and matrix will be modeled by nonlinearly elastic

materials. For specific nanocomposites, we will apply linearly elastic models, since, as proved in Sect. 2.1.2, they can be applied

to a wide range of nanocomposites in developing a compressive-failure theory with microbuckling as a failure mechanism. Such

an approach [3, 7] employs the general TLTSDB solutions [4, 6, 19]. This leads to the task of minimizing the roots of the

characteristic equations with respect to the waveformation parameters of the corresponding buckling modes.

In the previous section, we have detailed all the aspects of the development of the continuum (approach [2])

compressive-failure theory for fibrous and laminated nanocomposites in the case where the failure mechanism is microbuckling.

This approach has produced a significant result formulated in Sect. 2.1.2 as the general conclusion: The linearly elastic model

can be applied to the reinforcement and matrix of a wide range of nanocomposites in studying the microbuckling phenomenon.

In the current section, we will analyze the development of the compressive-failure theory for nanocomposites modeled by a

piecewise-homogeneous body (approach [3]) based on the TLTSDB. We will restrict ourselves to just the basic aspects of theory

development.

The compressive-failure theory under consideration is based on analyzing the microbuckling phenomenon. To apply

the piecewise-homogeneous model [3], which will be used to determine the critical load and buckling mode, it is necessary to

give a more clear definition to microbuckling (internal instability). According to [7], the internal instability of nanocomposites is

microbuckling occurring at certain relationships between the stiffness characteristics and concentrations of the reinforcement

and matrix, from which it is possible to determine the critical load and buckling mode, irrespective of the geometry of and

boundary conditions for the structural member. Internal instability occurs in structural members made of nanocomposites when

the critical load corresponding to microbuckling (internal instability) is less than the critical load corresponding to buckling of

the structural member and the microbuckling wavelength is much less than the typical (minimum) length scale of the structural

member. Let us introduce the following notation: pcr is the critical load corresponding to internal instability; pcr
sm is the critical

load corresponding to buckling of the structural member; L is the typical (minimum) length scale of the structural member; and

lcr is the microbuckling half-wavelength. Thus, microbuckling occurs when

p pcr cr
sm< , lcr << L. (29)

From the above discussion, it follows that internal instability occurs only when it is possible to determine the critical

force and buckling mode for an infinite nanocomposite (no effect of geometry and boundary conditions). Let p be the load

parameter, α be the waveformation parameter of the buckling mode, l be the buckling half-wavelength, and h be the typical

(minimum) length scale (which may be either the thickness of the reinforcement layer hr or the thickness of the matrix layer hm in

the case of laminated nanocomposites). The parameters p and α are defined by

p E= − −( )σ11
0 1r

r , α π=
h

l
. (30)
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Solving the corresponding characteristic equations based on the piecewise-homogeneous model, we obtain

p p= ( )α . (31)

Two types of dependences (31) are shown in Fig. 7 for illustration (curves A and B).

The curve A has a well-defined minimum; therefore, pcr is determined by minimizing (31) with respect to α, resulting in

the expression p pcr cr= ( )α . Hence, in the case of curve A, we can determine pcr and the buckling mode corresponding to

α πcr cr= −hl 1. Note that for the curve A the following conditions are satisfied:

α cr ≠ 0, lcr ≠ ∞. (32)

The curve B is monotonic; therefore, pcr is determined by minimizing (31) with respect to α, resulting in the expression

pcr = p(0). Thus, for the curve B, it follows from (30) that

α cr = 0, lcr = ∞. (33)

From the second expression in (33) it follows that the second condition in (29) is not satisfied for any finite structural

member. Thus, internal instability does not occur in the case of curve B. What this means is that for each specific nanocomposite

modeled by a piecewise-homogeneous material, it is necessary to prove that internal instability (microbuckling) can occur,

leading to failure under compression.

This concludes the discussion of fibrous and laminated nanocomposites modeled by piecewise-homogeneous material.

Now we will briefly analyze the basic aspects separately for laminated and fibrous nanocomposites.

2.2.1. Laminated Nanocomposites. Piecewise-Homogeneous Model. According to Fig. 2, we are dealing with a

two-dimensional problem (plane x1Ox2) for a laminated nanocomposite with layers of reinforcement and matrix alternating

along the Ox2-axis and a load acting along the Ox1-axis, according to conditions (9). The three-dimensional problem [7] where

layers of reinforcement and matrix alternate along one axis is treated similarly. Lacking space, we will discuss the formulations

and solutions for the plane problem represented in Fig. 2 (see [7] for a complete analysis of the three-dimensional problem). Note

that the results reported in [7] pertain to a wide range of laminated composites (whose relative stiffness and geometry vary over

wide ranges). These results are equally valid for laminated nanocomposites, in view of the mechanical properties and geometry

of CNT-reinforcement and polymer matrix, outlined in the first section. Thus, we will briefly analyze the results for laminated

composites obtained in [7] using the piecewise-homogeneous model (approach [3]) and the TLTSDB [4, 6, 19].

As already mentioned, laminated nanocomposites are periodic in the direction perpendicular to the layers (along the

Ox2-axis). In this connection, the solutions of the basic TLTSDB equations have the form of functions periodic along the

Ox2-axis (Fig. 2) with a period multiple of the structural period. Following [7], we will use the following quantities to

characterize the buckling modes along the Ox2-axis: 2hr and 2hm, the thicknesses of the reinforcement and matrix layers; and u2
r

and u2
m , the displacements along the Ox2-axis in the layers of reinforcement and matrix. We will consider four different buckling

modes shown in Fig. 8a, b, c, d.
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The buckling mode of the first kind (Fig. 8a) has a period equal to the structural period, 2(hr + hm). The corresponding

displacements u2
r and u2

m are symmetric about the median surface of each layer. This buckling mode may be called flexural or

antisymmetric, due to the nature of deformation of reinforcement and matrix (in [14] it is called a shear mode).

The buckling mode of the second kind (Fig. 8b) has a period equal to the doubled structural period, 4(hr + hm). The

corresponding displacements u2
m and u2

r are antisymmetric and symmetric, respectively, about the median surface of each layer.

This buckling mode is called in [14] a tensile mode.

The buckling mode of the third kind (Fig. 8c) has a period equal to the structural period, 2(hr + hm). The corresponding

displacements u2
r and u2

m are antisymmetric about the median surface of each layer. This buckling mode may be called a tensile

mode.

The buckling mode of the fourth kind (Fig. 8d) has a period equal to the doubled structural period, 4(hr + hm). The

displacements u2
r and u2

m are antisymmetric and symmetric, respectively, about the median surface of each layer.

The above buckling modes exhaust all possible modes with periods equal to either the structural period or the doubled

structural period. Buckling modes with higher period

T k h h= +2 ( )r m , k = 3, 4, ... , (34)

can be treated similarly.

Buckling modes of the first to fourth kinds were described in [7] for a wide range of laminated composites using the

approach from [3] based on the piecewise-homogeneous model and TLTSDB. Note that the Dow–Gruntfest–Rosen–Schuerch

theory predicted only buckling modes of the first and second kinds.

As already repeatedly mentioned, the failure theory for nanocomposites based on the piecewise-homogeneous model

and TLTSDB is the most exact and rigorous in solid mechanics and, naturally, can be used to estimate other approximate

theories. Since the compressive-failure theory for laminated nanocomposites has been developed using the above-mentioned

approach, it can be used to estimate the continuum failure theory described in Sect. 2.1.1 and the Dow–Gruntfest–Rosen–

Schuerch theory. In this connection, we will look at asymptotically exact approximate compressive-failure theories for

nanocomposites [7].

An approximate theory is called asymptotically exact if for

α π=
+

→
h h

l

r m
0 , i.e., l → ∞, (35)

this theory follows from the corresponding rigorous theory based on the piecewise-homogeneous model and TLTSDB. In the

theory of elastic waves, conditions (35) define the long-wave approximation. In [7] it was strictly proved that the continuum

compressive-failure theory for laminated composites (see Sect. 2.1.1) is asymptotically exact and follows from the theory being

considered when condition (35) is satisfied for the buckling mode of the first kind (Fig. 8a). This result has been obtained for a

wide range of laminated composites, including laminated nanocomposites with parameters (1) and (3). As already mentioned in

Sect. 2.1.1, the Dow–Gruntfest–Rosen–Schuerch theory is different from the continuum compressive-failure theory for

nanocomposites. Thus, the Dow–Gruntfest–Rosen–Schuerch theory is not asymptotically exact.
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Let us now discuss a number of specific numerical results from the compressive-failure theory for laminated

nanocomposites with parameters (1) and (3). From (1) and (3) it follows that

E Er m
− =1 300. (36)

Let

p
v E

v= −〈 〉
−

⋅ = − + ⋅ε
σ

11
0 4 11

0

4
1

1
10 1 10

r

r

( ) , α πr
r=

h

l
, 〈 〉 = =ε ε ε11

0
11
0

11
0r m . (37)

Solving the corresponding characteristic equations, we obtain the dependence p p= ( )α r for the following geometrical

parameters:

h hm r
−1 = 1, 5, 10, 20, 30, 40, 50. (38)

Figure 9 shows the dependences p( )α r for values (36) and (38) (curves 1–7) and for v = 0.3 because Poisson’s ratio for

a series of polymeric matrices (Table 3) is close to 0.3. The solid lines in Fig. 9 represent the buckling mode of the first kind

(Fig. 8a) and the dashed lines, the buckling mode of the second kind (Fig. 8b). An analysis of Fig. 9 leads us to the following

conclusions.

1. The buckling mode of the first kind (Fig. 8a) does not occur for all concentrations of CNT and matrix, since some

solid curves in Fig. 9 are monotonic (curves 1 and 3), as the curve B in Fig. 7.

2. The buckling mode of the second kind (Fig. 8b) may occur for all values of parameters (38), since all the dash-and-dot

curves in Fig. 9 have a minimum (curves 2–4 and 7 in Fig. 9), as the curve A in Fig. 7.

3. When the buckling modes of the first and second kinds may occur, there are some concentrations of CNT and matrix

for which the failure loads corresponding to these modes differ insignificantly. For example, the minimums of solid and

dash-and-dot curves 7 in Fig. 9 coincide (the failure loads and waveformation parameters are equal).

The results in Fig. 9 were borrowed from [7, p. 180].

The above qualitative and quantitative conclusions follow neither from the continuum theory (Sect. 2.1.1), though it is

based on the TLTSDB, nor from the Dow–Gruntfest–Rosen–Schuerch theory.

Let us compare results for laminated nanocomposites produced by the exact failure theory being considered and by the

continuum theory (Sect. 2.1.1). Table 7 collects values of the theoretical compressive strength (( )Π1
−

T ) for (4), (36), some of

(38), and v vr m= =0.3. The first row includes the results obtained using the piecewise-homogeneous model and TLTSDB, and

the second row includes the results obtained using the continuum failure theory and TLTSDB. Table 7 was borrowed from

[7, p. 197].

An analysis of Table 7 reveals that the continuum theory (Sect. 2.1.1) overestimates the theoretical compressive

strength for laminated nanocomposites, compared with the piecewise-homogeneous model (Sect. 2.2.1). Since the estimate (13)
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always holds, the Dow–Gruntfest–Rosen–Schuerch theory even more overestimates the theoretical compressive strength,

compared with the continuum failure theory (Sect. 2.1.1).

This concludes the discussion of the compressive-failure theory for laminated nanocomposites based on the

piecewise-homogeneous model and TLTSDB.

2.2.2. Fibrous Nanocomposites. Piecewise-Homogeneous Model. According to Fig. 1, we are dealing with a

three-dimensional problem for a fibrous unidirectional nanocomposite with infinite matrix and CNT reinforcement. The CNTs

are modeled by infinite fibers of circular cross section aligned along the Ox3-axis. It is assumed that prior to failure the

reinforcement and matrix are loaded along the Ox3-axis, resulting in identical contraction along the same axis, i.e., condition (26)

is satisfied. Since the failure mechanism is microbuckling, all the considerations concerning this phenomenon (see Introduction)

fit here. We will use the piecewise-homogeneous model [3, 7] and the TLTSDB [4, 6, 9]. Lacking space, we will analyze just the

basic aspects of developing the failure theory for unidirectional fibrous nanocomposites.

Unidirectional fibrous nanocomposites compressed along the Ox3-axis give rise to a great variety of problems

associated with the variety of composite microstructures. Let us briefly analyze problems associated with the nanocomposite

structure in the cross-sectional plane x3 = const and schematically shown in Fig. 10a, b, c, d, e.

Figure 10a shows a fiber in an infinite matrix, which represents a fibrous nanocomposite with rather small

concentration of CNTs. Here, the interaction of neighboring fibers during buckling can be neglected.

Figure 10b shows two fibers in an infinite matrix, which represents a fibrous composite with small concentration of

CNTs and disordered (nonregular) structure in the cross-sectional plane (x3 = const). Here, the interaction of neighboring fibers

needs to be taken into account.

Figure 10c shows a periodic infinite row of fibers in an infinite matrix, which represents a fibrous nanocomposite with

regular structure and considerable concentration of CNTs. Here, the interaction of fibers within a row should be taken into

account.

Figure 10d shows several periodic infinite rows of fibers in an infinite matrix, which represents a fibrous

nanocomposite with regular structure and considerable concentration of CNTs. Here, the interaction of fibers within one infinite

periodic row and the interaction of fibers in several neighboring periodic rows should be taken into account.

Figure 10e shows a doubly periodic system of fibers in an infinite matrix, which represents a fibrous nanocomposite

with regular structure and considerable concentration of CNTs. Here, the interaction of fibers within one infinite periodic row

and the interaction of fibers between infinite rows should be taken into account.

Nanocomposites of stochastic structure could also be considered. The model of stochastic structure turned out to be

promising in determining the effective characteristics of composites. An even greater variety of problems are associated with
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TABLE 7

( )Π1
1 410− − ⋅T E r

h hm r
−1

20 30 40 50

Piecewise-homogeneous model 10.5 7.9 6.2 4.4

Continuum theory 13.5 13.2 13.1 13.4

a b ñ d e

Fig. 10



buckling modes both along the CNT-axis (Ox3-axis) and in the cross-sectional plane (x3 = const). As an example, let us consider

cross-sectional buckling modes (only in symmetry planes) for two fibers (Fig. 10b).

An out-of-plane in-phase buckling mode for two fibers is shown in Fig. 11a, an out-of-plane antiphase buckling mode

for two fibers in Fig. 11b, an in-plane antiphase buckling mode for two fibers in Fig. 11c, and an in-plane in-phase buckling mode

of two fibers in Fig. 11d. Physical considerations suggest that the minimum critical load corresponds to out-of-plane buckling if

the plane of two fibers (horizontal plane in Fig. 11) is the plane of maximum stiffness. Similar conclusions can be drawn for the

other structures in Fig. 10 and the like. Thus, to determine the critical load, it is necessary to minimize the load parameter with

respect to both the buckling wavelength along the Ox3-axis and buckling modes such as those in Fig. 11a, b, c, d.

Remark. Since CNTs are expediently modeled by hollow cylindrical fibers, for some relatively thin CNTs (Table 5) it is

quite natural to analyze shell buckling modes, using applied two-dimensional theories of stability of thin-walled shells. Two

considerations are important here: (i) the TLTSDB describes shell buckling modes as a partial case and (ii) though CNT-fibers

are described by applied two-dimensional theories of stability of thin-walled shells, the matrix should be described by the

TLTSDB, since it is the stability of the whole nanocomposite that is analyzed (Fig. 1). These considerations equally apply to the

approach from [31].

Let us look at methods of solving failure problems for fibrous nanocomposites (Fig. 1) using piecewise-homogeneous

models and the TLTSDB. As indicated in Sect. 2, the compressive-failure theory for nanocomposites is based on the assumption

(4) that Poisson’s ratios of the reinforcement and matrix are equal. Let us examine the influence of condition (4) on the solution

of the failure problem for one fiber in an infinite matrix (Fig. 10a). Let the waveformation parameter along the Ox3-axis (Fig. 1)

be defined by

α π=
R

l
, α πcr

cr

=
R

l
, (39)

where R is the fiber radius, and l is the buckling half-wavelength along the Ox3-axis. Figure 12 shows the dependences of 〈 〉ε fr

(26) and of α cr (39) on the parameter lg (E Er m
−1) (curves 1 and 2, respectively). The solid curves correspond to vr = 0.2 and

vm = 0.4 (condition (4) is not satisfied), the dashed curves to vr = vm = 0.2 (condition (4) is satisfied), and the dash-and-dot curves

to vr = vm = 0.4 (condition (4) is satisfied). Figure 12 is borrowed from [7, pp. 233, 234]. An analysis of Fig. 12 indicates [7] that

the difference between Poisson’s ratios of the reinforcement and matrix is less than 5% and may be neglected if
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E Er m
− ≥1 20. (40)

Since E Er m
−1 is defined by (36) for nanocomposites, condition (40) is automatically satisfied. Thus, we have proved that

condition (4) applies to nanocomposites. This conclusion pertains only to nanocomposites with rather small concentration of

CNTs (Fig. 10a) and can be extended to the other cases (Fig. 10b, c, d, e) only approximately.

Thus, after justification and application of condition (4), the general method of solving compressive-failure problems

represented in Fig. 1 and 10a, b, c, d, e for fibrous nanocomposites modeled by a piecewise-homogeneous material includes the

following stages:

1. Applying the general TLTSDB solutions [4, 6, 19] for homogeneous subcritical states.

2. Expanding the solutions of the governing equations for the reinforcement and matrices into Fourier series in

trigonometric and cylindrical functions in each local coordinate system.

3. Applying the summation theorems for cylindrical functions to obtain solutions in the form of series with separated

variables in each local coordinate system.

4. Satisfying the boundary conditions on local interfaces and inside surface of cylindrical CNTs in each local coordinate

system.

5. Deriving characteristic equations in the form of infinite determinants.

6. Proving that these infinite determinants are of normal type. This proof justifies the replacement of infinite

determinants by finite determinants of high order.

7. Calculating and analyzing critical loads.

This method allows solving a wide range of compressive-failure problems for fibrous nanocomposites that have

cross-sectional structures (in the plane x3 = const in Fig. 1) shown in Fig. 10a, b, c, d, e. It is significant that, according to Table 5,

the method considers hollow fibers, which are CNTs modeled by circular cylinders, as contrasted to [7] where fibrous

composites with solid fibers are studied.

In summary, it should be noted that the structures in Fig. 10a, b, c, d represent just model problems of the mechanics of

fibrous composites, including fibrous nanocomposites. Fibrous composites have a doubly periodic structure, as in Fig. 10e. It is

this structure that should be theoretically analyzed against experimental data. As an illustration, let us examine a fibrous

composite with stainless steel wire reinforcement and aluminum matrix. Such a composite was studied in [7, Ch. 4] using an

elastoplastic model for the matrix. Table 8 summarizes the failure strains 〈 〉ε fr for one fiber (Fig. 10a) and for a fibrous

composite with different reinforcement concentration Sr (Fig. 10e). This table was borrowed from [7, pp. 242, 317]. An analysis

of Table 8 reveals that the failure strain for a doubly periodic system of fibers is severalfold less than for one fiber (〈 〉ε fr = 5%).

For example, 〈 〉ε fr = 1.52% for Sr = 32.8%. Note that the experimental data in Table 8 admit no different interpretations (see [7]

for a detailed discussion). The indicated tendency (severalfold decrease in 〈 〉ε fr upon passage from one fiber to a fibrous

composite with doubly periodic structure) should also be observed for nanocomposites. For example, from Fig. 12 for one fiber

and in view of (36) we obtain 〈 〉 ≈ε fr 6% for nanocomposite, which corresponds to the case of one fiber in Table 8.

This concludes the discussion of developing the compressive-failure theory for fibrous nanocomposites based on the

piecewise-homogeneous model and TLTSDB.

2.2.3. Surface Failure. Piecewise-Homogeneous Model. Sections 2.2.1 and 2.2.2 addressed the compressive-failure

theory for laminated and fibrous nanocomposites in the case where failure extends throughout the entire material. Since the

material is considered infinite, this type of failure can be called internal failure when the piecewise-homogeneous model is used.

251

TABLE 8

〈 〉ε fr , %
Sr, %

single fiber 4.1 11 15.3 21.2 24.8 32.8

Theory 5.0 3.15 2.06 1.89 1.68 1.59 1.52

Experiment 2.3 1.7 1.6 1.3



As with the continuum theory (Sect. 2.1.3), the piecewise-homogeneous model allows studying the surface or near-surface

failure of laminated and fibrous nanocomposites. Surface failure is compressive failure that localizes near the boundary surfaces

and diminishes with depth from the surface. Phenomena of surface failure in laminated and fibrous nanocomposites studied

within the framework of the piecewise-homogeneous model require surface and attenuation conditions to be satisfied, in

addition to periodicity and continuity conditions for the stress and displacement vectors (Sects. 2.2.1 and 2.2.2).

Figure 13 shows a design model for analysis of the (near-)surface failure (in the plane x1Ox2) of a laminated

nanocomposite compressed along the Ox1-axis (the matrix and reinforcement contract equally along the Ox1-axis). In this case,

boundary conditions on the surface x2 = 0 (Fig. 13) and attenuation conditions as x2 → −∞ should be satisfied.

A richer variety of problems arises in studying the near-surface compressive failure of fibrous nanocomposites using

the piecewise-homogeneous model. Let us briefly consider some aspects of such problems for nanocomposites having the

surface x2 = 0 and axially compressed along the Ox3-axis. We will restrict ourselves to the case of failure problems for the plane

x3 = const. Different problems for fibrous nanocomposites are represented in Fig. 14a, b, c, d, e.

Figure 14a shows one fiber in a semi-infinite matrix, which represents a fibrous nanocomposite with rather small

concentration of CNTs. Here, the interaction of neighboring fibers may be neglected.

Figure 14b shows two fibers in a semi-infinite matrix with centers of cross sections located on the free surface; and

Fig. 14c shows two fibers in a semi-infinite matrix with centers of cross sections located on a line perpendicular to the free

surface. The figures represent fibrous nanocomposites with small concentration of CNTs and disordered (nonregular) structure

in the cross-sectional plane (x3 = const). In the case of internal failure, the problems (Fig. 14b, c) go over into one problem

(Fig. 10b).

Figures 14d and 14e show one row of fibers and several rows of fibers, their cross-section centers located on the

boundary surface. The list of near-surface failure problems for fibrous nanocomposites is incomplete.

Mathematical methods for solving problems formulated above are described in [7].

Conclusions. Thus, we have outlined the fundamentals of the compressive-failure theory for laminated and fibrous

nanocomposites with polymer matrix in the case where failure begins with microbuckling.

The basic results (problem formulations, solution methods, specific results and their analysis) have been obtained using

the following two approaches (models). The first approach (continuum failure theory) employs the homogeneous anisotropic

model with effective constants (homogenized material). In this case, the microstructural parameters appear in the expressions for

the effective constants of the homogeneous anisotropic body. The second approach uses the piecewise-homogeneous model and,
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separately for the reinforcement and matrix, the three-dimensional theory. In this case, continuity conditions for the stress and

displacement vectors should be satisfied at the reinforcement–matrix interface.

A typical feature of the results is the application (in both approaches) of the three-dimensional linear theory of stability

of deformable bodies [4, 6, 19]. Thus, the results expounded here may be considered exact and strict. That is why the results do

not include errors inherent in the one- and two-dimensional applied theories of stability of rods, plates, and shells.

The results outlined here can be used to solve a wide range of problems for laminated and fibrous nanocomposites with

different microstructures. Results of such studies could be reported in separate publications.

The authors express sincere gratitude to colleagues from the Center for Micro- and Nanomechanics at the University of

Aberdeen, Scotland, for the help in preparing the paper.
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