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FRACTURE AND STABILITY OF MATERIALS AND STRUCTURAL MEMBERS

WITH CRACKS: APPROACHES AND RESULTS
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A new alternative approach to fracture problems for materials and structural elements with cracks is set

out. It is based on the mechanism of local instability near defects. The approach is used to study the

fracture of materials compressed along interacting cracks and the fracture of thin structural members

with cracks under tension with allowance for local buckling.
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Introduction. The main question to answer by linear fracture mechanics, a well-established and widely accepted since,
in looking into the possibility of further growth of existing cracks is whether the cumulative elastic energy is sufficient for
additional surfaces of the defect to form. In Irwin’s interpretation, this question is whether the integral characteristics of the
stress–strain state at crack tips (stress intensity factors or crack opening displacement) achieve certain limit (critical) values
under given loads.

In some cases, however, this approach is a fortiori inapplicable, though intuition suggests that fracture (crack growth or
fragmentation) may (and will actually) occur under increasing loads. Among such cases is primarily loads acting along
cracks—the stress intensity factors appearing in failure criteria such as the Griffith–Irwin one (linear fracture mechanics) are
equal to zero, and, hence, fracture does not occur. The buckling of cracked materials (under compression along near-surface
cracks parallel to the free surface) is a widely known and well-described phenomenon (in particular, in laminated composites).
The aforementioned pertains equally to parallel cracks along which loads act.

It has long been known that local buckling triggers fracture [69]. Moreover, local buckling may strongly affect the
classical linear fracture process by preceding it and frequently reducing the threshold levels of applied loads. This is particularly
true of thin-walled structural members (plates and shells) where out-of-plane buckling precedes fracture.

This paper cites results of solving nonclassical problems of fracture mechanics where local buckling either triggers
fracture (loads parallel to crack surfaces) or strongly influences the fracture process by preceding it and altering the geometry of
the element (thin-walled plate or shell).

When the initial stresses are parallel to crack faces, there may be two classes of problems, depending on whether there is
a field of additional stresses that are rather small compared with the initial stresses [8].

If there is no such an additional filed, then we deal with fracture under compression along cracks. The approach used to
solve such problems is based on the relations of three-dimensional linearized solid mechanics. The concept of fracture is this:
local buckling near cracks triggers fracture. The process of fracture is initiated when the initial stresses reach critical levels
(values corresponding to local instability). This approach (including the relations of linearized solid mechanics, the
corresponding mathematical tool, and failure criteria) is detailed in [8–12]. The formulation of the basic problems, methods for
their solution, and results for plane cracks are addressed in the present paper.
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If there is an additional stress field, then we deal with brittle fracture of materials with initial stresses acting along cracks
[8]. The approach is also based on the relations of three-dimensional linearized solid mechanics (the general formulation of
fracture problems for prestressed materials is given in [8, 11, 12]). The approach assumes formulating failure criteria such as the
Griffith–Irwin one (based on the integral characteristics of the additional field of initial stresses at crack tips), which are the
classical criteria in the absence of initial stresses. These criteria in fact form the concept of fracture in this case: fracture sets in (a
crack grows) when a certain combination of integral characteristics of the additional stress field at crack tips (namely, stress
intensity factors) achieves a limit (critical) value. It should be noted that these factors depend on the initial stresses acting along
cracks. Brittle-fracture problems for prestressed materials are beyond the scope of the present paper.

The paper [85] was the first to solve the stability problem for a rectangular linearly elastic isotropic plate with a central
crack under uniaxial compression by an exact approach based on the three-dimensional linearized theory of stability of elastic
bodies and by an approximate approach based on the beam approximation. These two approaches were used to determine the
critical characteristics of the plate (dependence of the critical load on the crack parameter). The error of the beam approach was
estimated.

Among fracture problems for materials compressed along cracks are those for cracked thin bodies (such as plates and
shells) with local out-of-plane buckling in compression zones near cracks preceding traditional fracture (no buckling). The
present paper cites results from an integrated study of the stress–strain state, stability, and fracture of plates and shells with cracks
and crack-like defects.

1. Fracture of Materials Compressed along Crack-like Defects. We will classify the results to be discussed
according to (i) the relative arrangement of defects (a single free crack in an infinite material, a near-surface crack parallel to the
free boundary, two parallel internal cracks, and a periodic series of parallel cracks), (ii) loading conditions (uniaxial compression
and biaxial uniform compression), and (iii) models of materials (hyperelastic materials with various elastic potentials, composite
materials, and plastic materials). The above-listed ways the defects are arranged and, hence, interact with each other and with the
free surface allow us to isolate, in a “pure” form, and study the following cases: interaction of a crack and the free surface of the
material, interaction of two cracks, and interaction of a series of parallel cracks and to estimate the lower and upper bounds of the
critical compressive stresses for a finite number of internal equidistant cracks.

Moreover, the analysis to be performed will make it possible to assess the limits of applicability of approximate
approaches based on applied theories of beams, plates, and shells (such as a rigidly clamped strip isolated by cracks) [6, 33, 36].
Such an approximate approach, frequently called the beam approach, cannot be considered satisfactory for two reasons: (i) it is a
fortiori inapplicable to cracks spaced rather far apart and (ii) it inadequately describes the situation near the edges of defects,
idealizing it by introducing boundary conditions for a beam isolated by cracks. Generally, the boundary conditions are selected
arbitrarily (rigid restraint, as a rule). Varying boundary conditions for, e.g., a strip from rigid restraint to simple support results in
a four-fold change in the Euler critical compressive stress. For a more detailed analysis of issues associated with the beam
approach, including its limits of applicability, see [17, 19, 24, 25, 29].

For each case of crack arrangement, we will formulate a boundary-value problem for one of the loading schemes and
cite its exact solution (if any) or governing equations to which the problem is reduced. For a detailed discussion of the
mathematical tool used, see the authors’ works listed in references. On the whole, linearized boundary-value problems for
cracked materials were attacked using methods of solving the Riemann–Hilbert problem (plane case), methods of potential
theory (spatial case), the theory of integral Fourier and Hunkel transforms, and methods of solving dual integral equations by
reducing them to systems of Fredholm equations of the first or second kind. A numerical eigenvalue analysis of systems of
homogeneous integral equations was as a rule based on the Bubnov–Galerkin method.

For a closer look at studies on nonplanar cracks (cracks with cylindrical faces) see [32, 70, 71, 91]. The present paper
does not discuss the results of such studies, because these interesting results, including the formulation of problems and the
corresponding mathematics, deserve individual consideration. On the whole, the basic laws governing plane cracks remain for
cylindrical cracks.

1.1. Free Cracks. A free cracks is meant a single crack in an infinite material. Note that a more general problem on a
finite number of coplanar cracks (cracks lying in one plane) under either uniaxial compression or biaxial uniform compression
has been solved in [8–10]. The critical compressive stresses corresponding to local instability near defects turned out to be the
same as those for one crack. That is why coplanar cracks could be called free. Therefore, we will restrict ourselves to a plane
problem for an infinite material with a single crack under uniaxial compression.

The stress–strain state of the material is homogeneous near cracks [8]:
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σ σ σ σii
0

22
0

11
0

33
00 0 0= = ≠ ≠const , , , ,

u x im im i i i
0

31 1 1 2 3= − = = =δ λ λ λ( ) , , ( , , )const , (1.1)

whereλ i are the strains along the axes,λ1 <1;δij is the Kronecker delta;σ0 and
�
u0 are the stress tensor and displacement vector;

and x j are the Lagrange coordinates that coincide with the Cartesian coordinates in the undeformed state. The cracks are located
in the plane x2 =const along the line of compression (axis x1). We will mainly use the notation and terminology from [8].

At the initial stage of fracture under along-crack compression, the critical values of the parameters (λ i or σii
0 ) are

determined, which correspond to local buckling near crack-like defects. Local instability is analyzed using the relations of
linearized solid mechanics. With such an approach, problems of fracture under along-crack compression are linearized

homogeneous boundary-value problems tested for eigenvalues with respect to the load parameters (λ1 1< or σ11
0 0< in crack

planes). This remark pertains equally to spatial problems of fracture under uniform biaxial compression along cracks.
Due to symmetry about the crack plane, the problem reduces, by virtue of linearity, to problems for a half-space with

symmetric and flexural buckling modes separately (i.e., for stress and strain fields symmetric and asymmetric about the crack
plane). The boundary conditions (at x2 = 0) of the plane problem for the lower half-plane x2 0≤ are:

~
Q22 =0,

~
Q21 =0 ( y L y1 2 2 0∈ =, )

~
Q22 =0, u1 =0 ( y L y1 2 2 0∈ =, ) (1.2)

for the flexural buckling mode and

~
Q22 =0,

~
Q21 =0 ( y L y1 2 2 0∈ =, )

u2 =0,
~
Q21 =0 ( y L y1 2 2 0∈ =, ) (1.3)

for the symmetric buckling mode.
Here the interval L1 corresponds to the crack on the coordinate line y1, and L2 to the solid body (the points y2 = +∞and

y2 = −∞ are included in L2 ); and
~
Q and

�
u are perturbations of the asymmetric stress tensor and displacement vector (the

components
~
Q are referred to the area of the body in the initial strain state). The boundary-value problem is formulated in

coordinates y j of the initial strain state related to the coordinates x j of the undeformed state by

y xj j j= λ . (1.4)

Biaxial uniform compression along cracks located in the plane x3 = const induces the following homogeneous
stress–strain state:

σ σ σ σ33
0

11
0

22
0

11
00 0= = ≠ =, , const,

u xj mj j m j
0

1 2 3 11 1= − = = ≠ <δ λ λ λ λ λ λ( ) , , , .const (1.5)

The spatial problem reduces, as the plane one, to problems for flexural and symmetric buckling modes. The boundary
conditions for the upper half-space x3 0≥ (or y3 0≥ in the coordinates of the initial strain state) are:

~
Q33 =0,

~
Q31 =0,

~
Q32 =0 (∀ ∈ =( , ) ,*y y S y1 2 3 0)

~
Q33 =0, u1 =0, u2 =0 (∀ ∉ =( , ) ,*y y S y1 2 3 0) (1.6)

for the flexural mode and

~
Q33 =0,

~
Q31 =0,

~
Q32 =0 (∀ ∈ =( , ) ,*y y S y1 2 3 0)
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u3 =0,
~
Q31 =0,

~
Q32 =0 (∀ ∉ =( , ) ,*y y S y1 2 3 0) (1.7)

for the symmetric mode. Here S * is the region occupied by the crack.
It was established that the initial stage of fracture in the case of an isolated crack is characterized by surface instability,

i.e., critical strains and compressive stresses are equal to those in a half-space without cracks under surface instability. Moreover,
the flexural and symmetric buckling modes give the same critical compressive stresses and strains.

The condition for determination of the critical strains, denoted by λ* (and the corresponding compressive stresses by

σ σ λ0 0* * *( )= ), can be written in the following general form:

k( )*λ = 0 (1.8)

in the plane case and

q k( ) ( )* *λ λ⋅ = 0 (1.9)

in the spatial case. Here

k l l d l d= − − −( )1 2 2 1
1

1
1 (1.10)

for equal roots, n n1 2= , and

k k k k l n k l n= − = =− −
1 2 1 1 2

1 2
2 2 1

1 2, ,/ / (1.11)

for unequal roots, n n1 2≠ .

We have λ λ* *= 1 (and σ σ λ11
0

11
0

1
* * *( )= ) in the plane case (1.1) and λ λ λ* * *= =1 2 (and σ σ λ11

0
11
0

1
* * *( )= , σ σ11

0
22
0* *= ), in the

spatial case (1.5), q n d= −
3

1 2
3

/ . The quantities n n n l l d d1 2 3 1 2 1 2, , , , , , , and d3 are determined by the components of the tensorsω

andκ that relate the perturbations of the displacement vector
�
u and the asymmetric Kirchhoff stress tensor t referred to the area of

a compressible (tensor ω) or incompressible (tensor κ) body in undeformed state. The components of the tensors ωand κ depend
on the chosen model of material and on the form of stress–strain state ((1.1) in the plane case or (1.2) in the spatial case). In
particular, for hyperelastic materials the components of these tensors depend on the form of elastic potential. Moreover, the

condition k( )*λ = 0determines the critical loads in the axisymmetric spatial case.

1.1.1. Highly Elastic Materials. The following critical strains λ1
* have been obtained for hyperelastic materials:

Bartenev–Khazanovich potential [1] (incompressible body, equal roots):

λ1
1 23* /= ≈− 0.577 for the plane problem (1.1)

and

λ λ1 2
1 33* * /= = ≈− 0.693 ( )q ≠ 0 for the spatial problem (1.5).

Treloar potential [97] (incompressible neo-Hookean body, unequal roots):

λ1
3 31 3 17 27 11 27 17 27 11 27* / / / / /= − + + + − ≈0.544 for the plane problem (1.1)

and

λ λ1 2
3 3 2 31 3 17 27 11 27 17 27 11 27* * /[ / / / / / ]= = − + + + − ≈0.666 for the spatial problem (1.5).

Harmonic (standard) potential [95] (compressible body, equal roots):

λ1
* =0.5 for the plane problem (1.1)

and

λ λ ν1 2 1 2* * ( ) /= = + (ν is a material constant)) for the spatial problem (1.5).

Note that in contrast to the Bartenev–Khazanovich and Treloar potentials, the critical loads for harmonic potential are

greater in the axisymmetric case than in the nonaxisymmetric case: λ ν ν λ1 11 2ax*
( ) / ( ) *= + + < (and | | | |σ σ11 11

0ax* *> ), where the

superscript “ax*” refers to the axisymmetric case.
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1.1.2. Composite Materials. The critical stresses for composites have been determined in [8] using a continuum model
with reduced characteristics of anisotropic (in particular, orthotropic or transversely isotropic) bodies with macrocracks, i.e.,
cracks much larger than the characteristic dimensions of structural elements of the composite. Since composites are relatively
rigid at moderate temperatures, the second version of small subcritical deformation theory (as termed in [8]) was applied, where
the initial state is determined by a geometrically linear theory. In this case, it is possible to neglect the difference between the
coordinates of the undeformed and deformed states and quantities calculated in these coordinates.

The case of unequal roots (1.11) is characteristic of composites.
In the plane problem (1.1) for a composite material with reduced characteristics of an orthotropic body (with linear

anisotropy), the critical stresses are determined from the equation
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where Aij are the elastic coefficients and Gij are the shear moduli.
Considering that the shear stiffness of composites is usually small (ε <<1), we can determine the minimum (in absolute

value) negative root of Eq. (1.12) by the approximate formula
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Thus, the critical compressive stress can be determined from the formula

σ ν ν ν ν11
0
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1 2
13 31 23 321 1 1* ( )( )≈ − − − −


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E E
. (1.14)

Note that expression (1.14) represents the case of preferential reinforcement along cracks (macrocracks are oriented
along reinforcement). For laminated materials this means that cracks are parallel to the interfaces between layers.

The critical stresses for a composite with reduced characteristics of a transversely isotropic medium follow from (1.13)
as a special case on the assumption that cracks are in the plane of isotropy.

In the spatial problem (1.5) for a material with reduced characteristics of a transversely isotropic body (with linear
anisotropy) (cracks are in the plane x3 = 0), the critical stresses are determined from the equation
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Considering that the shear stiffness of the composite is much smaller than the shear of planes parallel to the plane x3 = 0, namely

ε
ν ν ν ν

ν ν
= ≡

′ + − − ′ ′′
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<
G

A

G

E

13

11

1 1 2

1
1

( )( )

( )
, (1.16)

we can determine the minimum (in absolute value) negative critical stress (as a root of Eq. (1.15), denoted as in [25]) as
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Note that low shear stiffness is characteristic of laminated materials consisting of isotropic layers (interfaces are parallel
to the plane x3 = 0) and of fibrous composites with stochastic reinforcement in the planes x3 = const and weak reinforcement in
the perpendicular direction.

The approximate formulas (1.14) and (1.17) are quite accurate. To prove this, Table 1 compares the exact solutions of

Eq. (1.15) and approximate values of the critical compressive stress σ σ11
0

22
0* *= (normalized to the reduced elastic modulus E)

obtained by formula (1.17) for different values of E E( ) ( )/1 2 (the ratio of reduced characteristics E G/ ′ is given for
convenience). The data in the table represent a laminated composite with isotropic layers (a transversely isotropic medium in

macrovolumes). Poisson’s ratios of the layers are equal (ν ν ν( ) ( )1 2= = =0.3) and the concentration of the material with the

elastic modulus E ( )1 is c1 =0.3.

1.1.3. Plastic Materials. The critical stresses for plastic materials have been determined in [8].
In [8], by plastic fracture is meant a fracture process where total destruction is preceded by inelastic deformation

(subcritical stress–strain states are homogeneous). The second version of small subcritical deformation theory is used, and it is
possible to neglect the difference between the coordinates of the deformed and undeformed states and quantities calculated in
these coordinates. Macrocracks, i.e., cracks larger than characteristic microstructures (grains, crystals, etc.) are considered. For
elastoplastic materials, the characteristic equation has complex-conjugate roots n n1 2= . The generalization of the mathematics
to the case of complex-conjugate roots (and use of complex-valued functions of real variable) is discussed in [8, 25, 72].

An incompressible isotropic elastoplastic model was used to describe the deformation of the material. Specific results
have been obtained for two most popular theories of plasticity: the deformation theory of plasticity and the associated flow rule.
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TABLE 1

E E( ) ( )/1 2 E G/ ′
σ11

0*
/ E

Exact value Approximate value

1 2.600 –0.3308 –0.3375

4 3.828 –0.2386 –0.2408

7 5.408 –0.1743 –0.1751

10 7.023 –0.1364 –0.1367

13 8.648 –0.1117 –0.1119

16 10.278 –0.0946 –0.0947

19 11.911 –0.0820 –0.0820

22 13.545 –0.0723 –0.0724

25 15.180 –0.0647 –0.0647

28 16.815 –0.0585 –0.0585

31 18.452 –0.0534 –0.0534



In the plane case (1.1), the critical compressive stresses σ11
0* for a material described by the deformation theory of

plasticity (small elastoplastic deformation theory) are determined from the equation

x x x x
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where Esec and Etan are the secant and tangent moduli on the diagram of stress intensity σi
0 versus strain intensity ε i

0 (in

particular, when Esec = Etan, we have a linearly elastic incompressible body). Assuming ε small, we solve Eq. (1.18) by
expanding x into a series in ε. For developed plastic strains (ε << 1), the minimum (in absolute value) negative root can be

expressed accurate to ε 2 :
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In the spatial case (1.5), both the deformation theory of plasticity and the associated flow rule were analyzed.

For the deformation theory of plasticity, the equation for the critical stresses σ σ11
0

22
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1329

TABLE 2

ε
σ11

0*
/ E

Exact value Approximate value

0.1 –0.176 –0.176

0.2 –0.204 –0.204

0.3 –0.228 –0.227

0.4 –0.247 –0.246

0.5 –0.263 –0.260

0.6 –0.275 –0.268

0.7 –0.285 –0.272

0.8 –0.293 –0.271

0.9 –0.299 –0.266

1.0 –0.304 –0.255



For structural materials (| | ,x < <1 1ε ) with developed plastic strains, we may assume ε << 1. Therefore, the critical
compressive stress can be determined from the approximate formula
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. (1.22)

Table 2 compares the values of σ11
0* /Esec obtained as the exact solution of Eq. (1.21) and from the approximate formula

(1.22) for different values of ε. As is seen, the approximate formula (1.22) describes well the solution for small values of ε and
underestimates the root forε close to unity (forε ≤ 0.7 the difference between the exact and approximate values is less than 5%).

For the associated flow rule, an elementary loading function describing translational hardening (c and k are material
constants) was considered,

f c c kp
p= − − − =( � )( � )σ ε σ εαβ αβ

αβ αβ0 0
0 0 22 0, (1.23)

where �σ0 is the stress deviator; the critical compressive stresses σ σ11
0

22
0* *= are determined from the equation
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Since ε is small for real materials, the approximate solution of the equation can be represented as

σ11
0

0 0
2 00 304 1

0 299
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,≈ − −

+
−

+









 ≡E

c c
c

c

E
. (1.25)

The results from experiments on triaxial loading of mudstone and sandstone samples were used to determine the
constants E, c, and k and the exact (Eq. (1.24)) and approximate (formula (1.25)) critical compressive stresses. These stresses
normalized to the elastic modulus E are summarized in Table 3.

Thus, in the case of noninteracting cracks, the initial stage of fracture is associated with the surface instability of a
half-space. For all the materials considered (hyperelastic materials with various elastic potentials, composite materials described
by a continuum model with reduced characteristics, and plastic materials described by deformation theory and flow rule), the
symmetric and flexural buckling modes have equal critical compressive stresses. The critical compressive stresses under biaxial
uniform compression (spatial case) are less than those under uniaxial compression (plane case). In spatial problems, the critical
stresses of the axisymmetric buckling mode are less than those of the nonaxisymmetric buckling mode. The exception is
hyperelastic materials with a standard harmonic potential. The abnormal behavior of materials with a harmonic potential should
be the subject of a separate investigation.

1.2. Near-Surface Cracks. This and next sections deal with interacting cracks: near-surface and internal cracks.
Near-surface cracks are parallel to the free boundary of the material. Considering this type of cracks, we can evaluate

the interaction between a crack and the free surface under along-crack compression. Obviously, when the distance between the
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TABLE 3

Rock k k E0 3= / c c E0 3= /
σ11

0* / E

Exact value Approximate value

Mudstone (ε =0.198) 10 90 10 3. ⋅ − 3.048 –0.276 –0.278

Sandstone (ε =0.186) 15 07 10 3. ⋅ − 3.363 –0.278 –0.280



free surface and the crack plane tends to infinity, the case at hand is a free crack, as in Sect. 1.1. If this distance is small, then the
critical compressive stresses are much smaller than those for a free crack.

As for interacting internal cracks, two parallel cracks and a periodic series of equidistant cracks are the most interesting
cases, since they give upper and lower estimates of the critical compressive stresses for the case of a finite number of internal
equidistant cracks. Clearly, when the distance between cracks tends to infinity, we arrive at the case of noninteracting cracks.

Note that the critical compressive stresses of the axisymmetric buckling mode are less than those of the
nonaxisymmetric buckling mode.

1.2.1. An Exemplary Formulation of a Boundary-Value Problem. Near-surface cracks were studied in [3–5, 22, 26, 27,
62–66, 69, 80, 93]. Let us formulate the spatial nonaxisymmetric problem (1.5) as an example [8].

Consider a crack of radius a located in the plane x3 = 0 of the upper half-space x h3 ≥ − with the center on the Ox3-axis:
{ , ,0 0 2 03≤ < ≤ < =r a xθ π } (( , , )r xθ 3 are cylindrical coordinates derived from Cartesian coordinates). The crack faces and the
half-space boundary are free from stresses. The boundary conditions of the linearized problem are

t t t x r ar3 3 33 30 0 0 0= = = = ± <, , ( , )θ ,

t t t x h rr3 3 33 30 0 0 0= = = = − ≤ < ∞, , ( , )θ , (1.26)

where t is the asymmetric Kirchhoff stress tensor, and the signs “+” and “–” refer to the upper and lower crack faces, respectively.
1.2.2. Governing Equations. The boundary-value problem posed can be reduced (after awkward transformations) to a

homogeneous system of integral Fredholm equations of the second kind (the mathematics is detailed in [72]). If the roots of the
characteristic equation are unequal, then this system has the following dimensionless form:
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The kernel of the integral equations is
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Here Γ ( )x is the gamma function and Q zn ( ) are Legendre functions of the second kind.
Since the data obtained in [3–5, 22, 24–27, 62–66, 69, 80, 93] for near-surface cracks in hyperelastic, composite, and

elastoplastic materials are very extensive and have already been covered in detail in [24, 25] and the scope of the present
publication is limited, we will restrict ourselves to spatial axisymmetric problems for composites as the most interesting, in our
opinion, case.

From the extensive studies on composite materials it follows that the buckling of a composite compressed along
delamination (which corresponds to study into the possibility of subcritical fracture) is the initial stage of fracture after which
other fracture mechanisms may be actuated.

1.2.3. Approximate Design Model. Fracture of composites with delaminations is an important issue. It was intensively
studied by domestic and foreign scientists. Two stages of the fracture process are distinguished: initial stage, characterized by
local buckling near cracks, and postcritical (after buckling) development of the defect. The first stage is treated within the
framework of the approximate approach in the overwhelming majority of cases. Thus, an approximate design model for a
disk-shaped delamination of radius a located at a distance h to the free surface of the composite consists in determining the Euler

critical compressive stress σ11
0 for a circular plate of radius a and thickness h compressed by uniform forces of intensity σ11

0 per

unit area of the lateral surface of the plate. The plate is as a rule assumed to be rigidly restrained. The simple-support conditions
are also an option. Since the critical compressive stresses for rigidly restrained and simply supported plates differ substantially,
we must admit that the initial stage of fracture of composites compressed along delaminations has been studied inadequately
within the framework of the approximate approach. It is also obvious that the approximate approach is a fortiori inapplicable for
large values of β ≡ h a/ .

In the notation adopted, the Euler critical stress is described by the formula
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ν11
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212 1Eu

E
, (1.30)

where E is the reduced elastic modulus in the plane of isotropy (the plane of defect) and ν is Poisson’s ratio. The coefficient α
depends on the boundary conditions for the plate: α = 14.68 (rigid restraint) and α = 4.196 (simple support). Thus, the Euler
critical stresses for rigidly restrained and simply supported plates differ by a factor of 3.5.

Note that cracks in composites are considered to be much larger than structural elements of the material, i.e.,
macrocracks are considered. Fracture processes in which piecewise-homogeneous properties are manifested (interfacial
fracture, etc.) are not investigated, and the composite is modeled by an anisotropic medium with reduced characteristics. For the
state of the art of studying interfacial fracture based on the approximate approach see [13].

1.2.4. Some Results. Let us discuss some results for near-surface disk-shaped delaminations in composites with reduced
characteristics of a transversely isotropic medium (spatial axisymmetric case).

Laminated Composite with Isotropic Layers. At macrolevel, it is a transversely isotropic medium. The
macrodelamination is in the plane of isotropy (parallel to the inner interfaces and the free surface of the composite).

Figure 1a, b shows the dimensionless critical stresses σand σ (compressive stresses divided by the critical compressive

stress σ11
0* for a noninteracting crack and by the reduced elastic modulus E in the plane of isotropy) as functions of the ratio of

elastic moduli E E( ) ( )/1 2 of isotropic layers with equal Poisson’s ratios. Curves 1 correspond to β = =−ha 1 1/8 and curves 2 to

β =1/4. As the ratio E E( ) ( )/1 2 increases, the critical stressσ σ( )monotonically increases (decreases). In contrast to a free crack,

the critical compressive stresses decrease by more than an order of magnitude over the range of β involved.

For comparison, Fig. 1b shows the dimensionless Euler stresses ( ) /σ11
0

Eu E for simple-support conditions (dashed

curves) and for rigid-restraint conditions (dash-and-dot curves) for β =1/8 (curves 3 and 4) and β =1/4 (curves 5 and 6).

Figure 2 shows the critical compressive strainε λ1 11= − as a function ofν for a laminated composite withν ν ν( ) ( )1 2= = ,

E E( ) ( )/1 2 3= , and c1 =0.3 of the layer with E ( )1 (β = =−ha 1 1 8/ ).

Figure 3a, b shows σ and σ as functions of the concentration c1 of glass in a glass-based laminated composite
(aluminoborosilicate glass plus epoxy maleic resin). Curves 1 and 2 correspond to β =1/8 and β =1/4, respectively. As can be
seen from the figures, the critical compressive stresses are strongly dependent on the concentration of the composite
components.

Composite Randomly Reinforced in the Planes y3 = const with Short Ellipsoidal Fibers. At macrolevel, it is a
transversely isotropic medium with y3 = const as the plane of isotropy.

Figure 4 shows the dependences ε ε β1 1= ( )and σ σ β= ( ) for a carbon-fiber-reinforced plastic with fiber concentration
c1 = 0.7 and fiber aspect ratio equal to 10. As β → ∞, ε1 and σ asymptotically tend to the critical values 0.085 and –0.097,
respectively, for a free isolated delamination. When β ≥ 4, the critical compressive stress is less than 5% different from that for an
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isolated delamination. Approximate design models predict the dimensionless Euler critical stress ( ) /σ11
0

Eu E with a large error

even for relatively small values of β (for example, ( ) /σ11
0

Eu E =–0.078 when σ =–0.032 for rigid-restraint conditions, i.e., these

values differ by a factor of 2.5).
1.3. Interacting Internal Cracks.

1.3.1. Two Parallel Internal Cracks. Two interacting internal parallel cracks were studied in [16–19, 30, 59, 75, 92, 94].
Let us consider, as an example, the formulation of the spatial axisymmetric problem (1.5) [92].

Let an infinite material contain two internal coaxial disk-shaped cracks of radius a in the planes y3 = 0 and y3 = –2h (yj

are the coordinates of the initial strain state). The boundary conditions of the linearized problem are

~
Q33 =0,

~
Q r3 =0 ( y r a3 0 0= ≤ ≤±( ) , ),

~
Q33 =0,

~
Q r3 =0 ( y h r a3 2 0= − ≤ ≤±( ) , ), (1.31)

where
~
Qij are the components of the asymmetrical stress perturbation tensor divided by the area in the initial strain state,

( , , )r yθ 3 is a cylindrical coordinate system, and the subscripts “±” refer to the corresponding crack faces.
Owing to mechanical and geometrical symmetry, the stress and strain fields can be represented as the sum of symmetric

and asymmetric (about the plane of symmetry y h3 = − ) parts. And owing to linearity, these parts can be treated separately, as the
symmetric and flexural buckling modes. Since these modes are symmetric, we can consider the upper half-space y h3 ≥ − with the
corresponding boundary conditions

~
Q33 =0,

~
Q r3 =0 ( y r a3 0 0= ≤ ≤±( ) , ),

~
Q33 =0, ur =0 ( y h r3 0= − ≤ ≤ ∞, ) (1.32)

for the flexural mode and

~
Q33 =0,

~
Q r3 =0 ( y r a3 0 0= ≤ ≤±( ) , ),

~
Q r3 =0, u3 =0 ( y h r3 0= − ≤ ≤ ∞, ) (1.33)

for the symmetric mode.
After some transformations, the boundary-value problems (1.32) and (1.33) reduce to a system of two integral

Fredholm equations of the second kind with an additional condition for an unknown constant. For the flexural mode, this system
has the following dimensionless form:

f
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where “const” is an unknown constant determined from the additional condition

g d( ) .ξ ξ =∫ 0
0

1

(1.35)

The kernels of the equations are defined by

M R R R R1 1 1 1 11 1( , ) ( ) ( ) ( ) ( )ξ η η ξ η ξ ξ ξ= + + − − + − − ,

R k k1 1 2 1
2 2 1

2 1 2
2 2 12 4 2 4( ) ( ) ( )ζ β β ζ β β ζ= + − +− − ,

β i in ha= − −1 2 1/ , etc. (1.36)

Let us cite some results for two coaxial disk-shaped delaminations (spatial axisymmetric case). These will be the critical
compressive stresses of the flexural buckling mode as those that are much greater than the critical stresses of the flexural mode
(in other words, it is the flexural buckling mode that is realized).

Laminated Composite with Isotropic Layers. At macrolevel, it is a transversely isotropic medium. Figures 5–7 show
σ σ, , and ε1 (see the notation in the previous section) as functions of the stiffness characteristics and the concentration of

composite components. Curves 1, 2, and 3 correspond to internal delaminations with β = −ha 1 (2h is the distance between

delaminations and a is their radius) equal to 1/16, 1/8, and 1/4, respectively. For comparison, the figures also include curves 4, 5,
and 6 for a near-surface delamination, for two internal delaminations with the same distance between them as in the first case,
and for a delamination at the same distance from the free surface as in the second case.

Figure 5a, b shows σ and σ as functions of E E( ) ( )/1 2 1≥ for a composite with ν ν( ) ( )1 2= =0.3 and concentration c1 of

the layer with E ( )1 .

Figure 6 shows the dependences ε ε ν1 1= ( ) for a composite with ν ν ν( ) ( )1 2= = , E E( ) ( )/1 2 =0.3, and c1 = 0.3.

Figure 7a, b shows σ and σ as functions of the concentration c1 of glass in a composition of aluminoborosilicate glass
and epoxy maleic resin.
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1.3.2. Periodic Series of Internal Parallel Cracks. Periodic interacting parallel cracks were studied in [23, 28, 29, 68].
Let us discuss, as an example, the formulation of the plane problem (1.1) [28].

Consider an infinite row of parallel equidistant cracks of equal length

( ){ , | | , }, , , ,x hn x a x n2 1 32 0 1 2= < −∞< < +∞ = ± ± � . (1.37)

The material is compressed along the Ox1-axis in parallel to the crack planes. The cracks are infinite along the Ox3-axis.
The crack faces are free from stresses. The boundary conditions of the linearized problem are

t t x hn x a n22 21 2 10 0 2 0 1 2= = = < = ± ±±, ( ( ) , | | , , , , ... ), (1.38)

where “+” and “–” refer to the crack faces. Considering the periodicity and symmetry (antisymmetry) of the stress and strain
fields, we obtain the following boundary conditions for the layer { | | , , | | }0 0 01 2 3≤ < ∞ ≤ ≤ ≤ < ∞x x h x :

u x x a t x x a1 2 1 21 2 10 0 0 0= = > = = <( , | | ), ( , | | ),

t x x u x h x t x22 2 1 1 2 1 22 20 0 0 0 0 0= = ≤ < ∞ = = ≤ < ∞ = =( , | | ), ( , | | ), ( h x, | | )0 1≤ < ∞ (1.39)

for the flexural mode and

u x x a t x x a2 2 1 22 2 10 0 0 0= = > = = <( , | | ), ( , | | ),

t x x u x h x t x21 2 1 2 2 1 21 20 0 0 0 0 0= = ≤ < ∞ = = ≤ < ∞ = =( , | | ), ( , | | ), ( h x, | | )0 1≤ < ∞ (1.40)

for the symmetric mode.
The solution for the whole infinite plane can be obtained by extending the solutions of problems (1.39) and (1.40) for

the layer 0 2≤ ≤x h to the domain | |x h2 ≤ and then applying the periodicity conditions.
Finally, after a series of transformations, the boundary-value problems (1.39) and (1.40) reduce to the following

eigenvalue problem (with respect to λ1 or σ11
0 ) for the homogeneous integral Fredholm equation of the first kind:

f d f M d( ) ln ( ) ( , ) ,η
ξ

η ξ
η η ξ η η ξ

1
0 0 1

2

2 2
0

1

0

1
−
−




 


 − = ≤ <∫ ∫ , 0 1≤ ≤η ,

M R R R R( , ) ( ) ( ) ( ) ( )ξ η η ξ η ξ ξ ξ= + + − − + − −1 1 , (1.41)

where
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in the case of equal roots and
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in the case of unequal roots. Here β βj jn j= =−1 2 1 2/ , , ; β = h a/ ;α γ= =2 1, for the symmetric buckling mode, andα = 1,γ =2for

the flexural mode.
Laminated Composite with Isotropic Layers: A Composition of Aluminoborosilicate Glass and Epoxy Maleic Resin. At

macrolevel, it is a transversely isotropic medium. The composite has disk-shaped coaxial delaminations of radius a equally
spaced at 2h and located in the planes of isotropy parallel to the interfaces. Let us discuss the results for the spatial axisymmetric
case and the flexural buckling mode.

Figure 8a, b shows the dimensionless critical compressive stresses σ and σ as functions of the glass concentration c1.
Curves 1, 2, 3, 4, and 5 correspond to β = h a/ equal to 0.0625, 0.125, 0.15, 0.20, and 0.25, respectively.

Figure 9a, b shows σ and σ as functions of β for c1 equal to 0, 0.3, 0.6, and 0.9 (curves 1, 2, 3, and 4).
Figure 10 compares the dependences of σ on c1 for periodic delaminations, for two internal parallel delaminations, and

for a near-surface macrocrack. Also Fig. 10 shows the dimensionless Euler critical stress ( ) /σ11
0

Eu E obtained by approximate

design models (rigidly restrained and simply supported plate) for rather small relative distances between cracks: β =1/16 and
β =1/8. The relative distances between delaminations (periodic series of delaminations, two parallel delaminations) or between a
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crack and the free surface of the material (near-surface delamination) are equal. Curves 1, 2, and 3 correspond to periodic
delaminations, two parallel delaminations, and a near-surface delamination, respectively. Curves 4 and 5 represent the Euler
critical stress for rigid-restraint and simple-support conditions, respectively. The curves with primed numbers refer to β =1/8 and
the other curves to β =1/16.

Figure 11a, b showsσand σ as functions of the dimensionless area S a h= π 2 2/ of a defect in a periodic series of defects
for the glass concentration c1 equal to 0.3, 0.6, and 0.9 (curves 1, 2, and 3, respectively). Specifying a value of σ or σ, we can
determine from these dependences what minimum area a delamination should have to grow further.

2. Theoretical Stability Analysis of Cracked Plates and Shells.

2.1. Formulation of Stability Problem of a Plate with a Crack. Consider an infinite thin isotropic elastic plate of
thickness h weakened by a central through rectilinear crack of length 2l0 (Fig. 12) [15, 21, 72, 74]. At infinity, the plate is
subjected to uniform forces of intensity p normal to the crack line. The stress py is always tensile, and the stress px is either tensile
or compressive. The domain of the upper half plate where the stress px is compressive is hatched in Fig. 12. If the crack length is
greater than the plate thickness, then the intensive compressive stresses acting along the crack periphery may cause local
buckling of the plate prior to its fracture.

Local buckling near a central crack is analyzed using the static method within the framework of the von Karman
linearized theory of plates. The governing equation and the boundary conditions at the crack periphery free from external forces
are

[ ]| |
~′ − =−ω λ6 0L L W , λ

ν
=

−6 10
2 2

2

pl

Eh

( )
, | |′ =−

=ω ρ
4

1 0MW ,

| |
~′ =−

=ω ρ
5

1
0QW , W ρ→∞ → 0, (2.1)

where L L M,
~

, , and
~
Q are differential operators;ω ζ( )is a function conformally mapping the exterior of the crack onto the exterior

of a unit circle; and ν and E are the elastic constants.
Since buckling is local, the deflection W must subside to infinity:

W ρ→∞ → 0. (2.2)

The eigenvalues of the problem depend on Poisson’s ratio alone and do not depend on the geometrical parameters h and
2l0. Denote the minimum positive eigenvalue by λ * . Then the critical stress pcr causing local buckling is defined by
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p
E h

lcr =
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
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


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( )6 1 2
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2

. (2.3)

If the crack length is larger than some critical value denoted by l* , then local buckling precedes fracture. We will
determine l* by comparing the critical stress pcr (2.3) and the fracture stress p* predicted by the Griffith–Irwin theory:
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h
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0

1 2γ
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where γ is the effective surface energy density of a brittle or quasibrittle material. Then we have

l
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1 3

72 1
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Figure 13 shows the qualitative dependence of pcr and p* on l0 . As is seen, buckling precedes fracture when l l0 � *

and fracture precedes buckling when l l0 � * .
2.2. Eigenvalue Calculation. We will calculate the eigenvalues using the variational method that has been developed to

solve stability problems for deformed thin bodies with cracks. The basic variational equation is:
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The system of coordinate functions is selected in the form

W A mnm
n

n

N

m

M

= ′ −

==
∑∑| | cosω ρ θ4

10
. (2.7)

The characteristic equation derived from the linear system of homogeneous algebraic equations has been solved
numerically on a computer for different numbers of coordinate functionsΩand forν = 0.3. The computed results are summarized
in Table 4.

Introducing the notation
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K =
−

λ ν

ν
α( ) ( )

( )6 1 2 , (2.8)

we transform (2.3) into the form

p KE
h

lcr =










0

2

, (2.9)

whence if λ * = 5.516, then K = 1.01.
The problem of finding the minimum positive eigenvalue was solved in an exact formulation using the collocation

method [72, 74]. According to this method, the coordinates of the points called collocation points at which the equilibrium
equation and boundary conditions are satisfied are substituted into theses equations. These points are selected so as to provide
satisfactory convergence of the solution. The resulting value of K is in good agreement with that produced by the variational
method.

2.3. Stability of Plates with Cracks and Crack-Like Defects under Various Loading Conditions. The approach
developed in [72, 74, 78] for stability analysis of thin cracked bodies was used to study the local buckling of plates with various
crack-like defects under various loading conditions.

For plates with a circular or noncircular hole, the critical stress is defined [20, 77] by

p
E h

Rcr =
−



 
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λ ν ε
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* ( , )

( )24 1 2

2

, (2.10)

where R a b= +( ) / 2 and ε = − +( ) / ( )a b a b are the geometrical characteristics of the hole, a and b are the major and minor
semiaxes of ellipse.

For a plate with an arbitrarily oriented rectilinear crack [72, 74], the critical load is defined by

p
E h
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λ ν α

ν
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−6 1 2 , (2.11)

where α is the angle between the line of action of the tensile force and the crack line.
For a plate with a rectilinear crack under biaxial loading, the critical stress is defined [76] by

p
E h
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q
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




 =

λ ν η
ν

η* ( , )

( )
,

6 1 2
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2

, (2.12)

where q is the load acting along the crack.
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TABLE 4

N 2 4 6 8

Ω 4 12 24 40

λ * 25 5.945 5.516 5.508

TABLE 5

η 8 4 2 1 0.5 0 –0.5 –1 –2 –4 –8

λ * 69.79 38.47 20.26 14.78 8.64 5.51 3.69 2.87 1.98 1.21 0.84



Table 5 summarizes the minimum positive eigenvalues λ * calculated for ν = 0.3 and several values of η.

For a plate with a square hole under plane stress, the critical stress is defined [74] by

p
E h

Rcr ( )
* ( , )

( )κ
λ ν ε

ν
=

−


 


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24 1 2

2

, K ( )
* ( , )

( )κ
λ ν ε

ν
=

−24 1 2 , (2.13)

where R is the scale factor, and ε is the geometrical parameter of the hole, 0 1≤ ≤ε .
2.4. Stability of a Cylindrical Shell with a Crack. In studying the local buckling of a cylindrical shell with a crack under

tension, it is necessary to take into account the transverse–longitudinal bending of the shell associated with its curvature. This is a
very difficult mathematical task. Therefore, this problem has been solved by the collocation method [45, 72, 74].

Consider a shallow shell with a small crack under uniform tensile forces. The stability equations are

D

h
W L W L W k∇ = + − ∇4 0 0 2( , ) ( , )ϕ ϕ ϕ ,

1 4 0 2

E
L W W Wk∇ = − + ∇ϕ ( , ) , (2.14)

where ϕ is the stress function, W is the deflection function of the median surface of the shell, and the superscript “0” refers to the
subcritical stress state.

If cracks are small, then

l

Rh

0
2

1< . (2.15)

Since the buckling problem is solved approximately, we set W 0 equal to zero and assume that ϕ 0 is the same as that of

the plate. The perturbed state is damped at infinity, i.e.,

W x y2 2 0+ →∞ → . (2.16)

The critical stress is determined from the expression

p
R h l Rh

l
cr =

−
λ ν

ν
* ( , , , )

( )
0

2
0
26 1

. (2.17)

In contrast to the plate, here the eigenvalues also depend on the geometrical parameters: radius, thickness, and crack
length. Table 6 summarizes values ofλ * calculated forν = 0.3 and h = 0.44 mm. The radius R of the shell and the half-length l0 of
the crack were selected from the condition (2.15). The number of coordinate functions was Ω = 24.

3. Experimental Investigation of Stability and Fracture of Plates and Shells with Cracks. Here we analyze the
influence of near-crack buckling of plates and shells on their fracture.
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TABLE 6

R, mm
η* ⋅ 102

l0 = 10 mm l0 = 20 mm l0 = 30 mm l0 = 40 mm

4000 0.0596 0.0592 0.0594 0.0591

2000 0.119 0.121 0.118 —

1500 0.159 0.160 0.160 —

1000 0.239 0.237 — —



3.1. Stability of Plates and Shells with Cracks.

3.1.1. Experimental Technique. The subjects of testing were rectangular plates made of various structural materials,
such as aluminum and titanium alloys and steels, and containing fatigue cracks and slits. The plates were stretched via
intermediate clamps on a TsD-10/90 testing machine. The deflections of the plates near cracks were measured with multipoint
devices equipped with pneumatic displacement transducers [58, 72, 74]. The strain state was measured with KF-5 resistance
strain gauges. The gauges were glued at characteristic sections of the plate, on two sides, strictly opposite to each other. This
made it possible to measure the surface strains on two sides of the plate and use them to calculate the flexural strains and the
strains of the median surface. The stresses were measured by the photoelastic method in plates made of optically active material
ÉD-16M. In steel plates, the stresses near a crack or slit were determined from the measured strains using Hooke’s law.
Cylindrical panels and cylindrical and conic shells were tested in much the same way as the plates. To this end, special means of
loading and strain measurement had been developed [38, 41, 74].

3.1.2. Buckling Stresses. The deflection W or strain difference ∆ε were adopted as buckling characteristics of plates, and
the stress dependences of W or ∆ε was plotted [73, 78, 89]. Figure 14 shows such a dependence (deformation curve) for a plate
made of D16T material. The thickness of the plate is h = 0.98 mm and the ratio of the crack half-length to the plate width is
l b0 / = 0.2. Three characteristic sections can be observed on the curve: OA, characterizing the initial equilibrium state of the
plate; BC, characterizing the new equilibrium state; and AB, a transitive section. The critical stress pcr was determined as the
abscissa of the point M at which the continuations of the rectilinear sections OA and BC intersect and by the Southwell method
[72, 74]. The stresses pcr determined by the two methods differ insignificantly. The experimentally established dependence of pcr

on the geometrical and mechanical characteristics of the plate is

p KE
h

lcr =










0

2

, (3.1)

which fits well the theoretical dependence (2.9). This allows us to compare theoretical and experimental results.
When the mechanical and geometrical characteristics of the plate are known, it is sufficient to calculate the coefficient K

to find pcr. Table 7 collects values of K for some tested materials.
The effect of the following factors on the coefficient K was studied: small distance between the crack and the plate edge,

large width of the crack, nonrectilinearity (curvature) of the crack; nonperpendicularity of the crack to the line of action of the
load, and curvature of the plate surface. Empirical expressions for determining K depending on the geometrical parameters of
plates and defects were derived in [81].
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The effect of the plastic deformation of plates on the critical stresses was studied. It was established that the plasticity of
the material not only near the crack periphery but also in the section running through the crack strongly decreases the coefficient
K. The following empirical dependence was derived in [48] for determining the coefficient K:

K
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h
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(3.2)

Since the plates begin to buckle immediately after application of a tensile force, we can judge the buckling mode before
the stress achieves the critical level. The portions of the plate near the crack faces bulge in the same direction relative to the plate
plane. The buckling mode has axial symmetry with the longitudinal axis of the plate as the axis of symmetry. The deflection W is
maximum near the crack and quickly decreases toward its tip and with distance from it along the longitudinal axis of the plate.
Figure 15 shows the distribution of W over characteristic sections of an AMg6M plate with h = 0.93 mm and l0/b = 0.32. The full
circles, open circles, and x’s correspond to p = 60, 80, and 100 MPa [72, 74].

3.1.3. Stability of Plates with Cracks and Crack-Like Defects under Various Loading Conditions. The technique
developed in [72, 74] was used to test plates with various stress concentrators. For AMg6M plates of thickness h = 0.93 mm with

an inclined crack of length 2l0 = 100 mm, the value of K ( )α varied from 1.15 to 9.50, depending on the angle α between the crack

and the line of action of the load. The dependence K ( )α on K (with α varying from π/2 to π/12) can be represented [61, 72] as

K
K

( ) sinα α
= 3 . (3.3)

AMg6M plates of dimensions 500×240×0.48 mm with two cracks of length 2l0 = 30 mm were tested in two cases:
parallel cracks and in-line cracks. It has been established that the critical stresses practically do not depend on the distance
between the parallel cracks and the buckling mode near each of the parallel cracks is symmetric. In the case of in-line cracks, pcr

is also independent of the distance between the cracks when this distance is large. As the inter-crack distance decreases, pcr

abruptly drops because the buckling mode becomes antisymmetric [37, 72].
The plates tested under biaxial loading were made of AMg6M material and had the form of a cross with overall

dimensions 400×400 mm, dimensions of the test portion (100×100) mm, h = (0.48, 0.19) mm, 2l0 = (20 – 60) mm. The critical
stresses were determined theoretically and experimentally by the technique from [35, 36, 76]. The following empirical formula
for K q( ) has been derived:

K K
q

pq( ) = +








1

cr
, (3.4)

where q is the load acting along the crack, and pcr and K pertain to the case of uniaxial tension. Table 8 summarizes values of
K q( ) determined experimentally, numerically, and theoretically.

The above-mentioned technique was used to test plates with some other defects such as an elliptic hole [77], curved
cracks [42], pointed holes with three cuspidal points [40], and two radial cracks reaching the periphery of a circular hole [72].
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TABLE 7

Material St. 08kp St. 20 St. 65G VT-1-1 AMg6M D16T AMtsM

h, mm 1.02 0.54 0.51 0.42 0.93 0.97 0.92

K 1.10 1.15 1.0 1.02 1.15 1.15 1.15



The wide distribution of multilayer structural members (made of composites, metals with reinforcing and
corrosion-resistant coatings, adhesive-bonded materials, etc.), which also may acquire cracks during manufacture and operation,
necessitates studying near-crack buckling in such structures and its influence on the fracture characteristics. With this in mind,
two-layer metal plates of total thickness h were tested. The layers of the plate are plates of thicknesses h1 and h2 , one made of
St. 20 steel and the other of AMg6M aluminum alloy, bonded together with BF-2 glue (Fig. 16) [51, 88]. The thickness h1 was
equal to 0.53 mm in all tests, and the thickness h2 varied from 0.1 mm to 0.83 mm. The critical stress pcr was determined from a
deflection W versus stress p curve. Such a curve for a plate with 2b = 250 mm, 2l0 = 100 mm, h1 = 0.53 mm, and h2 = 0.45 mm is
shown in Fig. 16.

Let us determine the elastic modulus E for the two-layer plate by averaging the corresponding moduli of its components
(E1 for the steel and E2 for the aluminum alloy) according to Voigt, assuming the uniformity of the generalized displacement
field:

E E E= +ψ ψ1 1 2 2 , (3.5)

where ψ1 and ψ2 are the relative volume fractions of the components. Then considering the two-layer plate isotropic with an
elastic modulus E, we can determine the critical stress pcr from expression (3.1). The corresponding coefficient K is equal to
1.15, according to Table 7.

Figure 17 shows pcr as a function of h for 2l0 = 100 mm (open circles) and as a function of 2l0 for h1 = 0.53 mm and
h2 = 0.3 mm (x’s). Curves 3 and 4 represent the theoretical stresses pcr plotted from expression (3.5) for two-layer plates. Curves
1 and 2 also represent the theoretical critical stresses plotted from expression (3.1) for a single-layer steel plate (E = E1) and
aluminum plate (E = E2), respectively, both of thickness h. As is seen, the experimental values of pcr lie between curves 1 and 2.
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TABLE 8

h, mm l/b q, MPa q p/ cr K qe( ) K qn ( ) K qt ( )

0.48

0.22
0.1
0.3
0.5

0.07
0.20
0.33

1.22
1.34
1.50

1.23
1.38
1.53

1.09
1.26
1.37

0.51
0.1
0.3
0.5

0.35
1.05
1.75

1.56
2.50
3.80

1.55
2.36
3.17

1.43
1.92
2.30
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Curve 3 fits these values well for relatively small values of h corresponding to small levels of pcr. In turn, curve 4 describes well
the experimental dependences of pcr on 2l0 for relatively large values of 2l0, which also correspond to small values of pcr.

Plates with an edge crack were tested in [14, 50, 52, 82, 84, 87]. Plates with an edge crack under tension deform
differently from plates with a central crack. The main difference is in the mechanism of buckling, which is due to the way the
load is applied. The load can be applied to plates in two ways: directly and through hinges. It is the latter case where local
buckling may occur [14, 52, 87]. In this case the crack faces move apart, and the plate’s portion near the edge opposite to the
crack is subject to compression. The compressive stresses there may cause local buckling, depending on the geometry of the
plate. It has been established that local buckling occurs when the ratio of the crack length l0 to the plate width b is greater than
0.25. Figure 18 shows pcr as a function of l0/b for plates made of different materials. The symbols stand for the experimental data.
Curves 1–4 have been plotted from an empirical formula for pcr (curves 1 and 2 correspond to AMgbM plates of thicknesses
h = 0.28 and 0.48 mm, respectively, curve 4 to an AMg2P plate of thickness h = 0.95 mm, and curve 3 has been plotted from the
data [72] for 2024-T4 aluminum alloy). The following empirical formula for pcr fits the experimental data best:

p KE
h b

l
cr =

2 4

0
6 . (3.6)

The following values of K have been obtained: K = 0.2 for AMg6M, K = 0.18 for AMg2P, and K = 0.13 for 2024-T4 [72].
3.1.4. Stress–Strain State of Plates with Cracks. Plates made of ÉD-16M material were subjected to two tests. One test

allowed the plates to buckle. In the other test, two restraints were placed flat on two sides of the plate to prevent buckling and not
to interfere with longitudinal deformation [54, 55, 72].

Figures 19 and 20 show the dependence of the compressive stresses pc acting along the crack periphery and the tensile
stresses pmax at the crack tip on the applied load. Curves 1 and 2 correspond to the cases of absence and presence of buckling.
Also the figures show the dependence of the dimensionless deflection W/h at the middle of the crack face on the stress p. As is
seen, pc/p and pmax/p are independent of p in the absence of buckling. The normal deflection has a strong effect on the stress state
near the crack. The ratio pc/p increases, and for large p the median surface of the plate stretches. The ratio pmax/p increases with
p, raising the stress concentration. For the given load, the buckling increases the stress concentration by approximately 19%.

The effect of buckling on the strain state of a St. 20 steel plate with h = 0.5 mm and l0/b = 0.13 can be judged from
Fig. 21. The figure shows the surface strains ε x1

(curve 2) and ε x2
(curve 4), flexural strains ε ux (curve 1), and the strains of the

median surface ε ox (curve 5) as functions of p. Under small loads, the bending near cracks is absent or insignificant; therefore,
the surface strains are negative on both sides of the plate. The degree of bending increases with p, making the strain ε x1

on the
convex side positive, the strain ε x2

remaining negative. While the strain ε ux is small, the strain ε ox is compressive and increases
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in absolute magnitude with load. As ε ux increases, the behavior of ε ox changes: it starts decreasing, and at large buckling the
median surface may become to be subject to tension rather than compression.

3.1.5. Stability of Shells with Cracks. Cylindrical panels and cylindrical and conic shells were tested in [38, 39, 41, 45,
57, 86]. Figure 22 shows deformation curves for panels with 2l0 = 30 mm and the following radii: R = 4000 mm (curve 1),
R = 1000 mm (curve 2), and R = 250 mm (curve 3). The deformation curves for panels of large radius are similar to the
deformation curves for plates, which made it possible to determine pcr and K using formula (3.1).

Table 9 summarizes the values of K obtained from tests on several panels differing in the radius and length of the crack.
As R decreases, the deformation curve straightens, and K and pcr cannot be determined. The diameter of the cylindrical shells
was D = (70, 120, 180, 250) mm, 2l0 varied from 20 to 70 mm, and h = (0.30, 0.39, 0.46) mm. The tapering angle of the conic

shells was ϕ = 40, 20°. The crack was circular with a diameter of 180 mm. The crack length varied from 20 to 60 mm. The
deformation curves for all the shells are essentially different from those for plates and similar in form to those for a cylindrical
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TABLE 9

l0, mm
R, mm

4000 2000 1500 1000 5000

40 0.77 0.73 0.72 0.67 0.64

30 0.77 0.76 0.75 0.67 0.66

25 0.78 0.76 0.75 0.70 0.68

20 0.88 0.78 0.78 0.77 0.72

15 0.88 0.86 0.80 0.80 0.78

10 0.90 0.87 0.82 0.80 0.80



panel of small radius. A typical feature of the curve is the linear dependence between the load and the deflection near the crack,
which made it impossible to determine pcr and K.

Figure 23 compares theoretical and experimental data for panels with 2b = 240 mm and h = 0.44 mm. The experimental
values of pcr have been obtained with regard for the condition (2.15). The theoretical values (solid lines) of pcr have been
determined by formula (2.17) using the values of λ * from Table 6. Curves 1–3 correspond to R = 4000, 2000, 1000 mm,
respectively. As is seen, the experimental and theoretical results are in satisfactory agreement.

3.2. Fractures of Plates and Shells with Cracks.

3.2.1. Experimental Technique. A plate with a crack was loaded on a TSD-10/90 testing machine at a constant rate of

0.83⋅10–4 m/sec. Two cases were examined: with and without buckling. During fracture, the plate’s portion near the crack and
dynamometer scale was synchronously recorded with FOR-2 photorecorders. The chronophotographs were analyzed
frame-by-frame with a toolmaker’s microscope to determine the length of the growing crack, opening of its faces at fixed points,
and the corresponding stresses [72–74]. In integrated crack-resistance testing of plates, the length of the growing crack was
measured by the method of electric potential [72]. The displacements of the middle points of the crack faces and the points of
load application were measured with strain-gauge displacement transducers. Then these data were used to determine and
compare the fracture characteristics of plates with and without buckling.

3.2.2. Kinetics of Fracture of Plates. Figure 24 shows typical fracture curves for plates made of materials VT-1-0,
AMtsM, and St. 08kp. Curves 1 and 2 correspond to the cases of buckling and no buckling. The form of the curves depends on the
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material, dimensions, and shape of the plate and on whether buckling is present or absent. Analyzing the form of the curve, we
can judge the influence of these factors on the fracture process and determine the following characteristics: the stress pi at the
beginning of crack growth, the maximum stress pm , the crack half-length lc at the beginning of avalanche-like fracture, the
stress pc at the beginning of avalanche-like fracture, and the crack growth rate v [72, 74].

Figure 25 shows the crack growth rate v as a function of the crack length l for AMg6M material (curves 1 and 2

correspond to the cases of buckling and no buckling, respectively). It is seen that at first v increases almost linearly and then
abruptly. The crack growth rate v varies differently in plates made of different materials. For example, no abrupt change of v was
observed until fracture of the VT-1-0 plates. An abrupt increase in the crack growth rate was detected at lc /b = 0.4 in the N36 steel
plates and at lc /b = 0.6 in the AMg6M plates. The effect of buckling is such that a certain crack growth rate is achieved in buckled
plates earlier than in plates with no buckling.

Table 10 collects the values of v for l = 55 mm for several materials (v1 stands for the case of buckling and v2 for the case
of no buckling). The maximum value of v is observed for more elastic materials: D16T and N36. These values of v were used to
establish the dependence of v on other fracture characteristics: time to fracture, crack length, and applied stress. Then these
dependences were used to determine the values of lc and pc . It has been established that buckling decreases the stress pi by
10–20% depending on the material of plates and decreases lc and pc by 5–10%.

3.2.3. Crack Resistance of Plates. Local buckling influences the crack-resistance characteristics of plates: mechanical
(stress intensity factor KI), deformation (crack tip opening displacement δ), and energy (J-integral) characteristics of
elastoplastic fracture. It was studied using fracture curves: load p versus displacement s at the middle of crack faces and load p

versus displacement sp of points of load application [44]. Such curves for steel 20 plates with 170 mm width, h = 0.77 mm, and
2l0 = 78 mm are shown in Figs. 26 and 27. There are characteristic points marked: the point A corresponds to the moment of
buckling, the point i to the moment of crack initiation, and the point c to the maximum load. As is seen, in case of buckling, the
displacements s and sp increase at a smaller load p, with pi and pc being smaller too.

The technique from [44] was used to determine characteristics of elastoplastic fracture for a number of materials. It has
been established that such characteristics for plates with buckling preceding fracture are much less than those for plates with no
buckling. The maximum difference is about 18%.
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TABLE 10

Material 2b, mm h, mm l0, mm ν1, mm ν2, mm δ

AMg6M

250
250
250
250
250

0.50
0.50
0.50
1.02
1.45

30.0
41.5
50.0
42.0
41.0

4.20
2.20
0.85
1.40
1.50

3.50
1.85
0.70
1.12
0.98

0.20
0.19
0.22
0.25
0.17

AMtsM 250 0.92 40.0 0.54 0.49 0.10

D16T 200 0.97 41.0 3.70 2.90 0.27

VT-1-0 160 1.01 42.5 0.17 0.15 0.13

Steel 20 250 0.52 42.0 0.47 0.41 0.14

Steel 08kp 200 1.03 40.0 0.43 0.37 0.16

Steel N36 250 0.43 39.5 3.40 2.60 0.31
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TABLE 11

Material Bulging pc , MPa lc , mm
Kc , MPa⋅ m

1 2 3 4 5

Steel
N36

yes
no

349
417

53.0
54.6

155.2
188.9

167.4
206.5

170.2
210.1

171.2
213.8

171.9
214.3

D16T
yes
no

146
163

54.2
57.2

69.8
81.6

78.1
95.9

80.9
103.2

81.6
107.7

81.9
110.6

TABLE 12

Material 2b, mm h, mm l0, mm pm1
, MPa pm2

, MPa δ =
−p p

p

m m

m

2 1

2

, %

AMg6M

250
250
250
250
200

0.50
0.50
0.50
0.50
1.45

50.0
41.5
30.0
19.5
40.0

11.4
129.0
154.0
151.0
117.0

13.1
149.0
169.0
163.0
122.0

13.6
13.4
8.9
7.4
4.1

AMtsM 250 0.92 40.0 6.5 5.9 6.8

D16T 200 0.97 41.0 14.6 16.3 10.4

VT-1-0 160 1.01 42.5 20.3 21.1 3.8

Steel 20 250 0.52 42.0 17.6 18.6 5.3

Steel 08kp 200 1.03 40.0 15.3 16.7 8.4

Steel N36 250 0.43 39.5 34.9 41.7 16.3



The measured critical crack length lc was used to compute the critical stress intensity factor Kc for plates of finite width
by the method of successive approximations, the Irwin formula, with allowance for the increase in the crack length due to plastic
deformation [46, 53]. The results are in Table 11. The buckling decreases Kc by 26% for the D16T plates and by 20% for the N36
plates. This allows us to estimate the error of Kc computed for buckled plates without considering the buckling.

3.2.4. Strength of Plates. Table 12 summarizes the values of the fracture stress pm in the case of buckling ( pm1
) and no

buckling ( pm2
).

As is seen, the buckling strongly reduces the strength of plates. The degree of this reduction depends on the geometrical
and mechanical characteristics of plates: it increases with increase in l0 and decrease in h. The maximum reduction in strength is
observed for more elastic materials. The following expression obtained for AMg6M plates with h = 0.26, 0.34, 0.50, 0.90,
1.45 mm and 2l0 = 30, 60, 80, 120 mm describes the decrease in strength due to buckling [72–74, 82]:

( )p p l hm m2 1
1 0 000652 0= − . / . (3.7)

3.2.5. Fracture of Plates with Cracks and Crack-Like Defects under Various Loading Conditions. The influence of the

crack and buckling in plates with inclined cracks on the fracture characteristics was analyzed in [72, 74]. As the crack angle α
decreases, the crack growth rate v starts increasing after certain crack length and the critical crack length decreases. The buckling

causes v to increase and lc to decrease, the effect of buckling intensifying with increasing l b0 / and α. No buckling occurred for

small values of l b0 / and α—it was preceded by fracture. Table 13 gives the maximum stresses pm1
( )α (buckling is present) and

pm2
( )α (buckling is absent) for AMg6M plates with h = 0.47 mm and several values of α and l b0 / . The buckling has a strong

influence on pm ( )α , the degree of this influence also depending on α and l b0 / . As the angle α decreases, the stress pm ( )α
increases, weakening the effect of buckling. When α π= / 12, no buckling was observed—it was preceded by fracture.

The dependence of the fracture stress pm on the along-crack load q was studied for cross-like plates with cracks under
biaxial loading. Such a dependence is shown in Fig. 28 for some materials:

I: AMg6M plates with h = 0.48 mm and l0/b = 0.31, 0.45, 0.57, 0.74, 0.85 (lines 1–5);
II: St. 20 plates with h = 0.54 mm and l0/b = 0.57;
III: VT-1-1 plates with h = 0.43 mm and l0/b = 0.57; and
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TABLE 13

α l b0 / pm1
( )α , MPa pm2

( )α , MPa δ, %

π/4

0.5 129.3 139.9 7.6

0.4 139.4 149.5 6.8

0.3 171.8 182.4 5.8

0.2 180.9 191.8 5.7

0.1 221.3 228.7 3.2

π/2

0.3

143.2 159.5 10.2

5π/12 152.1 167.0 8.9

π/3 163.8 177.0 7.5

π/6 192.0 202.7 5.3

π/12 219.2 219.2 0



IV: St. N36 plates with h = 0.43 mm and l0/b = 0.57.
It is seen that irrespective of the kind of the material and values of h and l b0 / , high loads q do not cause p qm1

( ) to
increase considerably, which is consistent with linear fracture mechanics [36, 76].

The influence of buckling on the strength of plates is illustrated by Table 14. It presents the results of testing AMg6M
plates with h = 0.48 mm (with buckling, p qm1

( ), and without buckling, p qm2
( )). It is seen that the effect of buckling depends on

the values of l b0 / and q. For example, if l b0 / increases at q = const, then the deflection W and, consequently,δ increase too. If q

decreases at l b0 / = const, then the deflection W and, consequently δ increase.
Buckling in AMg6M plates with curved cracks increases the crack growth rate and reduces the strength. The degree of

this reduction depends on the crack curvature: the greater the arc rise, the more the reduction at a given value of 2l0 [42]
The fracture of plates with a circular hole and two radial cracks was studied in [56, 72]. It has been established that the

effect of buckling on the fracture characteristics depends on the mechanical and geometrical characteristics of plates such as the
initial length 2l0 and radius R of the hole (the more the 2l0 at R = const and the less the R at 2l0 = const, the stronger the effect of
buckling).

Figure 29 shows fracture curves for two-layer plates with 2l0 = 100 mm and h1 = 0.53 mm, h2 = 0.83 mm (curves I);
h1 = 0.53 mm, h2 = 0.68 mm (curves II); and h1 = 0.53 mm, h2 = 0.10 mm (curves III) and for plates with h1 = 0.53 mm,
h2 = 0.30 mm, and 2l0 = 60 mm (curves IV); 2l0 = 80 mm (curves V); and 2l0 = 100 mm (curve VI). Curves 1 and 2 refer to steel
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TABLE 14

l b0 / q, MPa p qm1
( ), MPa p qm2

( ), MPa δ, %

0.45 75.0 224.0 234.4 4.6

0.57 75.0 192.1 203.0 5.7

0.57 32.1 185.0 199.1 7.6

0.57 161.3 197.5 198.1 0.3

0.74 75.0 150.3 160.5 6.8

0.85 75.0 136.9 147.3 7.6



and aluminum, respectively. As is seen, initially, increasing load does not cause the crack to grow, and the fracture curves are
similar to those for single-layer plates. The difference becomes noticeable with further loading [51, 88]. The crack starts growing
earlier in the aluminum plate than in the steel one. The aluminum plates fracture much more intensively than the steel plates do;
therefore, at the same level of stress p, the crack length l is much larger in the aluminum plate than in the steel one. When the
aluminum plate is completely distructed, the steel plate still has load-bearing capacity. The behavior of the crack in the steel plate
depends on the ratio of h1 and h2: the more the h2, the greater the crack length l in the steel plate at the time of complete
destruction of the aluminum plate. For example, at the time of fracture of the AMg6M plate, the crack length in the St. 20 plate
was 10 mm in case III, 40 mm in case II, and 54 mm in case I. The difference in the behavior of cracks in steel and aluminum
plates results in delamination of a two-layer plate along the crack path. The delamination zone expands as the crack grows. The
delamination zones were different in size in different plates, which may apparently be attributed to the strength of the adhesive
bond.

The kinetics of fracture and the strength of two-layer plates are characterized by the data in Table 15. The table collects
the values of the crack growth rate v (v1 in the case of buckling and v2 in the case of no buckling) at crack length l = 80 mm (or
crack length increment ∆l = 30 mm). The value ofδcharacterizes the effect of buckling. As h and especially 2l0 decrease, the rate
v increases. It is also greater in the presence of buckling. The buckled plates achieve a certain value of vat a smaller crack length l

than the plates with no buckling do. The value of δ increases considerably with decrease in 2l0. Table 15 gives the maximum
loads pm in the absence ( pm1

) and presence ( pm2
) of buckling. As is seen, pm decreases with increasing 2l0, which is due to the

decrease in the plate section that runs through the crack and takes up the applied load. Also pm decreases with increasing h. The
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TABLE 15

2 0l , mm h, mm
v, mm/sec

δ =
−v v

v

2 1

1
, %

pm , MPa
δ =

−p p

p

m m

m

2 1

2

, %
v1 v2 pm1

pm2

100

0.63
0.73
0.83
0.98
1.21
1.36

1.12
1.10
1.05
0.97
0.85
0.77

1.24
1.21
1.15
1.05
0.92
0.84

10.1
9.9
9.5
8.2
8.1
7.7

185.1
173.2
165.7
161.1
151.1
139.9

166.4
156.9
153.3
151.0
142.1
132.4

10.1
9.2
7.5
6.2
6.0
5.4

80 0.83 1.95 2.20 12.8 181.2 172.0 5.0

60 0.83 3.15 3.75 19.1 197.0 188.8 4.2



reason is that the thickness h increases because of an increase in the thickness h2 of the aluminum plate alone (the thickness h1

remains the same). Though the load-bearing capacity of the plate increases with h, the stress p decreases, since the strength of the
aluminum plate is less than that of the steel plate. The buckling reduces the maximum load, with δdepending on the geometrical
and mechanical characteristics of the plate. The value of δ increases with increase in 2l0 and decrease in h. For specific
characteristics of the tested plates, the maximum reduction in the load due to local buckling was about 10%.

The effects of buckling and loading conditions on the kinetics of fracture and the strength of plates with an edge crack
was studied in [49, 50, 52, 82, 87, 89]. Table 16 gives v versus l0/b for AMg6M plates. Here vm1

, vm2
, and vm3

are the crack
growth rates in the case of hinged application of load (in the presence of buckling), hinged application of load (no buckling), and
direct application of load; and ∆l is the crack length increment. The behavior of v is different in the cases of direct and hinged
application of load. In the former case, v increases all the time, as in plates with a central crack, the rate of increase rising at some
moment. This moment was considered the beginning of avalanche-like fracture. In the case of hinged application of load, no
avalanche-like fracture was observed. At first the rate v increases and then, after reaching the maximum value, decreases. As the
crack approaches the opposite edge of the plate, the crack growth rate decreases. The less the initial crack length, the more the
maximum crack growth rate vm . In the buckled plates, the crack starts growing under smaller load and the maximum crack
growth rate is higher than in the plates with no buckling.

Table 17 shows the dependences of the fracture stress pm on l b0 / for AMg6M material. Here pm1
, pm2

, and pm3
correspond to the cases of hinged application of load (in the presence of buckling), hinged application of load (no buckling), and
direct application of load, and δ1 2 1 1

= −( ) /p p pm m m , δ2 3 1 1
= −( )p p pm m m .

As is seen, the stress is maximum under directly applied load. An increase in l0/b and buckling strongly reduce the
maximum stress. The degree of reduction in strength due to hinged application of load in the presence of buckling and due to
change of the way the load is applied in the absence of bulging depends on the ratio l b0 / .

The strength of plates with an edge crack also depends on the crack angleα [83]. Figure 30 shows the dependence of the
ratio p pm m1 2

/ on the crack angle α at l0 = 90 mm (curve 1) and on the initial crack length l0 at α = 30° (curve 2). As is seen,
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TABLE 16

l b0 /

∆l , mm

vm1
, mm/sec vm2

, mm/sec vm3
, mm/sec

20 40 50 20 40 50 20 40 50

0.32 2.45 1.95 0.75 2.40 2.80 2.50 0.85 1.10 1.25

0.43 1.70 0.55 0.25 1.60 0.70 0.45 0.90 1.40 1.70

0.57 0.25 0.40 0.15 0.45 0.20 0.15 1.55 4.55 6.50

TABLE 17

l b0 / pm1
, MPa pm2

, MPa δ1 , % pm3
, MPa δ2 , %

0.3 95 103 8 129 36

0.4 64 72 13 107 67

0.5 33 44 33 87 164

0.6 13 30 131 73 469



increase in α and decrease in l0 considerably weaken the effect of buckling on the strength of plates (the ratio p pm m1 2
/

increases, i.e., pm1
becomes closer to pm2

). For l0 = 90 mm, the maximum reduction in the strength of the tested plates was
about 30% at α = 0 and the minimum reduction was about 4% at α = 55. For α = 30, the maximum reduction was 22% at
l0 = 90 mm and the minimum reduction was 16% at l0 = 65 mm.

With the help of a TsDM PU-10 pulsator, the plates were subjected to cyclic tensile forces with a frequency of 14 Hz in
the mode of asymmetric cycle with stress ratio r = 0.2 [43]. It has been established that at the equal number of cycles N, the crack
growth rate v in buckled plates is higher by a factor of 2 to 5 (depending on the material of plates, the initial crack length, and the
maximum cyclic stress pm ). The buckling reduces the endurance of plates, the degree of reduction increasing with 2l0 and pm .
The reduction in the endurance was about 48% in St. 20 plates with h = 0.78 mm, l b0 / = 0.52, and pm = 82 MPa and about 52%
in VT-1-0 plates with h = 0.95 mm, l b0 / = 0.56, and pm = 52.6 MPa.

3.2.6. Fracture of Shells with Cracks. Figure 31 shows fracture curves for panels with radius R = 2000 mm and crack
lengths 2l0 = 20, 40, 80 mm (curves 1–3) [47, 72]. The solid curves refer to the case of free buckling and the dashed curves to the
case of no buckling. A feature of these curves is that the load p that triggers postcritical fracture comprises about 30% of the load
pm. As 2l0 decreases, the loads pi and pm increase. These loads are much higher when there is no buckling. The effect of buckling
on pi and pm depends on 2l0: as the crack grows, these stresses increase, reaching 15 and 17%, respectively. The stresses pm and
pi were not observed to depend on the radius of panels. In the buckled panels, a certain crack growth rate v is achieved at a smaller
crack length than in the panels with no buckling. Comparing the values of v at l = 100 mm shows that the crack growth rate
decreases with increase in 2l0, and the buckling increases the crack growth rate by 25%.

The fracture of cylindrical shells with cracks was studied in [72, 86]. It has been established that an increase in the
diameter of shells at constant crack length and a decrease in the crack length at constant diameter lead to an increase in the
fracture stress. The buckling decreases the critical crack length lc and appreciably reduces the strength of shells. The value of δ
depends on the crack length and the diameter of shells: as 2l0 increases and D decreases, δ increases. In testing conic shells, it has
been established that the effect of buckling on the fracture characteristics depends on the diameter and tapering angle of shells and

crack length. For a shell with ϕ = 20° and 2l0 = 40 mm, we have lc = 44 mm and pc = 146 MPa in the presence of buckling and
lc = 53 mm and pc = 161 MPa in the absence of buckling. The buckling reduces the residual strength of shells by approximately 16%.

Conclusions. The present paper describes a new untraditional approach to fracture problems for materials and
structural members with cracks. The approach is based on the mechanism of local buckling near defects. According to the
three-dimensional linearized theory of stability of deformable bodies, local instability near defects is considered to trigger
fracture under along-crack compression. Fracture studies were conducted for compressible and incompressible bodies with an
arbitrary elastic potential using the theories of large and small subcritical strains and for two wide classes of structural materials:
composite and elastoplastic materials.
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Studies into the fracture of structural members (plates and shells made of various structural materials) with cracks and
crack-like defects under tension considered local buckling near defects, which precedes the fracture process and strongly affects
the stress–strain state and fracture characteristics.

The main conclusions are the following:
1. The critical loading characteristics (compressive strains and stresses) corresponding to fracture onset depend on the

physicomechanical characteristics of the material. The critical loads for an infinite material with coplanar cracks equal the
critical load causing surface instability of a half-space and do not depend on the number, shape, and relative arrangement of
coplanar cracks. The critical loads corresponding to the flexural and symmetric buckling modes for coplanar cracks coincide.

2. The critical loading characteristics for parallel cracks (in particular, a periodic series of cracks) are in many respects
determined by the interaction of cracks. The critical loads strongly depend on the distance between parallel cracks, which allows
us to consider that parallel cracks interact under along-crack compression (in contrast to coplanar cracks in an infinite material).
The critical loads for closely spaced parallel cracks may be dozens of times smaller than those for a single crack in an infinite
material. In this case, the flexural buckling mode is realized.

3. Approximate design models produce large errors, both quantitative (hundreds of percent) and qualitative (for
example, the behavior of critical loading characteristics as functions of the stiffness characteristics of the composite
components).

4. Local buckling of a structural member (plate or shell) near the crack may precede fracture at certain relations between
the geometrical characteristics of the structural member (thickness, width, and crack length) and the mechanical characteristics
of the material (elastic modulus, Poisson’s ratio, plastic limit, and ultimate strength).

5. Altering the stress–strain state in a plate, near-crack buckling increases the stress and strain concentration factors.
The shape of a crack-like defect and the type of load have a strong effect on the critical stress and buckling mode.

6. Buckling influences the fracture kinetics, crack resistance, and residual strength of structural members: increases the
crack growth rate and decreases the stress causing the crack to grow and fracture stress. The effect of buckling depends on the
geometrical and mechanical characteristics of plates and shells. It intensifies with increase in the crack length and decrease in the
plate/shell thickness and is stronger in more elastic structural members.
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