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A new representation of the stress tensor in the linear theory of elasticity is proposed. The representation

satisfies the equilibrium equations and the compatibility conditions for strains. In this representation,

the stress tensor is expressed in terms of a harmonic vector. The second boundary-value problem for an

elastic half-space and elastic layer is considered as an example.
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A representation of the stress tensor in terms of an asymmetric harmonic tensor was proposed in [1, 2]. A
three-dimensional elastic problem in stress formulation was solved in [3–7, 9, 10, 12, 13].

This paper sets forth a new representation of the stress tensor in terms of a harmonic vector in the linear theory of
elasticity. The representation satisfies the equilibrium equations and the compatibility conditions for strains.

1. Problem Formulation. In the three-dimensional linear elasticity problem in stress formulation, the stress tensor �T

has to satisfy the static equation

div �T = 0 (1.1)

and the compatibility condition for strains [5]

Ink � � �ε
µ

ν
ν
σ= −

+


 


 =

1

2 1
0Ink T E , (1.2)

where Ink � ( � )*Q Q= rot rot , �E is a unit tensor, ν is Poisson’s ratio, µ is the shear modulus, σ = I1( �T) is the first invariant of the

stress tensor, and �ε is the linear strain tensor. Let body forces be absent.
It is sometimes more convenient to solve the three-dimensional elastic problem in the stress formulation than in the

displacement formulation, especially if stresses are specified at the surface of the body (second problem).
The compatibility condition for strains is usually written in Beltrami’s form

∇ +
∇∇
+

=2
1

0�T
σ
ν

, (1.3)

where ∇ is the inverted delta and ∇ 2 is the Laplacian.
Equation (1.3) is derived from (1.2) using some transformations and the equilibrium equation (1.1).
It is more convenient, however, to use the compatibility condition (1.2).

There are two methods for deriving a stress tensor �T that would satisfy Eqs. (1.1) and (1.2).
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The first method was proposed by Krutkov [4]. According to this method, the static equation (1.1) is satisfied first and
then goes the compatibility equation (1.2). Using an invariant representation of the stress tensor, Krutkov reduced system (1.1),
(1.2) to a rather awkward differential equation satisfied by the tensor of stress functions. Krutkov’s method, however, appears
very inconvenient when used to solve specific boundary-value problems.

We will use the second method. First, we will find an expression for �T that would satisfy the compatibility condition
(1.2) and only after that will we employ the equilibrium equation (1.1).

2. Solution Technique. Let us consider the compatibility condition (1.2). If the result of the operation Ink over a
symmetric tensor is zero, then this tensor is the deformation of some vector. Hence,

� �T E−
+

=
ν
ν
σ

1
def c, (2.1)

where c is some vector, ( )[ ]def c c c= ∇ + ∇
1

2
* .

Equating the traces of the tensors on the left- and right-hand sides of (2.1), we get

1 2

1

−
+

=
ν
ν
σ div c, (2.2)

where ( )I1 def divc c= and ( )I E1 3� = .

Substituting (2.2) into (2.1) yields

� �T E=
−

+
ν
ν1 2

div defc c. (2.3)

The stress tensor �T in the form (2.3) identically satisfies the compatibility condition (1.2).
Let c c= 2 0µ . Then (2.3) becomes

� �T E=
−

+


 


2

1 2 0 0µ
ν
ν

div defc c . (2.4)

Let us now express the vector c0 in terms of a harmonic vector B (∇ =2 0B ) and a scalar ϕ :

c B0 3= − ∇x ϕ , (2.5)

where x1, x2, and x3 are rectangular coordinates. We will relate ϕ and B below.
Substituting (2.5) into (2.4), we obtain

( ) ( )� �T E x x=
−

− ∇ + − ∇








2
1 2 3 3µ
ν
ν

ϕ ϕdiv defB B . (2.6)

The stress tensor (2.6) satisfies the compatibility condition (1.2). Let us now make expression (2.6) satisfy the
equilibrium equation (1.1) too. To this end, we substitute (2.6) into (1.1):

( ) ( )div div def
ν
ν

ϕ ϕ
1 2

03 3−
− ∇ + − ∇






=�E x xB B .

Since ( )div div div�E a a= ∇ and ( )div def diva a a= ∇ + ∇
1

2
2 , we have

( ) ( )∇ − ∇ +
−

− ∇ =2
3 31 2

0B Bx xϕ
ν
ν

ϕgrad div , (2.7)

and
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∇ =2 0B , ( ) ( )∇ ∇ = ∇ ∇ + ∇
∂
∂

2
3 3

2

3
2x x

x
ϕ ϕ

ϕ
,

( ) ( )∇ − ∇ = ∇∇ ⋅ − ∇
∂
∂

− ∇ ∇div B Bx
x

x3
3

3
2ϕ

ϕ
ϕ .

Substituting these relations into (2.7), we obtain

( ) ( ) ( ) ( )∇∇ ⋅ − − ∇
∂
∂

− − ∇ ∇ − ∇ ∇ =B 3 4 1 2 0
3

3
2

3
2ν

ϕ
ν ϕ ϕ

x
x x . (2.8)

If

∇ =2 0ϕ ,
∂
∂

=
−

∇ ⋅
ϕ

νx3

1

3 4
B, (2.9)

then (2.8) becomes an identity.

Thus, the stress tensor �T in the form (2.6) also satisfies the equilibrium equation (1.1) if the function ϕ obeys the
conditions (2.9).

In (2.6), the stress tensor �T is expressed in terms of the harmonic vector B and the harmonic scalar ϕ that are related by

(2.9). If the conditions (2.9) and the condition ∇ =2 0B are met, then (2.6) will satisfy Eqs. (1.1) and (1.2).
Expression (2.6) can be simplified somewhat. Since

( )div x
x

x3
3

3
2∇ =

∂
∂

+ ∇ϕ
ϕ

ϕ,

considering (2.9) we have

( ) ( )div B− ∇ = −
∂
∂

x
x3

3
2 1 2ϕ ν

ϕ
.

Hence, representation (2.6) takes the following final form:

( )� �T E
x

x=
∂
∂

+ − ∇








2 2

3
3µ ν

ϕ
ϕdef B . (2.10)

The components of (2.10) can be written as

σ µ νδ
ϕ ϕ

st st
s

t

t

s t sx

B

x

B

x x
x

x
=

∂
∂

+
∂
∂

+
∂
∂









 −

∂
∂

∂
∂


4

3
3





 −

∂
∂

∂
∂





















x
x

xs t
3

ϕ
(s, t = 1, 2, 3), (2.11)

where δst is the Kronecker delta.

The stress tensor �T in the form (2.10) satisfies the static equation (1.1) and the compatibility condition (1.2). Using
expression (2.11), we can first determine the components B1, B2, and B3 of the vector B from the known boundary stresses and

then the scalar ϕ from (2.9).

Thus, we can derive the final expression of �T for a specific boundary-value problem.

An expression of �T can also be derived from the Papkovich–Neuber solution

u B R B= −
−

∇ ⋅ +
1

4 1 0( )
( )

v
B , (2.12)

where u is the displacement vector and R is the position vector, ∇ =2 0B , ∇ =2
0 0B .

However, the structure of (2.12) does not allow us to establish the boundary conditions that have to be imposed on B and
B0 at the body’s surface to solve boundary-value problems. Papkovich emphasized this circumstance in [8].
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The structure of (2.10) is such that we can easily define boundary conditions.
3. Application of the Representation (2.10). By way of example let us apply expression (2.10) to solve the second

boundary-value problem for an elastic half-space. It is a static problem with stresses specified at the boundary of the half-space.
For x3 = 0, we have

σ3
1 2 1 2

1 20t
t t

t

f x x x x

x x
=

− ∈
∉





( , ) ( , ) ,

( , ) ,

for

for

Ω
Ω (3.1)

whereΩt are the domains of loading in the plane x3 = 0 (t = 1, 2, 3).

The expressions for the stresses σ31, σ32, and σ33 can be derived from (2.11) when x3 = 0:

σ31 = µ
ϕ∂

∂
+
∂
∂

−
∂
∂











B

x

B

x x

3

1

1

3 1
, σ32 = µ

ϕ∂
∂

+
∂
∂

−
∂
∂











B

x

B

x x

3

2

2

3 2
, σ33 = ( )2 1 2

3

3 3
µ ν

ϕ∂
∂

− −
∂
∂











B

x x
. (3.2)

Let us introduce functions Nt harmonic in the half-space x3 > 0,

Nt (x1, x2, x3) =
1

2 1 2 3 1 2πΩ t

f y y x r dy dyt∫∫ +( , ) ln ( ) (t = 1, 2, 3). (3.3)

Then we have

lim
( , ) ( , ) ,

( , )

∂

∂
=

− ∈
∉

2

3
2

1 2 1 2

1 20

N

x

f x x x x

x x

t t t

t

for

for

Ω
Ω .





(3.4)

Using (3.1)–(3.4), we arrive at the following system of equations:

µ
ϕ∂

∂
+
∂
∂

−
∂
∂









 =

∂

∂

B

x

B

x x

N

x

3

1

1

3 1

2
1

3
2 , µ

ϕ∂
∂

+
∂
∂

−
∂
∂









 =

∂

∂

B

x

B

x x

N

x

3

2

2

3 2

2
2

3
2 ,

( )2 1 2
3

3 3

2
3

3
2µ ν

ϕ∂
∂

− −
∂
∂









 =

∂

∂

B

x x

N

x
.

Solving these equations, we obtain

B
N

x

N

x x1
1

3

3

1 1

1

2
2 2=
∂
∂

−
∂
∂









 +

∂
∂µ

ν
Ψ

, B
N

x

N

x x2
2

3

3

2 2

1

2
2 2=
∂
∂

−
∂
∂









 +

∂
∂µ

ν
Ψ

,

( )B
N

x3
3

3

1

2
1 2=

∂
∂

+ −
µ

ν ϕ , ϕ =
∂
∂
Ψ
x3

. (3.5)

From (3.5) it follows that

( ) ( )∇ ⋅ =
∂
∂

∇ ⋅ + −
∂
∂

B N
1

1 4
3 3µ

ν
ϕ

x x
, N = ( , , )N N N1 2 3 . (3.6)

From (2.9) and (3.6) we get

( )ϕ
µ

= ∇ ⋅
1

2
N . (3.7)

Expressions (3.5) and (3.7) define the vector B = (B1, B2, B3) and the scalar ϕ, respectively, appearing in (2.10), in the
second boundary-value problem for an elastic half-space. Substituting (3.5) and (3.7) into (2.11), we obtain the final formulas for
the stressesσst .
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4. Elastic Layer. Let us demonstrate how expression (2.10) can be used to determine stresses in an isotropic elastic

layer (0 3≤ ≤x h). The stresses σ31, σ32, and σ33 are specified at the boundary of the layer:

σ3
0

1 2t tf x x= ( , ) for x3 = 0,

σ3 1 2t t
hf x x= ( , ) for x3 = h (t = 1, 2, 3). (4.1)

From (2.11) we obtain

σ µ
ϕ ϕ

31
3

1

1

3 1
3

2

1 3
2=

∂
∂

+
∂
∂

−
∂
∂

−
∂

∂ ∂










B

x

B

x x
x

x x
,

σ32 = µ
ϕ ϕ∂

∂
+
∂
∂

−
∂
∂

−
∂

∂ ∂










B

x

B

x x
x

x x

3

2

2

3 2
3

2

2 3
2 ,

σ33 = ( )2 1 2
3

3 3
3

2

3
2µ ν

ϕ ϕ∂
∂

− −
∂
∂

−
∂
∂













B

x x
x

x
. (4.2)

Each component Bm of the harmonic vector B satisfies the Laplace equation

∇ 2 Bm = 0, m = 1, 2, 3. (4.3)

The two-dimensional Fourier transform of some function f (x1, x2, x3) is [11]:

( ) ( )f x f x x x e dx dxi x xξ ξ
π

ξ ξ
1 2 3 1 2 3 1 2

1

2
1 1 2 2, , , , ( )= +

−∞

∞

−∞

∞

∫∫ . (4.4)

Applying the transform (4.4) to Eq. (4.3) and solving the resultant ordinary differential equation, we get

( ) ( ) ( ) ( ) ( )B x A x C xm m mξ ξ ξ ξ κ ξ ξ κ1 2 3 1 2 3 1 2 3, , , ,= +sinh cosh , (4.5)

where κ2 = ξ ξ1
2

2
2+ and m = 1, 2, 3.

A similar expression can be derived for the function ϕ satisfying the equation ∇ =2 0ϕ :

( ) ( ) ( ) ( ) ( )ϕ ξ ξ ξ ξ κ ξ ξ κ1 2 3 0 1 2 3 0 1 2 3, , , ,x A x C x= +sinh cosh . (4.6)

Applying the transform (4.4) to (4.2) and considering that the stresses tend to zero at infinity, we obtain

σ µ ξ ξ ϕ ξ
ϕ

31 1 3
1

3
1 1 3

3
2= − +

∂
∂

+ +
∂
∂









i B

B

x
i i x

x
,

σ µ ξ ξ ϕ ξ
ϕ

32 2 3
2

3
2 2 3

3
2= − +

∂
∂

+ +
∂
∂









i B

B

x
i i x

x
,

( )σ µ ν
ϕ ϕ

33
3

3 3
3

2

3
22 1 2=

∂
∂

− −
∂
∂

−
∂
∂













B

x x
x

x
. (4.7)

The Fourier transform of the boundary conditions (4.1) is

σ ξ ξ3
0

1 2t tf= ( , ) for x3 = 0,

σ ξ ξ3 1 2t t
hf= ( , ) for x3 = h (t = 1, 2, 3). (4.8)
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Satisfying conditions (4.8) and using formulas (4.5)–(4.7), we obtain the system of equations

− + + =i C A C fξ κ ξ µ1 3 1 1 0 1
0 / , − + + =i C A C fξ κ ξ µ2 3 2 2 0 2

0 / , κ ν κ µA A f3 0 3
01 2 2− − =( ) / ,

[ ] [ ]− + + +i A h C h A h C hξ κ κ κ κ κ1 3 3 1 1sinh cosh cosh sinh( ) ( ) ( ) ( )

[ ]+ + + +i A h C h i h A h Cξ κ κ ξ κ κ1 0 0 1 0 02sinh cosh cosh sinh( ) ( ) ( ) ([ ]κ µh f h) /= 1 ,

[ ] [ ]− + + +i A h C h A h C hξ κ κ κ κ κ2 3 3 2 2sinh cosh cosh sinh( ) ( ) ( ) ( )

[ ]+ + + +i A h C h i h A h Cξ κ κ ξ κ κ2 0 0 2 0 02sinh cosh cosh sinh( ) ( ) ( ) ([ ]κ µh f h) /= 2 ,

[ ] ( ) [ ]κ κ κ ν κ κ κA h C h A h C h3 3 0 01 2cosh sinh cosh sinh( ) ( ) ( ) ( )+ − − + − [ ]κ κ κ µ2
0 0 3 2h A h C h f hsinh cosh( ) ( ) /+ = ,

( )3 4 00 1 1 2 2 3− + + − =ν κ ξ ξ κA i C C A , ( )3 4 00 1 1 2 2 3− + + − =ν κ ξ ξ κC i A A C . (4.9)

The last two equations in (4.9) have been derived using the Fourier transform of (2.9).
Solving the system of equations (4.9) in a symbolical form using Cramer’s rule, we determine A0, C0, A1, C1, A2, C2, A3,

and C3. Then, using expressions (4.5) and (4.6), we take the Fourier transforms of B1, B2 , B3 , andϕ . After that, we findσ31,σ32 ,

and σ33 by formulas (4.7). And, finally, applying the inverse two-dimensional Fourier transform, we recover the stresses σ31,

σ32, and σ33 as functions of the coordinates x1, x2, and x3.

To derive the formulas for the other stresses (σ11, σ22, and σ12), it is necessary to use expression (2.11). After that, we
can take the Fourier transforms of σ11, σ22 , and σ12 (i.e., formulas similar to (4.7)). These formulas include B1, B2 , B3 , and ϕ .
The original functions can easily be recovered numerically using the inverse Fourier transform.
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